The present invention relates generally to probes, and in particular to heating systems of aircraft data probes.
Probes are utilized to determine characteristics of an environment. In aircraft systems, for example, air data probes are installed on every aircraft flying today to measure total pressure, static pressure and for some applications pressures for angle of attack and side slip. An air data function converts the pressure difference into airspeed, altitude, Mach number, flight direction, angle of attack, and angle of sideslip, among others.
The air data probes are installed on the outside of aircraft and are thus exposed to harsh and freezing weather conditions. The harsh weather conditions may cause ice formation on part of an air data probe, resulting in incorrect measurement of air data parameters. To prevent ice formation, a resistive heating element is installed in the air data probe which prevents ice formation on the air data probe. An operational voltage is provided through the heating element to provide heating for the air data probe.
Prolonged usage and frequent switching (OFF state to ON state, and vice versa) of the heating element causes the heating element in the air data probe to break down. When the heating element breaks down, the air data probe needs to be replaced prior to subsequent aircraft takeoff. Thus, monitoring the health of the heating element is very desirable.
In one aspect of the disclosure, a sensor assembly for monitoring a heater system for an aircraft probe sensor includes a first current sensor module and a second current sensor module. The first current sensor module includes a first current sensor core and a first high electromagnetically permeable enclosure around the first current sensor core. A first input wire pathway extends through the first current sensor core and the first high electromagnetically permeable enclosure and is configured to receive a heater input wire. A first return wire pathway extends through the first current sensor core and the first high electromagnetically permeable enclosure and is configured to receive a heater return wire. The second current sensor module includes a second current sensor core and a second high electromagnetically permeable enclosure around the second current sensor core. A second input wire pathway extends through the second current sensor core and the second high electromagnetically permeable enclosure and is configured to receive the heater input wire. A second return wire pathway extends through the second current sensor core and the second high electromagnetically permeable enclosure and is configured to receive the heater return wire. A high electromagnetically permeable tube extends through the first current sensor core and is configured to extend around one of the heater input wire and the heater return wire.
In another aspect of the disclosure, a sensor assembly for monitoring a heater system for an aircraft probe sensor includes a current sensor module. The current sensor module includes a current sensor core and a high electromagnetically permeable enclosure around the current sensor core. An input wire pathway extends through the current sensor core and is configured to receive a heater input wire. A return wire pathway extends through the current sensor core and is configured to receive a heater return wire. A high electromagnetically permeable tube extends through the current sensor core and is configured to extend around one of the input wire and the heater return wire.
In another aspect of the disclosure, a method for monitoring current in a heater system for an aircraft probe sensor includes feeding an input wire of the heater system through an input pathway across a first current sensor module and across a second current sensor module. A return wire of the heater system is fed through a return pathway across the first current sensor module and across the second current sensor module. A voltage is applied across the input wire and the return wire of the heater system. The first current sensor module is shielded from magnetic flux in the return wire with a high electromagnetically permeable tube extending around the return wire in the first current sensor module. Magnetic flux in the input wire is sensed by the first current sensor module to determine input current in the input wire. The second current sensor module is shielded from the magnetic flux in the input wire with a second high electromagnetically permeable tube extending around the input wire in the second current sensor module. The magnetic flux is sensed in the return wire by the second current sensor module to determine return current in the return wire.
While the above-identified drawing figures set forth one or more embodiments of the invention, other embodiments are also contemplated. In all cases, this disclosure presents the invention by way of representation and not limitation. It should be understood that numerous other modifications and embodiments can be devised by those skilled in the art, which fall within the scope and spirit of the principles of the invention. The figures may not be drawn to scale, and applications and embodiments of the present invention may include features and components not specifically shown in the drawings. Like reference numerals identify similar structural elements.
This disclosure relates to a current sensor assembly for monitoring a heater system for an aircraft probe. An input wire and a return wire of the heater system are passed through the current sensor assembly to shorten installation time and allow retroactive installation. High electromagnetically permeable tubes are selectively positioned around the input wire and the return wire in the current sensor assembly to selectively monitor an input/main current, a return current, and a differential current of the heater system. High electromagnetically permeable enclosures are used in the current sensor assembly to protect the current sensor assembly from interference from external sources. The current sensor assembly is discussed below with reference to the figures.
Aircraft probe 10 may be any type of probe such as, but not limited to, pitot probes, TAT probes, angle-of-attack (AOA) probes and any other probes that require heater system 12. Aircraft probe 10 is configured for mounting on the exterior of commercial aircraft, military aircraft, unmanned aerial vehicles, helicopters. Aircraft probe 10 can even be adapted for ground-based use and vehicles. Aircraft probe 10 is connected to receive control and power from control and interface circuit 14. Control and interface circuit 14 can be implemented local to aircraft probe 10 (e.g., implemented as a “smart probe”) or remote of aircraft probe 10. Control and interface circuit 14 can include, for example, a microcontroller, programmable logic device, application integrated circuit (ASIC), or any other digital and/or analog circuitry.
Resistive heating element 20 of heater system 12 is integrated into aircraft probe 10 wherever heat is needed. In some designs, resistive heating element 20 is a heater wire that is embedded within the body of aircraft probe 10. Input wire 22 and return wire 24 are lead wires that electrically connect resistive heating element 20 to a power source. Heater system 12, for example, can receive power directly, or through control and interface circuit 14, from aircraft power bus 16 to provide heating for aircraft probe 10. Power bus 16 may be any direct current (DC) or alternating current (AC) aircraft power bus. For example, resistive heating element 20 can receive power via input wire 22 and return wire 24 from a 28 Volt DC power bus. An operational current, based on the power received from power bus 16, flows through input wire 22, across resistive heating element 20, and through return wire 24. As the operation current flows across resistive heating element 20 electrical resistance in resistive heating element 20 generates heat for aircraft probe 10. Control and interface circuit 14 may also be connected to aircraft avionics 18. Alternatively, control and interface circuit 14 may be implemented integral to aircraft avionics 18. Control and interface circuit 14 may be configured to provide data to, and receive data from, aircraft avionics 18.
Current sensor assembly 26 senses current flowing into, and out of, resistive heating element 20 at input wire 22 and return wire 24. Input wire 22 is fed completely through input wire pathway 28 and return wire 24 is fed completely through return wire pathway 30. Current sensor assembly 26 provides signals indicative of the sensed current at input wire 22 and return wire 24 to control and interface circuit 14. Wireless transmitter 32 of current sensor assembly 26 can communicate and transmit the signals to wireless receiver 34 of control and interface circuit 14 and/or avionics 18. Over time, resistive heating element 20 may degrade, and eventually break down such that current no longer flows through resistive heating element 20 to provide heating for aircraft probe 10. Current sensor assembly 26 will sense the change in current across resistive heating element 20 as resistive heating element 20 degrades and will sense the stop of current when resistive heating element 20 eventually breaks down. Current sensor assembly 26 transmits these changes in current in resistive heating element 20 to control and interface circuit 14 and/or avionics 18, which in turn send(s) an alert that aircraft probe 10 must be repaired or replaced. Current sensor assembly 26 is described below in greater detail with reference to
First current sensor module 36a, second current sensor module 36b, and third current sensor module 36c are all contained within housing 44 of current sensor assembly 26. In other embodiments of the disclosure, first current sensor module 36a, second current sensor module 36b, and third current sensor module 36c can be positioned apart from each other in separate housings. Current sensor cores 38a, 38b, 38c can be non-contact current sensors such as, for example, a current transformer or Hall effect sensor. Current sensor cores 38a, 38b, 38c are each enclosed by current sensor casings 42a, 42b, 42c respectively for electrical insulation. Current sensor cores 38a, 38b, 38c are also enclosed by enclosures 40a, 40b, 40c respectively. Enclosures 40a, 40b, 40c are formed from a high electromagnetically permeable material to electromagnetically shield current sensor cores 38a, 38b, 38c from each other and from outside interference. A material has high electromagnetic permeability when the material has a permeability in the range of 9.42×10−4μ (H/m) to 1.26×100μ (H/m) between 0.002 T to 0.5 T. Examples of high electromagnetically permeable material include but are not limited to iron, electrical steel, ferritic stainless steel, martensitic stainless steel, permalloy, metglas 2714A, mu-metal, cobalt-iron, and ferrite. Padding 46 is attached to enclosures 40a, 40b, 40c to provide damping between enclosures 40a, 40b, 40c and damping between housing 44 and enclosures 40a, 40b, 40c.
Input wire pathway 28 extends through housing 44 and each of first, second, and third current sensor modules 36a, 36b, 36c. First section 28a of input wire pathway 28 extends through padding 46, enclosure 40a, current sensor casings 42a, and current sensor core 38a of first sensor module 36a. Second section 28b of input wire pathway 28 extends through padding 46, enclosure 40b, current sensor casings 42b, and current sensor core 38b of second sensor module 36b. Third section 28c of input wire pathway 28 extends through padding 46, enclosure 40c, current sensor casings 42c, and current sensor core 38c of third sensor module 36c. First current sensor module 36a is positioned adjacent second current sensor module 36b, and third current sensor module 36c is position adjacent second current sensor module 36b such that first section 28a, second section 28b, and third section 28c of input wire pathway 28 are all aligned to form a inline pathway. In other embodiments, first, second, and third current sensor modules 36a, 36b, and 36c respectively can be spaced apart such that first section 28a, second section 28b, and third section 28c of input wire pathway 28 are not contiguous.
Return wire pathway 30 extends through housing 44 and each of first, second, and third current sensor modules 36a, 36b, 36c. First section 30a of return wire pathway 30 extends through padding 46, enclosure 40a, current sensor casings 42a, and current sensor core 38a of first sensor module 36a. Second section 30b of return wire pathway 30 extends through padding 46, enclosure 40b, current sensor casings 42b, and current sensor core 38b of second sensor module 36b. Third section 30c of return wire pathway 30 extends through padding 46, enclosure 40c, current sensor casings 42c, and current sensor core 38c of third sensor module 36c. First current sensor module 36a is positioned adjacent second current sensor module 36b, and third current sensor module 36c is position adjacent second current sensor module 36b such that first section 30a, second section 30b, and third section 30c of return wire pathway 30 are all aligned to form a inline pathway. In other embodiments, first, second, and third current sensor modules 36c can be spaced apart such that first, second, and third sections 30a, 30b, and 30c respectively of return wire pathway 30 are not contiguous.
First guide tube 48 extends in first section 28a, second section 28b, and third section 28c of input wire pathway 28 and traverses first current sensor module 36a, second current sensor module 36b, and third current sensor module 36c. First guide tube 48 is sized to receive input wire 22. Input wire 22 is inserted into first guide tube 48 and extends completely across current sensor cores 38a, 38b, 38c through first guide tube 48. Second guide tube 50 extends in first section 30a, second section 30b, and third section 30c of return wire pathway 30 and traverses first current sensor module 36a, second current sensor module 36b, and third current sensor module 36c. Second guide tube 50 is sized to receive return wire 24. Return wire 24 is inserted into second guide tube 50 and extends completely across current sensor cores 38a, 38b, 38c through second guide tube 50. First guide tube 48 and second guide tube 50 can both be flexible and include a lubricant or slippery interior surface that allows easy feeding of input wire 22 and return wire 24 through current sensor assembly 26. Current sensor assembly 26 is relatively easy and fast to install onto heater system 12. Current sensor assembly 26 can be installed onto heater system 12 by un-pinning input wire 22 and return wire 24 from control and interface circuit 14, feeding input wire 22 through first guide tube 48, feeding return wire 24 through second guide tube 50, and re-pinning input wire 22 and return wire 24 to control and interface circuit 14. Thus, current sensor assembly 26 can be retro-fitted onto existing heater systems without having to add or replace any additional wiring.
As shown in
As shown in
As shown in
Current sensor cores 38a, 38b, 38c are each wired to signal conditioner 56 and wireless communication interface 58. Signal conditioner 56 and wireless communication interface 58 prepare the signals from current sensor cores 38a, 38b, 38c for transmission through wireless antenna 32. Wireless communication interface 58 and wireless antenna 32 can communicate the signals from current sensor cores 38a, 38b, 38c via Wi-Fi, cellular, Bluetooth, or any other suitable form of wireless communication that allows signals or data to be communicated from current sensor assembly 26 to control and interface circuit 14 and/or avionics 18. While each of first, second, and third current sensor modules 36a, 36b, 36c are described above as each including one current sensor core, first, second, and third current sensor modules 36a, 36b, 36c can each include multiple current sensor cores, as described below with reference to
In one embodiment, a sensor assembly for monitoring a heater system for an aircraft probe sensor includes a first current sensor module and a second current sensor module. The first current sensor module includes a first current sensor core and a first high electromagnetically permeable enclosure around the first current sensor core. A first input wire pathway extends through the first current sensor core and the first high electromagnetically permeable enclosure and is configured to receive a heater input wire. A first return wire pathway extends through the first current sensor core and the first high electromagnetically permeable enclosure and is configured to receive a heater return wire. The second current sensor module includes a second current sensor core and a second high electromagnetically permeable enclosure around the second current sensor core. A second input wire pathway extends through the second current sensor core and the second high electromagnetically permeable enclosure and is configured to receive the heater input wire. A second return wire pathway extends through the second current sensor core and the second high electromagnetically permeable enclosure and is configured to receive the heater return wire. A high electromagnetically permeable tube extends through the first current sensor core and is configured to extend around one of the heater input wire and the heater return wire.
The sensor assembly of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
a third current sensor module, wherein the third current sensor module comprises: a third current sensor core; a third high electromagnetically permeable enclosure around the third current sensor core; a third input wire pathway extending through the third current sensor core and the third high electromagnetically permeable enclosure and configured to receive the heater input wire; and a third return wire pathway extending through the third current sensor core and the third high electromagnetically permeable enclosure and configured to receive the heater return wire; and a second high electromagnetically permeable tube, wherein the second high electromagnetically permeable tube extends through the second current sensor core in the second input wire pathway and is configured to receive the heater input wire through the second high electromagnetically permeable tube, and wherein the high electromagnetically permeable tube extends through the first current sensor core in the first return wire pathway and is configured to receive the heater return wire through the high electromagnetically permeable tube;
the high electromagnetically permeable tube and the second high electromagnetically permeable tube are formed from a material with a permeability of 9.42×10−4μ (H/m) to 1.26×100μ (H/m) between 0.002 T to 0.5 T;
the first input wire pathway, the second input wire pathway, and the third input wire pathway are all aligned;
the first return wire pathway, the second return wire pathway, and the third return wire pathway are all aligned;
a first guide tube extending through the first return wire pathway, the second return wire pathway, and the third return wire pathway, and wherein the first guide tube is sized to receive the heater return wire; and a second guide tube extending through the first input wire pathway, the second input wire pathway, and the third input wire pathway, and wherein the second guide tube is sized to receive the heater input wire, and wherein the first guide tube extends within the high electromagnetically permeable tube, and wherein the second guide tube extends within the second high electromagnetically permeable tube;
the first guide tube and the second guide tube are flexible;
the high electromagnetically permeable tube and the second high electromagnetically permeable tube are each seamless;
the first, second, and third high electromagnetically permeable enclosures are formed from a material with a permeability of 9.42×10−4μ (H/m) to 1.26×100μ (H/m) between 0.002 T to 0.5 T;
a communication interface connected to the first, second, and third current sensor modules and configured to communicate monitored current data of the heater input wire and the heater return wire to a remote data concentrator and/or a central data acquisition unit; and/or
a fourth current sensor core in the current sensor module, wherein the fourth current sensor core is daisy-chained to the current sensor core, and wherein the high electromagnetically permeable tube extends through the fourth current sensor core; a fifth current sensor core in the second current sensor module, wherein the fifth current sensor core is daisy-chained to the second current sensor core, and wherein the second high electromagnetically permeable tube extends through the fifth current sensor core; and a sixth current sensor core in the third current sensor module, wherein the sixth current sensor core is daisy-chained to the third current sensor core.
In another embodiment, a sensor assembly for monitoring a heater system for an aircraft probe sensor includes a current sensor module. The current sensor module includes a current sensor core and a high electromagnetically permeable enclosure around the current sensor core. An input wire pathway extends through the current sensor core and is configured to receive a heater input wire. A return wire pathway extends through the current sensor core and is configured to receive a heater return wire. A high electromagnetically permeable tube extends through the current sensor core and is configured to extend around one of the input wire and the heater return wire.
The sensor assembly of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
a second current sensor module adjacent the current sensor module, the second current sensor module comprising; a second current sensor core; and a second high electromagnetically permeable enclosure around the second current sensor core; the input wire pathway extending through the current sensor core and the second current sensor core and configured to receive the heater input wire; the return wire pathway extending through the current sensor core and the second current sensor core and configured to receive the heater return wire;
a third current sensor module adjacent the second current sensor module, wherein the third current sensor module comprises: a third current sensor core; a third high electromagnetically permeable enclosure around the third current sensor core, wherein the input wire pathway extends through the third current sensor core and the return wire pathway extends through the third current sensor core; and a second high electromagnetically permeable tube, wherein the second high electromagnetically permeable tube extends in the input wire pathway through one of the second current sensor core and the third current sensor core and is configured to extend around the heater input wire, and wherein the high electromagnetically permeable tube extends through the current sensor core in the return wire pathway and is configured to receive the heater return wire;
the high electromagnetically permeable tube, the second high electromagnetically permeable tube, the high electromagnetically permeable enclosure, the second high electromagnetically permeable enclosure, and the third high electromagnetically permeable enclosure are formed from a material with a permeability of 9.42×10−4μ (H/m) to 1.26×100μ (H/m) between 0.002 T to 0.5 T;
the high electromagnetically permeable tube and the second high electromagnetically permeable tube are each seamless;
a first guide tube extending across the current sensor module, the second current sensor module, and the third current sensor module through the return wire pathway, and wherein the first guide tube is sized to receive the heater return wire; and a second guide tube extending across the current sensor module, the second current sensor module, and the third current sensor module through the input wire pathway, and wherein the second guide tube is sized to receive the heater input wire;
the first guide tube extends within the high electromagnetically permeable tube, and the second guide tube extends within the second high electromagnetically permeable tube; and/or
a fourth current sensor core in the current sensor module, wherein the fourth current sensor core is daisy-chained to the current sensor core, and wherein the high electromagnetically permeable tube extends through the fourth current sensor core; a fifth current sensor core in the second current sensor module, wherein the fifth current sensor core is daisy-chained to the second current sensor core, and wherein the second high electromagnetically permeable tube extends through the fifth current sensor core; and a sixth current sensor core in the third current sensor module, wherein the sixth current sensor core is daisy-chained to the third current sensor core.
In another embodiment, a method for monitoring current in a heater system for an aircraft probe sensor includes feeding an input wire of the heater system through an input pathway across a first current sensor module and across a second current sensor module. A return wire of the heater system is fed through a return pathway across the first current sensor module and across the second current sensor module. A voltage is applied across the input wire and the return wire of the heater system. The first current sensor module is shielded from magnetic flux in the return wire with a high electromagnetically permeable tube extending around the return wire in the first current sensor module. Magnetic flux in the input wire is sensed by the first current sensor module to determine input current in the input wire. The second current sensor module is shielded from the magnetic flux in the input wire with a second high electromagnetically permeable tube extending around the input wire in the second current sensor module. The magnetic flux is sensed in the return wire by the second current sensor module to determine return current in the return wire.
The method of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
feeding the input wire of the heater system through the input pathway across a third current sensor module; feeding the return wire of the heater system through the return pathway across the third current sensor module; and sensing the magnetic flux in the input wire and the return wire by the third current sensor module to determine a differential current between the input wire and the return wire; and/or
blocking interference from external sources by enclosing the first current sensor module in a first high electromagnetically permeable enclosure, enclosing the second current sensor module in a second high electromagnetically permeable enclosure, and enclosing the third current sensor module in a third high electromagnetically permeable enclosure.
While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. For example, while second current sensor module 36b is positioned between first current sensor module 36a and third current sensor module 36c in the embodiment
Number | Name | Date | Kind |
---|---|---|---|
5601254 | Ortiz et al. | Feb 1997 | A |
9927480 | Nesnidal | Mar 2018 | B2 |
10197517 | Essawy et al. | Feb 2019 | B2 |
10564203 | Essawy et al. | Feb 2020 | B2 |
20180275181 | Essawy | Sep 2018 | A1 |
20180275185 | Essawy et al. | Sep 2018 | A1 |
20190037643 | Dinh | Jan 2019 | A1 |
20190382139 | Shi | Dec 2019 | A1 |
20200191851 | Essawy et al. | Jun 2020 | A1 |
Entry |
---|
Extended European Search Report dated Feb. 23, 2022, received for corresponding European Application No. 21202743.7, pp. 5. |