1. Field of the Disclosure
This disclosure relates to a system and method for joining thin wall non-metallic pipes used in transporting liquids and gasses.
2. Description of the Related Art
Transporting fluids (or even gasses), such as water and chemicals can be costly and time consuming. For example, in today's energy scarce environment, efficient oil and was recovery techniques are vital. One means for inducing recovery is using an induced hydraulic fracturing method. “Fracturing fluids” or “pumping fluids” or “fracking fluids” consisting primarily of water and sand are injected under high pressure into the producing formation, creating fissures that allow resources to move freely from rock pores where it is trapped. Chemicals can be added to the water and sand mixture (creating a slickwater) to increase the fluid flow. Fractures provide a conductive path connecting a larger area of the formation to the well, thereby increasing the area from which natural gas and liquids can be recovered from the targeted formation.
Water for the fracturing method is supplied, to the recovery site and perhaps the fluid's byproduct from the fracturing method, known sometimes as flowback water, removed from the site) by a piping system. The piping system can consist of hundreds or thousands of yards of pipes. The piping system could include hundreds of pipes joined together by couplers to form the overall piping system. Although technically effective, environmentalists are concerned that tracking fluids may leak from the piping system thus causing, damage to the environment. Consequently, tatty areas where oil and gas reservoirs exist may not be exploited due to environmental concerns.
Traditional pipes used for transporting fluids, such as water, are made of steel or other metals, such as aluminum. More recent pipes are composed of a plastic material such as high density polyethylene (HDPE). HDPE pipes have some advantages over metal pipes, including lower costs, abrasion resistance, corrosion resistance, high impact resistance and greater flexibility (which are especially useful over uneven terrains). These pipes are durable for gas, chemical and water applications and may be reused.
For example, a typical Yelomine™ pipe has a weight density of 300 pounds (lbs.) per 30 feet (ft.) of length. This pipe has moderate durability but needs support structure (such as support blocks) during fluid transport use.
A typical aluminum pipe used in today's fluid transport system is light weight with a weight density of 90 lbs./30 ft of length. However it is not very durable and like the Yelomine™ pipe requires a support system during the fluid transfer. It has a pressure to weight ratio of a little more than 1.
Although HDPE pipes are in current use, such current use includes thick walled HDPE pipes, such as a DR9 HDPE pipe. To ensure the integrity of the piping system under high fluid transport pressure, the walls of the HOPE pipes are typically more than an inch thick. For example, the DR9 HDPE pipe has a wall thickness of 1.11 inches. The DR9 HDPE pipe has a weight density of a whopping 650 lbs./30 ft. It is highly durable but costs nearly 3 times more than an aluminum pipe. The pipes are difficult to transport in rough, uneven or forest terrains. Often, trucks or other mechanical movers are needed to transport the heavy pipes for construction of the system. These pipes are typically buried and then are not reusable. The pressure to weight ratio of the DR9 HDPE pipe is less than 0.4. Consequently, although thick walled HDPE pipes may be more durable than aluminum or Yelomine™ pipes, current thick walled HDPE pipes in industrial use remain very heavy. Furthermore, coupling these individual thick walled pipes to create the piping system may he slow and burdensome. That is, butt fusing systems are often used to join thick walled pipes. The use of the butt using system is often time consuming due to its process and the heavy equipment needed to be transported to the installation site for the connection of the pipes. In addition, as a result of environmental concerns, a coupler-less piping system or a system with few couplers is desirable since most leaks occur at a coupler or joint. Consequently, the use of current thick walled HDPE pipes may not be feasible in transporting liquids or gas over a great distance or through rough terrain under high pressure.
What is needed is a lightweight and cost effective HDPE piping system that can, among other things, withstand the environment and gas and fluid pressures of current oil and gas recovery methods. The novel system needs to be designed and constructed for easy transport and installation. The lightweight pipes can be lifted and carried by 2 men. The novel system needs to provide a high flow and a high strength solution. The system needs to allow for minimal blocks or a support system in an above ground application. Rather, the novel piping system can lie on the ground during use or span voids. However, below ground installation is not restricted by the novel system. Since the novel system can be made with a thermoplastic, such as HDPE, the piping system may be resistant to theft (since metal pipes are often stolen). In addition, the novel system may be used for other applications, such as water irrigation or temporary supply of water or removal of waste during emergencies or gas and chemical transport.
Typically, non-metallic pipes are joined using an exterior coupling that sleeves over the connection point. In order to install a sleeve on the ends of the pipes, the pipe cannot have any additional reinforcing layers to provide additional strength. Often the ends of the pipe may be strengthen by having pipe walls that are thicker at the ends than in the middle of the pipe. This requires additional pipe material and increases the weight of each pipe joint. What is needed is a method of joining pipe non-metallic pipe joints that does not require thickening a of the ends to accommodate sleeving and allows reinforcing layers to extend to the ends of the pipe joint.
In aspects, the present disclosure is related to a system and method for joining thin wall non-metallic pipe for transportation of fluids. Specifically, the present disclosure is related to joining pipe joints using an inner coupler configured to provide an attachment point for a pipe clamp.
In accordance with the present disclosure, a mechanical piping system and a method for manufacturing piping elements for use in the mechanical piping system is disclosed. As disclosed herein, the system incorporating aspects of the present disclosure may include a pipe, wherein the pipe is a thinned wall and made of high density polyethylene (HDPE) material. During the construction process, the thin walled ROPE pipe is cooled and then wrapped with a thermoplastic fiber tape. The tape is made with continuous and taut fibers wherein the fibers can be made from glass, carbon or synthetic fiber such as Kevlar™ fibers). The tape is applied to the pipe at ambient room temperature (around 72 degrees F.) and relatively low humidity (for example, around 30 percent). The tape and pipe are heated by a heat source and then allowed to cool. When heated and later cooled, the tape bonds (creating a homogenous or monolithic bond) to the pipe creating a reinforced thin wall pipe. Ends of the pipe may be further wrapped by the tape to add reinforcement to the pipe's ends. The reinforced pipe may then be wrapped with a UV protective and abrasion resistant film. Should the pipe need to endure higher pressures, a second wrapping or more wrappings at ambient temperature of the thermoplastic fiber tape is applied, heated and cooled before the UV/abrasion resistant film is applied. The system may also include a coupling connector, wherein the interior of the connector engages with the exterior of the end of the pipe. Mechanical or electrical forces are used to secure the pipe's end to the coupling connector.
The system and method disclosed herein is technically advantageous because it creates a mechanical piping system for use in high pressure application, including high pressure water transport, water irrigation or temporary water supply and removal applications. The system and method are further advantageous because the piping elements for high pressure fluid and gas transport are lighter (allowing for 2 men delivery and construction) and more durable than in existing piping systems and are also less prone to leakage. The system and method are also advantageous in that they incorporate time saving elements, making deployment and or removal of the piping system easier and faster than in current applications. Other technical advantages will be apparent to those of ordinary skill in the art in view of the following specification, claims, and drawings.
Another embodiment of the present disclosure includes a method for manufacturing a non-metallic pipe system for transporting a fluid, the method comprising: bonding an inner coupler to a pipe joint, wherein the inner coupler and the pipe joint comprise a non-metallic material, and wherein the inner coupler comprises: 1) a first section that i) has an outer diameter that is substantially identical to an inner diameter of the pipe joint and ii) is configured for insertion into the pipe joint and 2) a second section with an outer diameter that is greater than an outer diameter of the pipe joint.
Another embodiment according to the present disclosure includes a non-metallic piping system, the system comprising: a pipe joint; and an inner coupler, the inner coupler comprising: a first section configured to be inserted in the pipe joint, and a second section wherein the inner coupler and the pipe joint comprise material.
Examples of the important features of the disclosure have been summarized rather broadly in order that the detailed description thereof that follows may be better understood and in order that the contributions they represent to the art may be appreciated. There are, of course, additional features of the disclosure that will be described hereinafter and which will form the subject of the claims appended hereto.
For a detailed understanding of the present disclosure, reference should be made to the following detailed description of the embodiments, taken in conjunction with the accompanying drawings, in which like elements have been given like numerals, wherein:
Generally, the present disclosure relates to joining thin wall non-metallic pipe joints. Specifically, the joining of non-metallic pipe joints using an inner coupler bonded to the pipe joint. The present disclosure is susceptible to embodiments of different forms. There are shown in the drawings, and herein will be described in detail, specific embodiments of the present disclosure with the understanding that the present disclosure is to be considered an exemplification of the principles of the present disclosure and is not intended to limit the present disclosure to that illustrated, and described herein.
In
The pipe 1 is laid on a support platform and is cooled by a cooling apparatus (not shown). Such cooling, means could include a localized cooler or a cooling chamber. Other cooling methods are contemplated. In one embodiment, with an ambient room temperature of approximately 72 degrees F. and a dry humidity environment (in one embodiment, a relative humidity of around 30 percent), the pipe 1 is cooled until the outer surface temperature of the pipe is at 40 degrees F. or below. One skilled in the art would recognize that environmental conditions, such as temperature and humidity my affect the manufacturing process. The cooled pipe 1 is rotated along its central axis. As the pipe 1 is rotated, the tape 10 (generally at ambient room temperature) is applied to the pipe 1 to create a single layer of tape 10 over the pipe 1. To ensure complete coverage of the pipe 1 using a minimum amount of tape 10 (to reduce weight of the overall pipe), the tape 10 is applied securely in a barber pole fashion where some of the tape may overlap creating an overlap area 3. A heat source (such as an iron) (not shown) is used to secure the ends of the tape 10 to the outer surface of the pipe 1 to ensure that the tape 10 is tautly wound (without slack) around the pipe 1. The tape 10 and the pipe 1 are then heated by the same or another heat source 12 to a temperature to create a homogenous or monolithic bond. In one embodiment, the heat source 12 heats the tape 10 and the pipe 1 to a surface temperature of approximately 375 to 450 degrees F. The HDPE materials of both the tape and pipe melt creating a homogenous or monolithic bond. During the heating, process, the pipe 1 expands due to thermal expansion. Since the tape 10 is securely wrapped over the pipe 1 and the fibers 15 are continuous and taut, the fibers 15 of the tape 10 penetrate and embed itself to the pipe 1 as the pipe expands.
In
As shown in
Next, a UV protective and abrasion resistant film may be applied to the pipe 1. One such film is manufactured by Valeron of Houston, Texas under the brand name V-Max™. As shown in
The novel pipe 40 is typically 30 feet in length. Thus, in one embodiment, a coupler is used to join various sections of the pipe 40 to create the piping system. An electrofusion coupler 30 is shown in
Since the pipe 40 has been reinforced with the tapes 10 and 18 and UV protective/abrasion resistant film 48, the pipe, tapes and film may not effectively bond with the inner surface of the coupler 30.
Other coupling means can be used with the pipes. In another embodiment, a re-usable two section EF coupler can be used to join the reinforced thermoplastic pipes. Thus, a thin wall thermoplastic pipe can be re-used without the need to cut the pipe from the couplers. The length of the pipes is not shortened thus allowing additional reuses of the pipes.
The pipe 70 is reusable. Typically, the initial length of the pipe 70 is 30 feet in length. To reuse the pipe 70 and depending on the type of coupler, the pipe is cut from the coupler 30. Ends of the cut pipe are scraped of the tapes 10, 18 and 48 to once again create an exposed area for further coupling of the pipe 70 at another site. The scraping of the tapes from the pipe's 70 outer surface ends can be done in the field, thus allowing for quick turnaround and reuse. Transport costs are reduced in view of the overall light weight of the thin wall thermoplastic pipe and light weight tape and film. In one embodiment, the novel piping system has a weight density of less than 128 lbs./30 feet. Application of the novel system can include transport of water during fracturing operations, removal of waste water from oil and gas sites or temporary supply of water or removal of waste water during emergency situations.
For example, in one embodiment, the novel piping, system can transport 150 bbls/minute with a 10.5″ inner diameter (ID)/11″ outer diameter thin walled HDPE pipe and 200 PSI with 1.5 SF. Furthermore, repair and reuse of the novel pipes are possible at a lower cost than traditional piping systems. The novel, system can be used above ground and without traditional support blocks or other support platforms in a piggy back configuration. The clearing of an area for the laying of the novel piping system may not be needed. The flexible piping system can be used in forests or other high density areas with obstacles. Since the pipes are made of HDPE materials, threat of theft is reduced (in comparison with metal pipes).
The first section 1120 may be configured to fit inside of the pipe joint 1100. The first section 1120 may have an outer diameter 1122 that substantially the same as an inner diameter 1101 of the pipe joint 1100. The difference between the outer diameter 1122 and the inner diameter 1101 may be sufficient for the application of a bonding agent between the first section 1120 and the pipe joint 1100.
The bonding agent may include any suitable material or structure for bonding the first section 1120 to the pipe joint 1100. The bonding agent may include, but is not limited to, an adhesive and an electrofusion coil 1140. In some embodiments, the pipe joint 1100 may be circumferentially compressed by a clamp (such as a hose clamp to bond with the first section 1120. In another embodiment, the bonding of the first section 1120 to the pipe joint 1100 may not require a bonding agent.
The second section 1130 may have an outer diameter 1132 that is greater than an outer diameter 1102. The shoulder 1150 is the portion of second section 1130 that extends beyond the outer diameter 1102 and is configured to receive a clamp 1400 (
While the disclosure has been described with reference to exemplary embodiments, it will be understood that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the disclosure. In addition, many modifications will be appreciated to adapt a particular instrument, situation or material to the teachings of the disclosure without departing from the essential scope thereof. Therefore, it is intended that the disclosure not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this disclosure, but that the disclosure will include all embodiments falling within the scope of the appended claims.
This application claims the benefit of U.S. Provisional Patent Application No. 61/784,093 filed Mar. 14, 2013, which application is hereby incorporated by reference for all purposes in its entirety.
Number | Date | Country | |
---|---|---|---|
61784093 | Mar 2013 | US |