1. Field of the Invention
The present invention relates to an inner cutter for a rotary shaver and to a rotary shaver that uses the same and more particularly to an inner cutter for a rotary shaver in which the material thereof can be made thin and which exhibits outstanding anti-wear properties and to a rotary shaver using such an inner cutter.
2. Description of the Related Art
In electric shavers, such as rotary shavers, the relationship between the anti-wear properties (feel of the shave) and the designing of the material to be thin is generally a relationship of a trade-off to take only one of the two. In other words, when priority is given to anti-wear properties, it becomes very difficult to make the material thinner and inner cutter manufacturing costs go up, whereas, when designing the material thinner is given priority, then it becomes difficult to realize anti-wear properties and product value declines. Accordingly, in general, for inner cutters and rotary shavers placed on the market, a balance is maintained between anti-wear properties and designing of the material to be thinner in inner cutters.
In order to effect good shaves with an inner cutter for a rotary shaver in which such a balance is taken between anti-wear properties and designing of the material to be thinner, cutter blades of inner cutter are usually inclined in the direction in which the inner cutter rotates as shown in, for instance, FIG. 6 of Japanese Patent Application Laid-Open (Kokai) No. 2005-185827. The reason for the inclined cutter blades is that, by taking the shape like that of FIG. 6 in Japanese Patent Application Laid-Open (Kokai) No. 2005-185827, it becomes possible to effect good shaves even with a thin-material structure.
Here, the structure in which the cutter blades of the inner cutter in a rotary shaver are inclined in the direction of rotation of the inner cutter means that the position of the leading tip end portions (or leading edge portions) of the cutter blades of the inner cutter are located forward, relative to the base portions thereof, in the direction of rotation of the inner cutter.
When the inner cutter for a rotary shaver is thin, such a measure is sometimes implemented that an inner cutter guide vibration-preventing member which is for supporting the lower surface of the inner cutter main body is provided in an inner cutter guide that connects the inner cutter to the output shaft of a drive means provided in the rotary shaver, so that, the lower surface of the inner cutter main body is supported thereby, and thus preventing vibration when the inner cutter is rotated.
However, when the inner cutter for a rotary shaver such as that shown in Japanese Patent Application Laid-Open (Kokai) No. 2005-185827 is rotated, minute vibrations tend to occur in the cutter blade supports (the elements 118 in Japanese Patent Application Laid-Open (Kokai) No. 2005-185827) of the inner cutter due both to friction caused by the blade surface sliding resistance between the outer cutter and the inner cutter and to shaving resistance. As a consequence, there are such problems that abnormal wear occurs in the portions of the blade surfaces of the outer cutter and inner cutter that slide against each other and that the feel of the shave deteriorates. In some cases, moreover, the rotary shaver is damaged and not usable any longer.
In the following, minute vibrations that would occur in the inner cutter (or inside the cutter blades of inner cutter) will be described.
As shown in Illustration A of
When the force that the chalk is pressed against the blackboard and the speed of movement of the chalk is held constant, then the way the chalk phenomenon occurs will be different depending on the angle of inclination α of the chalk to the blackboard. In other words, when the angle of inclination α of the chalk relative to the blackboard is small as shown in Illustration C of
This so-called “chalk phenomenon” described above is not a phenomenon that occurs only between a blackboard and a piece of chalk, but it would occur similarly in metals, plastics, and wood materials and the like. Furthermore, as shown in Illustration G of
Also, in electric shavers, because such measures as attaching inner cutter guide vibration-preventing members as described earlier, or designing the inner cutter sheet thickness thicker are implemented as general techniques for extending the useful life of inner cutters, there is a problem of soaring inner cutter manufacturing costs.
Furthermore, in response to the demand for cleanliness, most electric shavers, including rotary shavers, in recent years, are products that can be washed in water. In almost all of these electric shavers that can be washed in water, the cutters are moved (rotated, or reciprocated in reciprocating shavers) in an unoiled condition after washing. When the cutters are, for instance, rotated in such an unoiled condition, additional loads are placed on the inner cutter and outer cutter, causing a problem that wear between the inner cutter and outer cutter is accelerated. Because inner cutters and outer cutters are used in such severe conditions, it may now be said that hair cutting sharpness deteriorates in a shorter time than with conventional rotary shavers.
An object of the present invention is to provide an inner cutter for a rotary shaver and a rotary shaver that uses the same, wherein, by preventing the chalk phenomenon caused between the inner cutter and outer cutter, the deployment of parts which is for suppressing (minute) vibrations in the inner cutter is made unnecessary, abnormal wear in the inner and outer cutters is prevented by maintaining the sliding condition between the inner cutter and the outer cutter in a suitable condition, and cutting sharpness is well maintained for a long time even with a thin-material structure in the inner cutter.
The above object is accomplished by a unique structure of the present invention for an inner cutter for a rotary shaver wherein the inner cutter is comprised of a plurality of blade supports formed so as to be raised from an inner cutter main body, and cutter blades provided, respectively, at the tip ends of the blade supports, and in this inner cutter, the positions where the blade supports are raised are located more forward in the direction of rotation of the inner cutter than the positions of the leading blade-tip of the cutter blades.
In the above-described inner cutter of the present invention, at least one bent portion or curved portion is formed in each one of the blade supports.
In addition, the above-described cutter blades are provided at the tip ends of the blade supports without changing the linear form (or the curvature) in the tip ends of the blade supports.
Furthermore, in the present invention, the blade supports are inclined backward in the direction of the rotation of the inner cutter.
As a consequence of these characteristics, the height position of the cutter blades, when the inner cutter is rotated, can be lower than the height position of the cutter blades prior to rotating the inner cutter; and a result, it is possible to prevent the occurrence of the chalk phenomenon that would occur by the cutter blades and the outer cutter. Accordingly, in the inner cutter of the present invention, the condition in which the cutter blades and the outer cutter slide against each other is maintained in a suitable condition, and, abnormal wear in the cutter blades and outer cutter can be prevented.
The above object is further accomplished by a unique structure of the present invention for a rotary shaver that includes a shaver frame body, a power supply unit and an inner cutter drive unit both provided in the shaver frame body, an inner cutter(s) that is(are) rotationally driven in linkage with the inner cutter drive unit, and an outer cutter(s) for shaving hair in cooperation with the (rotating) inner cutter(s), and in this shaver, the inner cutter(s) is(are) comprised of a plurality of blade supports formed so as to be raised from an inner cutter main body(s), and cutter blades provided, respectively, at the tip ends of the blade supports; and in this structure, the positions where the blade supports are raised are located more forward in the direction of rotation of the inner cutter(s) than the positions of the leading blade-tip of the cutter blades.
In this rotary shaver, at least one bent portion or curved portion is formed in each one of the blade supports of the inner cutter(s). In addition, the cutter blades are provided at the tip ends of the blade supports without changing the linear form (or the curvature) in the tip ends of the blade supports. Furthermore, the blade supports are inclined backward in the direction of the rotation of the inner cutter(s).
According to the inner cutter for a rotary shaver of the present invention, the blade supports exhibit deflection oriented backward in the direction of the rotation of the inner cutter when the cutter blades are subjected to a sliding resistance with the outer cutter, or when a load is sustained during shaving. Due to such deflection, the cutter blades of the inner cutter will pull away from the blade surfaces of the outer cutter, so that the chalk phenomenon is avoided, and abnormal wear in the cutter blades and outer cutter is prevented.
As a consequence, the hair cutting sharpness of the rotary shaver is maintained for a long period of time even when the shaver that uses the inner cutter(s) is used in the unoiled condition after washing.
Also, because a suitable sliding condition between the outer cutter and the cutter blades of the inner cutter is maintained, measures to prevent the chalk phenomenon between the cutter blades and the outer cutter is unnecessary, and it is possible to adopt a thin-material structure. If the inner cutter is given a thin-material structure in this manner, the inner cutter manufacturing cost can be reduced.
By implementing what has been described above, a long-lived rotary shaver is provided at low cost.
Embodiments of the present invention will be described with reference to the accompanying drawings.
As seen from
The inner cutter 10 for the rotary shaver 10 (hereinafter sometimes referred to simply as the “inner cutter 10”) shown in
The cutter blades 16 in this embodiment are provided in two rows, on the inner circumference side and on the outer circumferential side, in the radial direction of the inner cutter main body 12. The cutter blades 16 slide, with a prescribed frictional force, against inner surface of the outer cutter 30, in inner circumferential side slits 32a and outer circumferential side slit 32b in each one of the outer cutters 30, which are shown in
The blade supports 14 are formed at equal intervals in the direction of rotation of the inner cutter 10 in the inner cutter main body 12. The blade supports 14 are formed by being cut from the inner cutter main body 12. The blade supports 14, after being cut from the inner cutter main body 12, are bent and raised on the inner cutter main body 12 so as to be inclined in a direction opposite from the direction of rotation of the inner cutter 10 (the rotational direction of the inner cutter 10 is shown by arrow R in
As shown in
In this structure, the blade supports 14 and the cutter blades 16 are formed so as to take a substantially inverted L shape (or in a “>” shape as seen from drawings). Causing the cutter blades 16 to be inclined in the direction of rotation of the inner cutter 10 in this manner allows the feel of the shave to be enhanced, even with a thin-material structure (or even if the inner cutter main body 12, the blade supports 14, and the cutter blades 16 are made of a thin metal material of, for instance, 0.3 mm), and thus it is advantageous. The blade supports 14 and the cutter blades 16 in the shown embodiment are formed integrally, and they can be formed by press machining.
Furthermore, as seen from
By providing each of the raised portions 14a, support tip end portions 14b, bent portions 14c, and leading tip ends (blade tip end or blade's forward edge) 16a so that their positional relationships are as described above, an action in which the cutter blades 16 pull away from the outer cutter when the inner cutter 10 is rotated occurs; and as a result, abnormal sliding between the cutter blades 16 and the outer cutter is prevented assuredly. Accordingly, anything that would adversely affect the feel of the shave, such as wear in the cutter blades 16 and outer cutter 30 and/or blade breakage is prevented.
In conducting these durability tests, inner cutters and outer cutters, after being cleaned in a trichloroethylene ultrasonic cleaning machine, and after verification that they had been degreased, were connected to the output shaft (rotating shaft) of rotary shavers having a common configuration. In these durability tests, the inner cutters on rotary shavers are rotated for three minutes and then the rotation is stopped for three minutes, and this action was performed repeatedly. These on-off actions were repeated until the cumulative on time of the on-off actions reached 100 hours.
In the durability tests, when damage to an outer cutter (such as a crack developing in the outer cutter, and the outer cutter breakage) occurred, or when abnormal wear developed in the slide surfaces of the outer cutter and inner cutter, an NG (no good) judgment was made. When, on the other hand, a cumulative on time for the on-off action of 100 hours was reached without any damage occurring in the outer cutter or any abnormal wear occurring in the sliding surfaces of the outer cutter and inner cutter, an OK judgment was made. Outer cutter damage checks were performed every six minutes (after every on-off cycle) by microscopic examination at a magnification power of 20×.
Three of each sample were tested under the same conditions. In cases an NG judgment is made, the average value (in hours) of the cumulative time of three samples is taken and indicated by “ave” (average).
In the inner cutters in samples A and B in
Sample A was given an NG judgment, with an average value of cumulative time being 20.2 hours. Sample B was also given an NG judgment, with an average value of cumulative time being 6.3 hours.
In the inner cutters in samples C and D in
Sample C was given an OK judgment. Sample D, however, was given an NG judgment, with an average value of cumulative time being 5.8 hours.
The differences between sample A and sample C, and, likewise, between sample B and sample D, are, in both cases, the difference of providing or not providing the inner cutter guide swing-preventing members 20. Looking at the results of the durability tests for sample A and sample C, it can be seen that providing the inner cutter guide swing-preventing members 20 is beneficial; however, looking at the results of the durability tests for sample B and sample D, there is no benefit in providing the inner cutter guide swing-preventing members 20.
As seen from the above, it is evident that, when the sheet thickness of the inner cutter 10 is thin, even when the inner cutter guide swing-preventing members 20 are provided for the inner cutters 10, minute vibrations in the inner cutters 10 are not avoidable.
The inner cutters 10 in samples E and F in
As seen from the durability test results described above, it is clear that by adopting the inner cutter shape of the present invention, inner cutters have satisfactory durability, even when the sheet thickness of the blade supports 14 (that is, of the inner cutter main body 12 and cutter blades 16) is given a thin-material structure (having a 0.3 mm thickness). In addition, even without inner cutter guide swing-preventing members, the chalk phenomenon between the cutter blade 16 and the outer cutter is prevented, so that the quality of the inner cutter 10 is enhanced at low cost.
The inner cutter for a rotary shaver according to the present invention is not limited to or by the embodiment described above; and, needless to say, such inner cutters as those in which various modifications are made within the scope not altering the characteristics of the invention are within the technical scope of the present invention.
For example, in the shown embodiment, the inner cutter 10 (or the blade support 14 and cutter blade) is in an inverted L (or “>”) shape as shown in, for instance,
More specifically, the inner cutter 10 can be formed so that, as shown in
It is also possible, as shown in
In this inner cutter shown in
Furthermore, in the present invention, it is also possible, as shown in
Furthermore, as shown in each of
In the structure of
In the inner cutters 10 described above, the blade supports 14 are raised (or erected) in a plurality of rows in the radial direction in the inner cutter main body 12; however, it is not absolutely necessary that the number of raised portions (blades supports) on the outer circumferential side coincide with the number of raised portions (blades supports) on the inner circumferential side, and thus the number of raised portions on the inner circumferential side and the outer circumferential side can be different.
Moreover, the elements in the inner cutter shapes (blade support and cutter blade shapes) described in the above can be indeed taken and freely combined to form an inner cutter.
Number | Date | Country | Kind |
---|---|---|---|
2006-213877 | Aug 2006 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
2824367 | McWilliams | Feb 1958 | A |
3125808 | Starre | Mar 1964 | A |
3710442 | Meyer | Jan 1973 | A |
4192065 | Tietjens | Mar 1980 | A |
4222168 | Boiten et al. | Sep 1980 | A |
4227301 | Van Hemmen et al. | Oct 1980 | A |
4240199 | Boiten et al. | Dec 1980 | A |
4262416 | Van Hemmen et al. | Apr 1981 | A |
4729169 | Asawa | Mar 1988 | A |
4882840 | Tietjens | Nov 1989 | A |
D355276 | Uchiyama et al. | Feb 1995 | S |
5390416 | Uchiyama et al. | Feb 1995 | A |
5408749 | Momose | Apr 1995 | A |
D365420 | Momose | Dec 1995 | S |
6502309 | De Vries et al. | Jan 2003 | B2 |
6581289 | Nakano | Jun 2003 | B2 |
7178242 | Okabe | Feb 2007 | B2 |
7665214 | Okabe | Feb 2010 | B2 |
8191264 | Veenstra et al. | Jun 2012 | B2 |
20020014011 | De Vries et al. | Feb 2002 | A1 |
20050120567 | Okabe | Jun 2005 | A1 |
20080172881 | Okabe | Jul 2008 | A1 |
20090025228 | Minkes et al. | Jan 2009 | A1 |
20100095531 | Akkerman et al. | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
1225991 | Sep 1966 | DE |
0094128 | Nov 1983 | EP |
1175972 | Jan 2002 | EP |
2005-185827 | Jul 2005 | JP |
WO 2004012914 | Feb 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20080028618 A1 | Feb 2008 | US |