The present invention relates generally to electric shavers and, more particularly, to an inner cutter for a rotary electric shaver.
Rotary electric shavers conventionally include a handle and a head mounted on the handle, and the head carries two or more sets of paired inner and outer cutters. The outer cutters, which are typically cup-shaped, are supported by a frame of the shaver head and typically define skin contacting surfaces of the shaver. Openings or slots formed in the outer cutters allow hair to protrude through the outer cutters as the shaver head is moved over the skin. Each inner cutter is housed in the shaver head below a respective outer cutter and in sliding engagement with the inner surface of the outer cutter. The inner cutters are rotatably driven by an electric motor, typically housed within the handle, whereby rotation of the inner cutters facilitates cutting hairs that protrude through the outer cutters.
In many current rotary electric shaver constructions, each inner cutter has a plastic drive cap and metallic blade fastened to the drive cap. The drive cap is configured to connect the inner cutter to a drive shaft operably coupled to the motor. The configuration of the blade can affect shaving efficiency and comfort, along with the cost of manufacturing the inner cutter.
There is a need, therefore, for an inner cutter that provides an efficient and comfortable shaving experience, as well as a lower manufacturing cost.
In one embodiment, a blade for an inner cutter of a rotary shaver generally includes an annular base plate and a plurality of cutting units spaced about the base plate. Each of the cutting units has a pair of generally radially spaced-apart cutting edges and an orientation axis. The orientation axes define a plurality of differently angled spaces about the blade.
In another embodiment, a blade for an inner cutter of a rotary shaver generally includes an annular base plate and a plurality of cutting units spaced about the base plate. Each of the cutting units includes a projecting segment extending generally upwardly from the base plate and a cutting member extending generally radially from the projecting segment. A lower relief is defined at a lower junction of the projecting segment and the cutting member.
In yet another embodiment, a blade for an inner cutter of a rotary shaver generally includes an annular base plate and a plurality of cutting units spaced about the base plate. Each of the cutting units has a front surface, a back surface, and a top surface extending from the front surface to the back surface. The top surface has a planar contact portion and a planar noncontact portion that are obliquely oriented relative to one another.
In yet another embodiment, a method of manufacturing a blade for an inner cutter of a rotary shaver generally includes stamping a blade formation from a sheet of metallic material. The blade formation includes a base plate formation and a connecting segment formation joined to the base plate formation with a first pair of reliefs disposed on opposite sides of the connecting segment formation at the base plate formation. The blade formation further includes a projecting segment formation joined to the connecting segment formation and a cutting member formation joined to the projecting segment formation with a second pair of reliefs disposed on opposite sides of the projecting segment formation at the cutting member formation. The method also generally includes bending the projecting segment formation relative to the connecting segment formation such that the projecting segment formation extends generally upward relative to the connecting segment formation. The method also generally includes bending the cutting member formation relative to projecting segment formation such that the cutting member formation extends generally radially from the projecting segment formation.
Corresponding reference characters indicate corresponding parts throughout the several views of the drawings.
Referring now to the drawings, and in particular to
With reference now to
With the blade 300 fastened to the cap 200 (as described below), the inner cutter 100 may be inserted into an outer cutter of a shaver head suitably connected to a shaver handle. Because shaver heads and/or shaver handles typically house components of a shaver drive system (e.g., a motor, a gear arrangement, and/or a drive shaft), at least the lower portion 202 of the cap 200 is hollow to receive a drive pin therethrough for operatively connecting the inner cutter 100 to the shaver drive system. Additionally, the generally polygonal tip 212 is configured to align the inner cutter 100 inside of the outer cutter for rotation of the inner cutter 100 within the outer cutter during operation of the shaver drive system.
Referring now to
The blade 300 has a base plate 304 and a plurality of cutting units 306 spaced circumferentially about, and extending from, the periphery P of the base plate 304. The base plate 304 and the cutting units 306 are formed integrally together in this embodiment. In other embodiments, the base plate 304 and the cutting units 306 may be formed separately from, and connected to, one another using any suitable connection (e.g., a welded connection).
The base plate 304 has a top surface 308 and a bottom surface 310. In the illustrated embodiment, to fasten the blade 300 to the cap 200, the upper portion 204 of the cap 200 is inserted into the aperture 302 of the blade 300 until the bottom surface 310 of the base plate 304 is seated on the rim 208. Because the star-shaped contour of the base 210 is keyed to the star-shaped contour of the aperture 302, the base 210 can be inserted into the aperture 302, but the base 210 cannot then be rotated relative to the base plate 304 (i.e., the cap 200 is configured to transmit rotational motion from the drive system of the shaver to the blade 300 during operation of the shaver). With the base plate 304 seated on the rim 208, the base 210 is heat staked (or ultrasonically staked) about at least a portion of the star-shaped base 210. This heat staking (or ultrasonic staking) deforms the base 210 over at least part of the perimeter of the aperture 302 to create an interference fit between the cap 200 and the blade 300 once the deformed portion(s) of the base 210 harden, thereby fastening the blade 300 to the cap 200. In other embodiments, the blade 300 may be configured to be fastened to the cap 200 using any suitable method.
In the illustrated embodiment, the blade 300 has nine cutting units 306 that are spaced about the base plate 304 in groups of three. More specifically, the blade 300 includes a first group (generally indicated at 312) of cutting units 306 having a first cutting unit 314, a second cutting unit 316, and a third cutting unit 318; a second group (generally indicated at 320) of cutting units 306 having a fourth cutting unit 322, a fifth cutting unit 324, and a sixth cutting unit 326; and a third group (generally indicated at 328) of cutting units 306 having a seventh cutting unit 330, an eighth cutting unit 332, and a ninth cutting unit 334. In other embodiments, the blade 300 may have any suitable number of groups or cutting units 306 per group. In this embodiment, the cutting units 306 within each group 312, 320, 328 are spaced apart from one another by reliefs 336, and the groups 312, 320, 328 themselves are spaced apart from one another by a tab 338 having a pair of reliefs 340 on opposite sides thereof. Thus, because the groups 312, 320, 328 are spaced apart by a tab 338 and two reliefs 340, while the cutting units 306 within a given group 312, 320, 328 are spaced apart by a single relief 336, the spaces between adjacent groups 312, 320, 328 of cutting units 306 are larger than the spaces between adjacent cutting units 306 within a given group 312, 320, 328. Alternatively, the blade 300 may have any suitable features for spacing cutting units and/or groups of cutting units about the base plate 304.
In the illustrated embodiment, the cutting units 314, 316, 318, 322, 324, 326, 330, 332, 334 have respective orientation axes OA1, OA2, OA3, OA4, OA5, OA6, OA7, OA8, OA9 that extend generally radially from the center C of the base plate 304. These orientation axes OA1, OA2, OA3, OA4, OA5, OA6, OA7, OA8, OA9 are angularly spaced apart from one another by respective angles A1, A2, A3, A4, A5, A6, A7, A8, A9. In this embodiment, while angles A3, A6, A9 are larger than angles A1, A2, A4, A5, A7, A8, all of the angles A1, A2, A3, A4, A5, A6, A7, A8, A9 are suitably different from one another. In other embodiments, the blade 300 may have any suitable quantity, size, shape, location, and/or spacing of cutting units 306. For example, the blade 300 may have nine cutting units 306 that are not arranged in groups of three but, rather, have angular spaces that are progressively smaller about the base plate 304 (e.g., A1>A2>A3>A4>A5>A6>A7>A8>A9). Alternatively, at least two, but not all, of the angles A1, A2, A3, A4, A5, A6, A7, A8, A9 may be the same.
In this embodiment, the blade 300 is manufactured by stamping a flat blade formation from sheet metal and subsequently bending the blade formation to orient the cutting units 306 relative the base plate 304 (i.e., to orient the cutting units 306 as shown in
Each connecting segment 342 extends generally radially from the base plate 304, and each projecting segment 344 is bent generally perpendicularly (i.e., upwardly) relative to the connecting segment 342 and the base plate 304. Each cutting member 346 is bent generally perpendicularly (i.e., radially) relative to the projecting segment 344. The cutting member 346 is joined to the projecting segment 344 such that a first relief 348 is formed at an upper junction (generally indicated at 350) of the projecting segment 344 and the cutting member 346 and such that a second relief 352 is formed at a lower junction (generally indicated at 354) of the projecting segment 344 and the cutting member 346, as described in more detail below. Due to the fact that the blade 300 is fabricated by stamping and bending a blade formation from sheet metal of a constant width (as described above), the base plate 304, the connecting segment 342, the projecting segment 344, and substantially all of the cutting member 346 have the same widths. In other embodiments, the blade 300 may be fabricated using any suitable manufacturing processes, and the components of the blade 300 may have any suitable widths.
In this embodiment, each cutting member 346 has a first leg 356, a second leg 358, and a joint region 360 that connects the first leg 356 to the second leg 358. The first leg 356, the second leg 358, and the joint region 360 are integrally formed with one another. The first leg 356 extends from a first top surface 362 of the cutting member 346 to a bottom surface 364 of the cutting member 346, and the second leg 358 extends from a second top surface 366 of the cutting member 346 to the bottom surface 364 of the cutting member 346.
Each of the first and second top surfaces 362, 366 has a planar contact portion 368 and a planar noncontact portion 370. The contact portion 368 extends from a planar front surface 372 of the cutting member 346 to the noncontact portion 370, and the noncontact portion 370 extends from the contact portion 368 to a planar back surface 374 of the cutting member 346 that is substantially parallel to the front surface 372. The contact portion 368 and the noncontact portion 370 are substantially the same length in this embodiment (
In this embodiment, the contact portions 368 of the cutting units 306 define a contact plane CP (
Again, because the blade 300 is manufactured by stamping a blade formation from sheet metal and subsequently bending the blade formation to orient the cutting units 306 relative to the base plate 304, the reliefs 348, 352 described above (e.g., the location of the reliefs 348, 352 relative to surfaces 362, 364) facilitate reducing stress applied to the blade formation as the cutting members 346 are bent perpendicularly (i.e., radially) relative to the projecting segment 344. In this manner, the reliefs 348, 352 facilitate enabling the blade 300 to be fabricated with cutting units 306 having improved structural characteristics (e.g., strengths, cutting efficiencies, etc.), thereby enabling more efficient manufacture, more efficient operation, and increased useful life of the blade 300.
In this embodiment, the cutting member 346 has a longitudinal axis LA when viewed from the side (
When introducing elements of the present invention or the preferred embodiment(s) thereof, the articles “a”, “an”, “the”, and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including”, and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
This application claims the benefit of U.S. Provisional Application No. 61/568,771 filed Dec. 9, 2011, which is incorporated herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61568771 | Dec 2011 | US |