1. Technical Field
The present invention relates to a method for manufacturing an inner cutter for a reciprocating electric shaver in which an inner cutter makes reciprocating motions while making sliding contact with the inside surface of an arch-shaped outer cutter and further relates to such an inner cutter.
2. Description of the Related Art
In a typical reciprocating electric shaver, the inner cutter is caused to make a reciprocating motion while making sliding contact with the inside surface of an arch-shaped outer cutter, thus cutting by the inner cutter hair that advances into the apertures formed in the outer cutter. Such inner cutters include an assembled inner cutter and an integral inner cutter as disclosed in Japanese Patent Application Laid-Open (Kokai) No. S62-148684.
In the assembled inner cutter, a plurality of cutter blades formed by stamping a thin metal plate into an arch shape are lined up at fixed intervals and held on a retaining base. In such an inner cutter, it is necessary to form a plurality of cutter blades and attach these cutter blades to a cutter blade attachment member. Accordingly, it requires increased numbers of manufacturing steps, and the problem is its poor productivity.
To the contrary, the integral inner cutter is a cutter in which all of the cutter blades are integrated.
In the inner cutter 10 shown in
Of the above-described inner cutters, the inner cutter 10 shown in
However, in the method that uses a rotating cutting tool 200 as shown in
The top surfaces 22 of these cutter blades 14 (20) make a reciprocating motion while making sliding contact with the inside surface of an arch-shaped outer cutter 26 and thus cut hair that enters through apertures formed in the outer cutter 26. Accordingly, it is desirable that the rake angle θ be as sharp as possible; in other words, it is desirable that the rake angle θ be an acute angle that is less than 90°.
In order to form the rake angle θ into an acute angle, the outer end surfaces 24 of the cutter blades 14 (20) are ground or polished (hereafter collectively referred to simply as “grinding” in some cases) using a grindstone 28 or 30 as shown in
In the inner cutters 10 and 16 made by the methods illustrated in
On the other hand, if a thin metal plate or a hollow cylindrical body of a small thickness is used, then the strength of the cutter blades becomes insufficient, and the inner cutter is caused to flex repeatedly together with the outer cutter by the pressure that is applied to the outer cutter during shaving. Further, the cutter blades undergo metal fatigue as a result of deformations, sagging of the cutter tips occurs, and the problem of deterioration in sharpness arises. Though inner cutters in which resin molded parts used for reinforcement are attached to compensate for the insufficient strength exist, the number of parts increases in such inner cutters, and the weight of the reciprocating portion also increases.
The method in which, as shown in
Furthermore, in the method that uses a rotating grindstone 32 as shown in
The present invention is made in view of the facts described above.
It is a first object of the present invention to provide an inner cutter manufacturing method of a reciprocating electric shaver in which the cutter blades have sufficient strength without using thin metal plates of a large thickness, the weight of the inner cutter is low, the productivity is good, and the cutter blades have an acute rake angle.
It is a second object of the present invention to provide an inner cutter that is manufactured by such a method.
The above-described first object is accomplished by unique steps of the present invention for a method for manufacturing an inner cutter for a reciprocating electric shaver in which the inner cutter is caused to make a reciprocating motion while a plurality of arch-shaped cutter blades disposed on the inner cutter make sliding contact with the inside surface of an arch-shaped outer cutter, and in the present invention, the method comprises the steps of:
The above-described second object is accomplished by a unique structure of the present invention for an inner cutter for a reciprocating electric shaver in which the inner cutter comprises a plurality of arch-shaped cutter blades formed integrally therein so that the inner cutter makes a reciprocating motion while causing the cutter blades to make sliding contact with the inside surface of an arch-shaped outer cutter, and in the present invention,
In the method of the present invention, the bridging-portions of a press-stamped thin metal plate element that form the cutter blades are worked by press so as to form substantially the final sectional shape of the cutter blades, and such bridging-portions are twisted so that the cutter blades are formed or raised. Accordingly, the width of the cutter blades (i.e., the width in the radial direction) is greater than the thickness of the thin metal plate element without using thick metal plates, the strength of the cutter blades is high, and the inner cutter can be light in weight. Furthermore, since all of the cutter blades are worked all together at the same time the press-working, etc. is performed, there is no need to cut out cutter blades one at a time from a metal plate. Accordingly, the productivity of the inner cutter is good. Moreover, the rake angle of the cutter blades can easily be worked simultaneously in the press-working step that is performed when the bridging-portions of the thin metal plate element are pressed into the final sectional shape of the cutter blades; accordingly, the rake angle can be formed in an acute angle easily.
The inner of the present invention is manufactured by the method described above. In the inner cutter for the present invention, since the width of the cutter blades in the radial direction is greater than the thickness of the thin metal plate element, the strength of the cutter blades with respect to a load applied in the radial direction is high. Moreover, since the inner cutter has twisted portions that are bent by twisting the connecting portions between the cutter blades and the edge portions on both sides of the inner cutter, the strength of the inner cutter as a whole is high, and the inner cutter is light in weight due to the use of a thin metal plate.
In the manufacturing method of the present invention, the final sectional shape of the cutter blades can be formed in step (b) into a shape in which the rake angle of the cutter blades is an acute angle, and thus the rake angle of an acute angle can be easily obtained. Since the width of the cutter blades worked in step (b) can easily be made larger than the thickness of the element, the cutter blades have sufficient rigidity, and the cutter blades have increased strength.
In the method of the present invention, cuts can be formed in the vicinity of the edges of the bridging-portions in step (b), and these cuts can be arranged in step (d) to form cut-outs that open inwardly or toward the inside between the inner circumferential edges and side edge portions of the cutter blades that are worked into substantially an arch shape. In the resulted inner cutter, the transmission of vibration between the cutter blades and the side edge portions is suppressed, and the sound quality during the use of the electric shaver can be improved.
By twisting the bridging-portions approximately 90° in step (c), the respective cutter blades are substantially perpendicular to the outer cutter, so that the strength of the cutter blades with respect to external forces applied to the outer cutter increases. However, this twisting angle need not be 90°, and the directions in which adjacent cutter blades are twisted can be opposite. Furthermore, it is preferable that the finishing work in step (e) is grinding of the outer circumferential surface of the cutter blades that is done by grindstones following quenching of the thin metal plate element. By way of performing grinding after quenching, the grindstone tends not to become clogged or filled, and the durability of the grindstone improves.
In the inner cutter according to the present invention, it is possible to cause the edges on the outer circumferential sides of the cutter blades to protrude in the direction of the reciprocating motion of the inner cutter and form the cutter rake angle in the protruded edges in an acute angle. With this structure, the cutter blades have greatly increased strength, and the cutting ability of the electric shaver improves.
Furthermore, in the inner cutter of the present invention, the cut-outs that open inwardly can be formed in the vicinity of the twisted portions which are between the cutter blades and the side edge portions. With this structure, the vibration of the cutter blades tends not to be transmitted to the side edge portions, and the transmission of vibration between one cutter blade to another can be suppressed. Accordingly, the sound quality during use can be controlled. For example, the sound quality can be can be controlled by varying the depth and width of the cut-outs. Furthermore, the vibrations and sound quality of the cutter blades can be varied by way of forming the inner circumferential edges of the cutter blades in a wave shape or varying the width of the cutter blades in the radial direction depending upon the positions of the cutter blades in the circumferential direction.
In
In the outer cutter 50, an outer cutter body 50a made out of a thin metal plate is bent into an arch shape, and both ends in the direction of length of the outer cutter body 50a are closed off by cover plates 50b. In addition, both bottom edges of the outer cutter body 50a that are parallel to the direction of length of the outer cutter body 50a are held by side plates 50c (only one of which is shown) that are engaged with the cover plates 50b at both ends. A plurality of apertures that introduce hair are formed in the outer cutter body 50a.
As will be described in detail below, the inner cutter 52 is comprised of a plurality of arch-shaped cutter blades 56 that are formed integrally. The arch-shaped outer circumferential surface of each cutter blade 56 is a curved surface that makes sliding contact with the inside surface of the outer cutter body 50a of the outer cutter 50. In this inner cutter 52, bifurcated claws 60 protrude from the centers of both side edge portions 58 that are parallel to the direction of length (or the direction of reciprocating motion) of the inner cutter 52. These claws 60 engage with protruded portions 54a of the side surfaces of the retaining base 54.
The retaining base 54 engages with an oscillating body (not shown) that is driven in a reciprocating manner by a motor installed in the shaver and makes reciprocating motions together with the inner cutter 52. The retaining base 54 is urged toward the outer cutter 50 by a spring (not shown), so that the inner cutter 52 is elastically pressed against the inside surface of the outer cutter body 50a. The inner cutter 52 thus makes reciprocating motions while making sliding contact with the inside surface of the outer cutter body 50a.
Next, the method of manufacturing the inner cutter 52 will be described with reference to
In the first step S100 (
In the next step S102, the thus obtained thin metal plate element 64 is subjected to pressing or press-working as shown in
Furthermore, in these cutter blades 56A that are in an intermediate stage of the manufacturing process, one end (left end in
In the next step S104, these cutter blades 56A on which press-working have been done horizontally or in the direction perpendicular to the surface of the obtained thin metal plate element 64 (thus a cutter blade shaping has been completed) are twisted approximately 90°, so that the end surfaces (cutter surfaces) 56a of the cutter blades 56A on the protruded edge 56b sides are aligned to the plane (surface) of the thin metal plate element 64 as shown in
In the next step S106, the thin metal plate element 64 provided with the cutter blades 56B that are thus twisted and raised is, by for instance press-working or drawing, formed into an arch shape with the cutter surfaces 56a of the cutter blades 56B on the outside as shown in
The thin metal plate element 64 on which drawing is performed and formed into an arch shape is quenched in step S108, and in step S110 a finishing work is executed on the outer circumferential surfaces (cutter surfaces) 56a of the thin metal plate element 64. More specifically, the outer circumferential surfaces (cutter surfaces 56a) of the arch-shaped cutter blades 56 are polished. As a result of this polishing, the outer circumferential surfaces 56a of the respective cutter blades 56 form cutting edges 56c that extend in the form of eaves toward the adjacent cutter blades 56 with the rake angle θ of the cutting edges 56c (see
In the inner cutter 152 shown in
In the inner cutter 252 shown in
In the inner cutter 352 shown in
Number | Date | Country | Kind |
---|---|---|---|
2004-7505 | Jan 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3178818 | Liska | Apr 1965 | A |
3858461 | Tolmie | Jan 1975 | A |
4815209 | Benoist et al. | Mar 1989 | A |
5214833 | Yada | Jun 1993 | A |
7022195 | Otani et al. | Apr 2006 | B2 |
20050155230 | Okabe | Jul 2005 | A1 |
20050188546 | Uchiyama et al. | Sep 2005 | A1 |
20060021234 | Yanosaka et al. | Feb 2006 | A1 |
Number | Date | Country |
---|---|---|
775 078 | May 1957 | GB |
62-148684 | Jul 1987 | JP |
Number | Date | Country | |
---|---|---|---|
20070022609 A1 | Feb 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11036008 | Jan 2005 | US |
Child | 11523384 | US |