This application claims the benefit of DE 10 2007 036 679.7, filed Aug. 3, 2007, which is incorporated herein by reference as if fully set forth.
The invention relates to an inner lever of a switchable finger lever of a valve train of an internal combustion engine, which can be arranged so that it can pivot relative to an outer lever in a longitudinal recess of the outer lever, which has a box-like main part with two opposing, upright lateral walls, which are connected at one end by a transverse bar, which intrinsically includes a driver surface for a coupling slide that can be advanced longitudinally by the outer lever, and away from this end the lateral walls have two arms, which extend in the direction toward the other end of the inner lever to form a longitudinal bar which has aligned openings for a shaft for the pivoting connection to the outer lever, and wherein a cam contact surface can be provided between the lateral walls.
Such an inner lever is known from FIG. 2 of U.S. Pat. No. 5,544,626. A disadvantage is its relatively complicated and also solid construction. It has also been determined that the openings for the shaft at the other end, as well as the openings for the roller pin, must be bored. All in all, such an inner lever is relatively expensive, which has a considerable disadvantageous effect on mass production.
Therefore, the objective is to provide an inner lever of the class noted above, in which the cited disadvantages are overcome.
According to the invention, this objective is met by the inner lever being made from steel sheet metal at least to a large extent using punch-bending techniques and has upright, thin-walled lateral walls, which are connected to a firste end of the lever by an upright and also thin-walled transverse bar, wherein the lateral walls, in the direction toward the second end of the lever, have two, strongly crimped together, upright, and also thin-walled arms, which each taper into an upright and also thin-walled longitudinal bar, wherein these longitudinal bars contact each other with their inner sides.
Thus, an inner lever for a switchable cam follower (advantageously with a design allowing deactivation, but reversible designs are also conceivable and provided) is provided, in which the disadvantages noted above are overcome. Due to the preferred construction of the inner lever made from steel sheet metal, this can be produced, overall, very economically. The inner lever can be produced, for example, from a sheet metal strip on a punch-bending press, which comprises several draw-bending stages, wherein it is especially preferred to also punch the openings (shaft, roller pin), so that complicated boring, reaming, etc. according to the state of the art, is eliminated.
In one embodiment of the invention, the longitudinal bars of the inner lever are connected to each other on the other end, for example, by welding. Alternatively, adhesion, soldering, snap-on connections, or the like are possible. Optionally, a rivet or screw connection is also conceivable or allowing the longitudinal bars to simply lie on each other with their inner sides is conceivable.
It is also advantageous when the driving surface is applied on the transverse bar on its bottom side. Thus, expensive recesses in the transverse bar can be eliminated, which, however, are also conceivable and provided at this position (boreholes, windows, etc.).
The contours of the driver surface preferably have a complementary shape to an outer casing of the coupling element that can be driven by the outer lever. If the coupling element, for example, has a piston-like shape, then the driver surface can have a half-shell form.
The finger-like projection according to another embodiment of the invention can be applied, for example, in a simple flattening process during or before the actual bending/punching of the inner lever at one end of its “rough” contoured section and are used for contact with a lost-motion spring (for example, rotary leg spring), which extends in the region of the shaft. Alternatively, it is also conceivable to punch out the height-reduced, finger-like projection.
In addition, in a continuation of the invention it is proposed to let a projection for guidance in the longitudinal recess of the outer lever stick out from the outer surfaces of each lateral wall. These projections can be created in a non-cutting method through “embossing” (metal upset pressing or punching) or the like. The inner lever, oriented toward the inner surfaces of the arms of the outer lever, can be guided by the outsides of these projections, so that an exact allocation of the coupling element to its driver surface is always present in the transverse bar.
The invention will be explained advantageously in more detail with reference to the drawing. Shown are:
The figures disclose a box-like inner lever 1, which is produced from thin-walled steel sheet. The inner lever 1, which is formed as a “cutoff lever” according to
Referring to
In the direction toward the second end 11, the lateral walls 6 transition into strongly crimped together thin-walled arms 10, which transition into thin-walled longitudinal bars 12 that contact one another with their inner sides 15 or that are, for example, welded. Directly on the end side, the longitudinal bars 12 taper into height-reduced projections 19, which, as can be taken from
In addition, from
As shown, the inner lever 1 (optionally also the outer lever 3) is made from thin-walled steel sheet. Here, it is generated in a punch-bending process, for example, from a sheet metal strip with a thickness of ca. 2.5 mm. A bending line for the sheet-metal blank after punching out its rough contours and flattening the projections 19, as well as punching the openings 13, 17 extends in the center in the region of the transverse bar 8, basically on a longitudinal center plane through the inner lever 1. Thus, it has a wing-like or eyeglass-like construction before the actual bending of the cut sheet-metal blank.
It is advantageous if, in the assembled state, the contours of the outer lever 3 follow the inner lever 1 at least to the greatest possible extent.
Optionally, it is conceivable and provided to construct the area of the longitudinal bar 12 on the other end 11 separately and to connect them through suitable connection measures, such as welding, to the box-like main part 5.
As also to be seen from
If the roller that can be seen from
Number | Date | Country | Kind |
---|---|---|---|
10 2007 036 679 | Aug 2007 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
5544626 | Diggs et al. | Aug 1996 | A |
Number | Date | Country | |
---|---|---|---|
20090031975 A1 | Feb 2009 | US |