Information
-
Patent Grant
-
6550119
-
Patent Number
6,550,119
-
Date Filed
Wednesday, October 10, 200123 years ago
-
Date Issued
Tuesday, April 22, 200322 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Hail, III; Joseph J.
- Shanley; Daniel
-
CPC
-
US Classifications
Field of Search
US
- 029 237
- 029 251
- 029 235
- 029 234
- 285 247
-
International Classifications
-
Abstract
A press insertion rod is passed through and supported by a press insertion rod supporting portion of a jig body in an advanceable and retractable manner. An inner ring which is to be pressingly inserted into one end portion of a pipe member made of resin is held by a ring holder. The ring holder is coupled idly rotatably and detachably to a tip end portion of the press insertion rod via a holder block.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a jig that is to be used in press insertion in which, in the case where pipe members made of resin for transporting a liquid having high purity or ultrapure water to be handled in a production process in production of semiconductor devices, production of medical equipment and medicines, food processing, chemical industry, or the like are connected to each other by means of a pipe joint, a sleeve-like inner ring is pressingly inserted into an inner periphery of one end portion of each of the pipe members in order to enhance the sealing property between the one end portion of the pipe member and the pipe joint, and prevent the pipe member from slipping off.
2. Description of the Prior Art
Conventionally, as an example of a pipe joint made of resin of this kind a configuration shown in
FIG. 14
is known (for example, Japanese Utility Model Publication No. 7-20471). The pipe joint made of resin shown in
FIG. 14
comprises a joint body
50
, a sleeve-like inner ring
23
, and a union nut (pressing ring)
51
which are made of resin having excellent chemical and heat resistances, such as fluororesin. In the joint body
50
, a receiving port
52
is formed in one end in the axial direction, and a primary sealing portion
53
is formed in an inner area of the receiving port
52
so as to intersect with the axis C of the joint body
50
. A secondary sealing portion
54
is formed in an entrance area of the receiving port
52
so as to intersect with the axis C, and an external thread portion
55
is formed on the outer periphery of the receiving port
52
. In the inner ring
23
, a fitting portion
56
having an outer diameter that allows the portion to be fitted into the receiving port
52
of the joint body
50
is formed in an inner end portion in the axial direction, and a bulge portion
57
having a mountain-like section shape is formed in an outer end side in the axial direction. The inner ring
23
is pressingly inserted into one end portion of a pipe member
14
made of resin under a state where the fitting portion
56
projects outwardly, whereby the diameter of the one end portion of the pipe member
14
is increased. An inner end sealing portion
58
which abuts against the primary sealing portion
53
of the joint body
50
is formed in an end portion of the fitting portion
56
, and an outer peripheral sealing face
59
which abuts against the secondary sealing portion
54
of the receiving port
52
is formed in a place corresponding to the bulge portion
57
. In the union nut
51
, an internal thread portion
60
which is to be screwed to the external thread portion
55
of the joint body
50
is formed.
The pipe member
14
is connected to the configured pipe joint made of resin in the following manner. Under a state where the one end portion of the pipe member
14
into which the inner ring
23
is pressingly inserted is inserted into the receiving port
52
of the joint body
50
, the internal thread portion
60
of the union nut
51
which is previously loosely fitted onto the outer periphery of the pipe member
14
is screw-fastened to the external thread portion
55
of the joint body
50
. This fastening causes the inner ring
23
to be pressed in the axial direction, so that the inner end sealing portion
58
and the outer peripheral sealing face
59
of the inner ring
23
abut against the primary and secondary sealing portions
53
and
54
of the receiving port
52
of the joint body
50
, respectively, thereby exerting a sealing function (sealing force).
A jig for pressingly inserting the inner ring
23
into one end portion of the pipe member
14
is disclosed in, for example, Japanese Utility Model Publication No. 57-33983 and Japanese Patent Application Laying-Open No. 11-156750.
In the inner ring press-insertion jig disclosed in Japanese Utility Model Publication No. 57-33983, as shown in
FIG. 15
, an outer ring
63
is set on a pipe member holding portion
62
disposed in the front end side of a jig table
61
, one end portion of the pipe member
14
is passed through the outer ring
63
and horizontally held, and a screw rod
65
is screwed with an external thread portion
64
disposed in the rear end side of the jig table
61
so as to be advanceable and retractable. A pressing piece
66
is formed integrally with the tip end of the screw rod
65
. The pressing member
66
is fitted into a hole of an inner ring
67
. When the screw rod
65
is rotated by a handle
68
to be advanced in the direction of the arrow A, the inner ring
67
is pressingly inserted and fixed into the inner periphery of one end portion of the pipe member
14
, and the outer ring
63
is pressingly inserted and fixed onto the outer periphery of the member.
FIG. 16
is a side view of the inner ring press-insertion jig disclosed in Japanese Patent Application Laying-Open No. 11-156750, and
FIG. 17
is a section view showing a state where press insertion of an inner ring is ended. Referring to
FIGS. 16 and 17
, an outer ring
72
is set on a pipe member holding portion
71
disposed in the front end side of a jig body
70
, one end portion of the pipe member
14
made of resin is passed through the outer ring
72
and horizontally held, and a screw rod
77
is screwed with an internal thread portion
73
disposed in the rear end side of the jig body
70
so as to be advanceable and retractable. A ball joint
78
is disposed in a tip end portion of the screw rod
77
. A pin holding member
79
is attached to the ball joint
78
. The pin holding member
79
holds a pressing pin
80
. The pressing pin
80
is inserted into an inner ring
81
. When the screw rod
77
is rotated by a handle
82
to be advanced in the direction of the arrow A, the inner ring
81
is pressingly inserted and fixed into the inner periphery of one end portion of the pipe member
14
made of resin, and the outer ring
72
is pressingly inserted and fixed onto the outer periphery of the member.
In the inner ring press-insertion jig shown in
FIG. 15
, when the pressing piece
66
at the tip end of the screw rod
65
is firmly fitted into the hole of the inner ring
67
, the inner ring
67
corotates with the screw rod
65
during the press insertion of the inner ring
67
. Consequently, there arises a disadvantageous situation in which torsional deformation is applied to the pipe member
14
. By contrast, in the inner ring press-insertion jig shown in
FIG. 16
, the pin holding member
79
and the pressing pin
80
can be relatively rotated, and hence torsional deformation is not applied to the pipe member
14
during the press insertion of the inner ring
81
.
As the inner rings
67
and
81
, rings of various sizes having different diameters are required so as to comply with the bore diameter of the counter pipe member
14
.
In the inner ring press-insertion jig shown in
FIG. 15
, the pressing piece
66
which holds the inner ring
67
is formed integrally with the tip end of the screw rod
65
, and hence cannot be detached from the screw rod. In the inner ring press-insert ion jig shown in
FIGS. 16 and 17
, similarly, the pressing pin
80
which holds the inner ring
81
cannot be detached from the tip end portion of the screw rod
77
. In both the inner ring press-insertion jigs, for each of different bore diameters of the counter pipe member
14
, therefore, it is necessary to prepare inner ring pressinsertion jigs of several kinds comprising the inner ring
67
or
81
of a size corresponding to the bore diameter of the pipe member.
SUMMARY OF THE INVENTION
The present invention is aimed at solving the noted problems. It is an object of the present invention to provide an inner ring press-insertion jig which can pressingly insert an inner ring into one end portion of a pipe member made of resin without applying torsional deformation to the pipe member, and which can singly cope with inner rings of several sizes. It is another object of the invention to provide an inner ring press-insertion jig in which operations of attaching and detaching a ring holder for holding an inner ring can be simplified. It is a further object of the invention to provide an inner ring press-insertion jig which can suppress generation of abrasion powder that should be prevented as far as possible from entering a pipe member made of resin in view of prevention of contamination.
The inner ring press-insertion jig for a pipe member made of resin of the invention will be described with reference to the accompanying drawings. The reference numerals in the figures are used in this paragraph in order to facilitate the understanding of the invention, and the use of the reference numerals is not intended to restrict the contents of the invention to the illustrated embodiments.
The inner ring press-insertion jig for a pipe member of the invention is an inner ring press-insertion jig for inserting a sleeve-like inner ring into one end portion of a pipe member. A pipe member holding portion (
2
) which horizontally fixedly holds one end portion of a pipe member (
14
) is placed in a front end side in a longitudinal direction of a jig body (
1
), and a press insertion rod supporting portion (
3
) is placed in a rear end side to be opposed to the pipe member holding portion. A press insertion rod (
19
) is passed through and supported by the press insertion rod supporting portion (
3
) in an advanceable and retractable manner. A ring holder (
20
) which has at a front end a ring holding shaft portion (
20
a
) that is to extractably hold an inner ring (
23
) is detachably coupled to a front end of the press insertion rod (
19
) to be idly rotatable about an axis.
According to the configured inner ring press-insertion jig, when the press insertion rod is advanced after one end portion of the pipe member is fixedly held by the pipe member holding portion and the inner ring is held by the ring holder, the inner ring can be pressingly inserted into the one end portion of the pipe member.
The ring holder is coupled to the front end of the press insertion rod so as to be idly rotatable about the axis. After the insertion, therefore, the ring holder can be extracted from the inner ring in the pipe member without applying torsional deformation to the pipe member. Since the ring holder is detachably coupled to the front end of the press insertion rod to enable replacement of the ring holder, the single jig can be commonly used for press insertion of inner rings of various diameters.
The configuration for coupling detachably and idly rotatably the ring holder (
20
) to the front end of the press insertion rod (
19
) may be specifically structured in the following manner. An internal thread hole portion (
29
) is disposed in a center portion of a front end face of the press insertion rod (
19
), a coupling shaft portion (
20
b
) protrudes rearwardly from a center portion of a rear end face of the ring holder (
20
), a holder block (
26
) is passed idly rotatably and lockedly through the coupling shaft portion (
20
b
), the holder block having: a cylindrical portion (
24
) in which an external thread portion (
24
a
) is formed on an outer periphery; and a flange (
25
) which is formed integrally with a front end of the cylindrical portion, and the external thread portion (
24
a
) of the cylindrical portion (
24
) is screwingly coupled to the internal thread hole portion (
29
).
According to the inner ring press-insertion jig, the ring holder can be easily attached to or detached from the press insertion rod by a simple operation of fastening or loosening the holder block to or from the internal thread hole portion of the press insertion rod by means of the screwing of female and male thread portions. Since the coupling shaft portion of the ring holder is passed through the long cylindrical portion which elongates in the axial direction of the holder block, the ring holder is held stably and idly rotatably in a cantilevered manner without causing runout.
In this case, a washer (
27
) made of low-friction resin may be interposed between the rear end face of the ring holder (
20
) and the flange (
25
) of the holder block (
26
). According to this configuration, the ring holder can be smoothly idly rotated, and generation of abrasion powder that is prevented as far as possible from entering a pipe member made of resin in view of prevention of contamination is prevented from occurring between the rear end face of the ring holder and the flange of the holder block.
At least one of the ring holder (
20
) and the holder block (
26
) may be formed by a low-friction resin material. According to this configuration, the ring holder can be smoothly idly rotated, and generation of abrasion powder is prevented from occurring between the outer peripheral face of the coupling shaft portion of the ring holder and the inner peripheral face of the cylindrical portion of the holder block.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a longitudinal section view showing an inner ring press-insertion jig of an embodiment of the invention in a half cutaway state;
FIG. 2
is a front view of the inner ring press-insertion jig of
FIG. 1
;
FIG. 3
is a section view taken along the line A—A in
FIG. 1
;
FIG. 4
is a section view showing a state where a pipe member made of resin is completely fastened to a pipe member holding portion of the inner ring press-insertion jig of
FIG. 1
;
FIG. 5
is a longitudinal side view showing a front end portion of a press insertion rod and a ring holder of the inner ring press-insertion jig of
FIG. 1
in a half cutaway state;
FIG. 6
is a longitudinal partial sectional side view showing the inner ring press-insertion jig of
FIG. 1
in a state where press insertion of the inner ring is started;
FIG. 7
is a longitudinal partial sectional side view showing the inner ring press-insertion jig of
FIG. 1
in a state where press insertion of the inner ring is ended;
FIG. 8
is a longitudinal side view showing an inner ring press-insertion jig of another embodiment in a half cutaway state;
FIG. 9
is a longitudinal side view showing a front end portion of a press insertion rod and a ring holder of the inner ring press-insertion jig of
FIG. 8
in a half cutaway state;
FIG. 10
is a longitudinal half sectional side view showing a front end portion of a press insertion rod of the inner ring press-insertion jig of
FIG. 8
in a state where press insertion of an inner ring is started;
FIG. 11
is a longitudinal half sectional side view showing the front end portion of the press insertion rod of the inner ring press-insertion jig of
FIG. 8
in a state where press insertion of the inner ring is ended;
FIG. 12
is a longitudinal section view showing a modification of the side of a press insertion rod supporting portion of the inner ring press-insertion jig;
FIG. 13
is a side view showing another modification of the side of the press insertion rod supporting portion of the inner ring press-insertion jig;
FIG. 14
is a longitudinal section view showing an example of a known pipe joint made of resin;
FIG. 15
is a side view of an inner ring press-insertion jig of the conventional art;
FIG. 16
is a side view of another inner ring press-insertion jig of the conventional art; and
FIG. 17
is a section view showing a state where press insertion of an inner ring in the inner ring press-insertion jig of
FIG. 16
is ended.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to
FIG. 1
, in the inner ring press-insertion jig for a pipe member made of resin according to the invention, a pipe member holding portion
2
is placed in a front end side in the longitudinal direction of a jig body
1
made of a metal, and a press insertion rod supporting portion
3
is placed in a rear end side in the longitudinal direction so that the portions are opposed to the pipe member holding portion.
The pipe member holding portion
2
is configured into a half-split structure consisting of a stationary clamp
2
a
and a movable clamp
2
b
. As shown in
FIGS. 2 and 3
, the stationary clamp
2
a
is formed integrally with one end in the longitudinal direction of the jig body
1
, and has a semicircular clamp groove
4
a
. The movable clamp
2
b
has a semicircular clamp groove
4
b
. One side portion of the movable clamp
2
b
is pivotally coupled to one side portion of the stationary clamp
2
a
by a hinge member
7
the upper and lower ends of which are pivotally attached to the stationary clamp
2
a
and the movable clamp
2
b
by pins
5
and
6
, respectively. The posture of the movable clamp
2
b
with respect to the stationary clamp
2
a
is changeable about the hinge member
7
between a closing posture which is indicated by the solid lines in
FIG. 2
, and an opening posture which is indicated by the two-dot chain lines in the figure. Friction members
8
a
and
8
b
formed by rubber sheets or the like are bonded to the clamp grooves
4
a
and
4
b
, respectively.
A basal end portion
9
b
of a locking member
9
which has a hook portion
9
a
at the tip end is pivotally attached to the other side portion of the movable clamp
2
b
so as to be vertically swingable about a support shaft
10
. By contrast, a short operating lever
12
which has a knob
11
at the tip end is attached to the other side portion of the stationary clamp
2
a
so as to be vertically swingable about an eccentric cam shaft
13
that horizontally elongates on the stationary clamp
2
a
, by integrally inserting and coupling a basal end portion
12
b
of the lever into a middle portion of the eccentric cam shaft
13
.
As shown in
FIG. 3
, one end portion of the pipe member
14
made of resin is then placed on the clamp groove
4
a
of the stationary clamp
2
a
in a horizontal posture elongating in the longitudinal direction, and the movable clamp
2
b
is closed to cause the locking member
9
to hang so that the hook portion
9
a
at its tip end is located below an eccentric cam portion
15
which is formed on the eccentric cam shaft
13
so as to be juxtaposed with the basal end portion
12
b
of the operating lever
12
. When the operating lever
12
is then swung about the eccentric cam shaft
13
in the downward direction P, the eccentric cam shaft
13
is swung in the same direction, and the eccentric cam portion
15
which is integral with the eccentric cam shaft
13
is similarly swung. In accordance with the downward swing of the eccentric cam portion
15
, as shown in
FIG. 4
, the eccentric cam portion
15
is engaged with the hook portion
9
a
of the locking member
9
to gradually tighten the locking member
9
in a downward direction. This enables the movable clamp
2
b
to be locked to the closing posture, i.e., the state where the pipe member
14
made of resin is fasteningly fixed.
When the operating lever
12
is upward swung from the locked state shown in
FIG. 4
, the eccentric cam portion
15
is swung in the same direction to cancel the engagement with the hook portion
9
a
of the locking member
9
, thereby allowing the locking member
9
to be upward swung. When the locking member
9
is swung upwardly, the movable clamp
2
b
can be opened upwardly from the stationary clamp
2
a.
As shown in
FIG. 1
, the press insertion rod supporting portion
3
is formed by resin such as polypropylene, and has an internal thread portion
3
a
configured by square threads or the like. The press insertion rod supporting portion
3
is fitted into the inside of a ring portion
16
which is formed integrally with the rear end in the longitudinal direction of the jig body
1
, and fixed thereto by a spring pin
17
. A press insertion rod
19
having an external thread portion
19
a
which is to be screwed with the internal thread portion
3
a
is screwingly passed through the press insertion rod supporting portion
3
in a horizontal posture elongating in the horizontal direction. A ring holder
20
is disposed at the front end of the press insertion rod
19
. A bottomed cylindrical or disk-like (in the illustrated example, bottomed cylindrical) grip
21
is coupled integrally by a bolt
22
with the rear end of the press insertion rod
19
which is rearward protruded from the press insertion rod supporting portion
3
.
As shown in
FIGS. 5 and 6
, the ring holder
20
is formed by a low-friction material such as fluororesin, and has: a flanged ring holding shaft portion
20
a
onto which an inner ring
23
can be inserted and held; and a coupling shaft portion
20
b
which is rearward protruded from a center portion of the rear end face of the ring holding shaft portion
20
a
. The ring holder
20
is idly rotatably coupled to a front end portion of the press insertion rod
19
. For this purpose, a holder block
26
is prepared. The holder block
26
is shaped by a low-friction material such as fluororesin, and has: a cylindrical portion
24
in which an external thread portion
24
a
is formed on the outer periphery; and a flange
25
which is formed integrally with the front end of the cylindrical portion
24
. The holder block
26
is idly rotatably passed onto the coupling shaft portion
20
b
of the ring holder
20
via a washer
27
made of low-friction resin such as fluororesin. A snap ring
28
is fitted onto a rear end portion of the coupling shaft portion
20
b
which is protruded from the rear end of the cylindrical portion
24
of the holder block
26
, whereby the ring holder
20
is attached so as not to slip off from the holder block
26
toward the front side.
Then, the external thread portion
24
a
of the cylindrical portion
24
of the holder block
26
is screwingly fastened to an internal thread
29
a
of an internal thread hole portion
29
disposed in a center portion of the front end face of the press insertion rod
19
. As a result, the holder block
26
is screwingly coupled integrally to the front end of the press insertion rod
19
, and the ring holder
20
is idly rotatably coupled to the press insertion rod
19
. When the flange
25
of the holder block
26
is gripped and rotated in the direction opposite to the fastening direction, the holder block
26
can be detached together with the ring holder
20
from the press insertion rod
19
.
According to the thus configured inner ring pressinsertion jig, the inner ring
23
can be pressingly inserted into the one end portion of the pipe member
14
made of resin in the following manner.
As shown in
FIG. 6
, the inner ring
23
is fittingly held to the ring holding shaft portion
20
a
of the ring holder
20
, and the one end portion of the pipe member
14
is held and fixed to the pipe member holding portion
2
. Thereafter, the grip
21
is gripped, and the press insertion rod
19
is rotated so as to be advanced. In accordance with the advancement of the press insertion rod
19
, the inner ring
23
is gradually pressingly inserted into the one end portion of the pipe member
14
. At this time, the ring holder
20
is idly rotatable in the holder block
26
of the front end portion of the press insertion rod
19
, and hence the inner ring
23
on the ring holder
20
is straightly advanced without being rotated by the press insertion rod
19
. Consequently, torsion is not applied to the pipe member
14
by the inner ring
23
. As shown in
FIG. 7
, at the timing when the inner ring
23
is pressingly inserted to a predetermined depth where the front end of a fitting portion
46
of the inner ring
23
abuts against the one end portion of the pipe member
14
made of resin, the rotation of the press insertion rod
19
is stopped, and the press insertion is ended.
After the press insertion is ended the press insertion rod
19
is reversely rotated by the grip
21
to be retracted to the original position. Then, the ring holder
20
can be extracted from the inner ring
23
which is pressingly inserted into and integrated with the one end portion of the pipe member
14
.
In the correct extracting procedure, as described above, the ring holder
20
is extracted from the inner ring
23
in the pipe member
14
by retracting the press insertion rod
19
. Some workers may erroneously conduct the procedure in the following manner. The pipe member
14
is detached from the pipe member holding portion
2
while the press insertion rod
19
is not retracted and is kept to be in the advancing state. Then, the pipe member
14
is pulled while a rotation force is forcedly applied to the member, so as to be extracted from the ring holder
20
. In such a case also, the ring holder
20
idly rotates in the holder block
26
in the front end portion of the press insertion rod
19
to corotate with the pipe member
14
. Therefore, it is possible to prevent torsional deformation from being applied to the pipe member
14
.
It is preferable to conduct press insertion of the inner ring
23
under a state where the axial center of the pipe member
14
made of resin coincides with that of the inner ring
23
as far as possible. Therefore, the inner peripheral face of the inner ring
23
, and the outer peripheral face of the ring holder
20
are set so as to have a dimension at which a gap as small as possible is formed between the faces, i.e., to be substantially equal in diameter to each other. In this case, since the inner peripheral face of the inner ring
23
is in close contact with the outer peripheral face of the ring holder
20
as a result of the press insertion of the inner ring
23
, the ring holder
20
must be extracted from the inner ring
23
with strong force. Even in such a case, the ring holder
20
is not extracted from the holder block
26
because the ring holder
20
is lockedly attached to the holder block
26
via the snap ring
28
. Therefore, the workability in the process of extracting the ring holder
20
from the inner ring
23
is excellent.
In the case where the counter pipe member
14
has a different bore diameter, the inner ring
23
of a diameter corresponding to the bore diameter is used. In this case, as described above, the flange
25
of the holder block
26
is gripped and rotated in the direction opposite to the fastening direction, whereby the holder block
26
is detached together with the ring holder
20
from the press insertion rod
19
. Thereafter, the ring and the holder are replaced with the inner ring
23
of the desired diameter and the ring holder
20
suitable for holding the ring, respectively. According to this configuration, consequently, it is not required to replace the whole jig, but to replace only the inner ring
23
and the ring holder
20
, so that most of the other components of the jig such as the jig body
1
comprising the pipe member holding portion
2
and the press insertion rod supporting portion
3
, the press insertion rod
19
, and the holder block
26
can be commonly used for different bore diameters.
In joints which are to be used in a chemical liquid supply line in a semiconductor or liquid crystal production process, it is necessary to prevent contaminative fine powder from entering the line. To comply with this, the ring holder
20
is enabled to be idly rotated via the washer
27
made of low-friction resin. According to this configuration, even when works of pressingly inserting an inner ring are repeatedly conducted, generation of abrasion powder between the ring holder
20
and the holder block
26
can be suppressed as far as possible. Since both or one of the ring holder
20
and the holder block
26
are formed by a low-friction material such as fluororesin, also generation of abrasion powder between the inner peripheral face of the holder block
26
and the outer peripheral face of the coupling shaft portion
20
b
of the ring holder
20
can be suppressed.
FIGS. 8
to
11
show another embodiment.
FIG. 8
is a longitudinal side view showing an inner ring press-insertion jig in a half cutaway state. In the inner ring press-insertion jig, a diameter-expanding ring member
30
is additionally used in order to facilitate press insertion of the inner ring
23
into the pipe member
14
in the case where there is a dimensional error in which, for example, the inner diameter of the inner ring
23
is larger than that of the pipe member
14
made of resin.
As shown in
FIGS. 9 and 10
, the diameter-expanding ring member
30
is formed so that the outer diameter of a front end portion
30
a
is smaller than the inner diameter of the inner ring
23
, and formed so as to be elastically expandingly and contractingly deformable between a reduced-diameter state (see
FIG. 9
) in which the outer diameter of the rear end portion
30
b
is reduced so as to be equal to that of the front end portion
30
a
, and an increased-diameter state (see
FIG. 10
) in which the outer diameter of the rear end portion
30
b
is increased so as to be larger than that of the front end portion
30
a
. The diameter-expanding ring member
30
is formed by resin such as polypropylene, and plural slits
31
elongating from an intermediate position in the longitudinal direction of a peripheral wall of the diameter-expanding ring member
30
are formed so as to reach the rear end, as means for enabling the elastic expanding and contracting deformation. A small-diameter shaft portion
20
c
which is smaller in diameter than the ring holding shaft portion
20
a
of the ring holder
20
is continuously formed in the front end of the ring holding shaft portion
20
a
via a tapered step portion
20
d.
The diameter-expanding ring member
30
is passed onto the small-diameter shaft portion
20
c
so as to be axially movable between two positions, or an advanced position and a retracted position. The diameter-expanding ring member
30
is configured so as to be elastically deformed into the reduced-diameter state when the rear end portion
30
b
is in the advanced position as shown in
FIG. 9
, and into the increased-diameter state when the rear end portion
30
b
is in the retracted position as shown in FIG.
10
. Specifically, a protrusion
32
is disposed on the inner peripheral face of the diameter-expanding ring member
30
, and a first groove
33
for stopping in the advanced position, and a second groove
34
for stopping in the retracted position are formed in the outer peripheral face of the small-diameter shaft portion
20
c
so as to be separated in the longitudinal direction and elongate in the circumferential direction. A low mountain-like projection
35
is formed between the first circumferential groove
33
and the second circumferential groove
34
. The diameter-expanding ring member
30
is configured so that, in the advanced position where the protrusion
32
is engaged with the first groove
33
as shown in
FIG. 9
, the rear end portion
30
b
is deformed into the reduced-diameter state in which the slits
31
are closed, and, when the protrusion
32
overrides the projection
35
to reach the retracted position where the protrusion
32
is engaged with the second groove
34
as shown in
FIG. 10
, the rear end portion
30
b
of the diameter-expanding ring member
30
slides over the step portion
20
d
to reach on the ring holding shaft portion
20
a
, whereby the slits
31
are opened and the diameter-expanding ring member
30
is deformed into a funnel-like shape in which the diameter increases as moving from the intermediate position in the longitudinal direction toward the rear end portion
30
b.
The inner ring press-insertion jig is configured in the same manner as the inner ring press-insertion jig of the above-mentioned embodiment, except the additional use of the diameter-expanding ring member
30
and the shape of the ring holder
20
which enables the additional use. Therefore, the identical members and components are denoted by the same reference numerals, and their description is omitted.
Next, the manner of pressingly inserting the inner ring
23
into the one end portion of the pipe member
14
by using the thus configured inner ring press-insertion jig will be described.
As shown in
FIG. 9
, the diameter-expanding ring member
30
on the small-diameter shaft portion
20
c
of the ring holder
20
is stopped and held in the advanced position to set the rear end portion
30
b
to the reduced-diameter state. Under this state, the inner ring
23
is fittingly held to the ring holding shaft portion
20
a
. Then, the diameter-expanding ring member
30
is moved to the retracted position as shown in
FIG. 10
, whereby the diameter-expanding ring member
30
is stopped and held while the slits
31
are opened to set the rear end portion
30
b
to the increased-diameter state.
Then, the one end portion of the pipe member
14
is held and fixed to the pipe member holding portion
2
, and thereafter the grip
21
is gripped and the press insertion rod
19
is rotated so as to be advanced. This advancement of the press insertion rod
19
causes the diameter-expanding ring member
30
to enter the one end portion of the pipe member
14
to increase the diameter of the one end portion of the pipe member
14
, so that the inner ring
23
is pressingly inserted into the diameter-increasing one end portion of the pipe member
14
. Even in the case where there is a dimensional error in which, for example, the inner diameter of the inner ring
23
is larger than that of the pipe member
14
, the inner ring
23
can be smoothly pressingly inserted into the pipe member
14
by means of the function of increasing the diameter of the pipe member
14
by the diameter-expanding ring member
30
, and the function of guiding the pipe member
14
into the inner ring
23
. Furthermore, the work of pressingly inserting the inner ring
23
at ordinary temperature is enabled without employing a preheating method in which one end portion of the pipe member
14
is preheated and softened before the press insertion and the inner ring
23
is then pressingly inserted. When such a preheating method is employed, there arises a disadvantage that a pipe member cannot be connected to a pipe joint until the heating temperature is sufficiently lowered after the press insertion, and hence the total working time period is prolonged. According to the embodiment, this disadvantage can be eliminated, and the pipe member can be connected to a pipe joint immediately after the press insertion, whereby the total working time period can be shortened.
At the timing when the inner ring
23
is pressingly inserted to a predetermined depth where the front end of the fitting portion
46
of the inner ring
23
abuts against the one end portion of the pipe member
14
as shown in
FIG. 11
, the rotation of the press insertion rod
19
is stopped, and the press insertion is ended. After the press insertion is ended, the press insertion rod
19
is reversely rotated to be retracted to the original position, whereby the diameter-expanding ring member
30
is pushed back to the original advanced position in the front end portion of the inner ring
23
which is pressingly inserted and fixed into the one end portion of the pipe member
14
. Then, the diameter-expanding ring member
30
can be extracted together with the ring holder
20
from the inner ring
23
.
The invention can be similarly applied also to a type in which, as shown in
FIG. 12
or
13
, the press insertion rod
19
is advanced and retracted by a lever system, instead of the grip system in which, as in the embodiments described above, the external thread portion
19
a
is disposed in the press insertion rod
19
and advancement and retraction of the press insertion rod
19
are operated by gripping the grip
21
disposed in the rear end portion of the press insertion rod
19
.
In the lever system shown in
FIG. 12
, the press insertion rod supporting portion
3
of the jig body
1
is formed into a gear box-like shape. A pinion
36
is incorporated into the press insertion rod supporting portion
3
, and a press insertion operating lever
38
which rotates the pinion
36
about an axis
37
is disposed so as to be swingable in the longitudinal direction. By contrast, the press insertion rod
19
having a rack
39
is passed through the press insertion rod supporting portion
3
so that the rack
39
meshes with the pinion
36
. In the same manner as the embodiments described above, the ring holder
20
which holds the inner ring
23
is idly rotatably and detachably coupled to a front end portion of the press insertion rod
19
.
According to this configuration, when the press insertion operating lever
38
is forward swung, the press insertion rod
19
is advanced via the mesh between the pinion
36
and the rack
39
. In the same manner as the embodiments described above, this advancement causes the inner ring
23
held by the front end of the ring holder
20
to be pressingly inserted into the one end portion of the pipe member
14
which is held and fixed to the pipe member holding portion
2
of the jig body
1
. When the press insertion operating lever
38
is rearward swung after the press insertion, the press insertion rod
19
is retracted via the pinion
36
and the rack
39
. In the same manner as the embodiments described above, this retraction causes the ring holder
20
to be extracted from the inner ring
23
which is pressingly inserted and fixed into the one end portion of the pipe member
14
.
In the lever system shown in
FIG. 13
, the press insertion rod supporting portion
3
of the jig body
1
is formed into a cylindrical shape which elongates in the longitudinal direction, the press insertion rod
19
is passed through the press insertion rod supporting portion
3
so as to be longitudinally movable, and a groove
40
is longitudinally opened in one side face of the press insertion rod supporting portion
3
. On the other hand, a pair of press insertion operating levers
41
and
42
are coupled to each other by a pivotal pin
43
so as to cross in an X-shape. A swing basal end portion of the one press insertion operating lever
41
is pivotally attached by a pin
44
onto the one side face of the press insertion rod supporting portion
3
. A swing basal end portion of the other press insertion operating lever
42
and the pressing insertion rod
19
are coupled to each other by a coupling pin
45
which can slide in the groove
40
. According to this configuration, when the pair of press insertion operating levers
41
and
42
are closed so as to approach each other, the press insertion rod
19
can be advanced, and, when the pair of press insertion operating levers
41
and
42
are opened so as to separate from each other, the press insertion rod
19
can be retracted. In the same manner as the embodiments described above, this advancement of the press insertion rod
19
causes the inner ring
23
held by the ring holder
20
which is coupled idly rotatably and detachably to the front end portion of the press insertion rod
19
, to be pressingly inserted into the one end portion of the pipe member
14
which is held and fixed to the pipe member holding portion
2
of the jig body
1
, and this retraction of the press insertion rod
19
causes the ring holder
20
to be extracted from the inner ring
23
which is pressingly inserted and fixed into the one end portion of the pipe member
14
.
The entire disclosure of Japanese Patent Application No. 2000-315228 filed on Oct. 16, 2000 including specification, claims, drawings and summary are incorporated herein by reference in its entirety.
Claims
- 1. An inner ring press-insertion jig for a pipe member made of resin for inserting a sleeve-like inner ring into one end portion of a pipe member made of resin, wherein:a pipe member holding portion which horizontally fixedly holds one end portion of said pipe member is placed in a front end side in a longitudinal direction of a jig body, and a press insertion rod supporting portion is placed in a rear end side to be opposed to said pipe member holding portion; a press insertion rod is passed through and supported by said press insertion rod supporting portion in an advanceable and retractable manner; a ring holder which has at a front end a ring holding shaft portion that extractably holds an inner ring is detachably coupled to a front end of said press insertion rod idly rotatable about an axis; an internal thread hole portion is disposed in a center portion of a front end face of said press insertion rod, a coupling shaft protrudes rearwardly from a center portion of a rear end face of said ring holder, a holder block is passed idly rotatably and lockedly through said coupling shaft portion of said ring holder, said holder block having: a cylindrical portion in which an external thread portion is formed on an outer peripheral; and a flange which is formed integrally with a front end of said cylindrical portion, and said external thread portion of said cylindrical portion is screwingly coupled to said internal thread hole portion; and an internal thread portion is disposed in said press insertion rod supporting portion, said press insertion rod has an external thread portion which is to be screwed with said internal thread portion, and is passed through said press insertion rod supporting portion, and a grip is disposed in a rear end portion of said press insertion rod which protrudes rearwardly from said press insertion rod supporting portion.
- 2. An inner ring press-insertion jig for a pipe member made of resin according to claim 1, wherein a washer made of low-friction resin is interposed between said rear end face of said ring holder and said flange of said holder block.
- 3. An inner ring press-insertion jig for a pipe member made of resin according to claim 1, wherein at least one of said holder and said holder block is formed by a low-friction resin material.
- 4. An inner ring press-insertion jig for a pipe member made of resin according to claim 2, wherein at least one of said holder and said holder block is formed by a low-friction resin material.
- 5. An inner ring press-insertion jig for a pipe member made of resin according to claim 1, wherein said pipe member holding portion is configured into an openable half-split structure which consists of a stationary clamp and a movable clamp.
- 6. An inner ring press-insertion jig for a pipe member made of resin according to claim 1, wherein a small-diameter shaft portion which is smaller in diameter than said ring holding shaft portion is continuously formed in said front end of said ring holding shaft portion via a tapered step portion, anda diameter-expanding ring member in which an outer diameter of a front end portion is smaller than an inner diameter of said inner ring, and a rear end portion is formed to be elastically expandingly and contractingly deformable is passed to be axially movable with respect to said small-diameter shaft portion between two positions, or an advanced position and a retracted position, and, in said retracted position, is elastically deformed into an increased-diameter state.
- 7. An inner ring press-insertion jig for a pipe member made of resin according to claim 1, wherein a small-diameter shaft portion which is smaller in diameter than said ring holding shaft portion is continuously formed in said front end of said ring holding shaft portion via a tapered step portion, anda diameter-expanding ring member in which an outer diameter of a front end portion is smaller than an inner diameter of said inner ring, and a rear end portion is formed to be elastically expandingly and contractingly deformable is passed to be axially movable with respect to said small-diameter shaft portion between two positions, or an advanced position and a retracted position, and, in said retracted position, is electrically deformed into an increased-diameter state.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2000-315228 |
Oct 2000 |
JP |
|
US Referenced Citations (8)
Foreign Referenced Citations (3)
Number |
Date |
Country |
57-33983 |
Jul 1982 |
JP |
7-20471 |
May 1995 |
JP |
11-156750 |
Jun 1999 |
JP |