The present disclosure relates to a gas turbine engine and, more particularly, to an inner shroud assembly therefor.
Gas turbine engines, such as those that power modern commercial and military aircraft, generally include a compressor section to pressurize an airflow, a combustor section to burn a hydrocarbon fuel in the presence of the pressurized air, and a turbine section to extract energy from the resultant combustion gases.
Some gas turbine engines include variable vane systems with vanes that can be rotated about their individual axes to change an operational performance characteristic. The variable vanes are robustly designed to handle the forces required to change the position of the vanes. A mechanical linkage is typically utilized to rotate the variable vanes. Although operationally effective, variable vane systems are relatively complicated to assemble and include numerous components and fasteners that must accommodate relatively significant forces.
An inner shroud assembly of a variable vane actuation system for a gas turbine engine, according to one disclosed non-limiting embodiment of the present disclosure includes a shroud assembly comprising a multiple of forward shroud segments and a respective multiple of aft shroud segments; a multiple of variable vanes rotationally retained at an inboard trunion between the forward and aft shroud segments of the shroud assembly; and a retainer assembly comprising a multiple of retainer ring segments that retain the forward and aft shroud segments together.
A further aspect of the present disclosure includes that the multiple of retainer ring segments slide over the shroud assembly.
A further aspect of the present disclosure includes that the multiple of retainer ring segments are each 90 degree segments.
A further aspect of the present disclosure includes that the multiple of forward shroud segments and a respective multiple of aft shroud segments are 60 degree segments.
A further aspect of the present disclosure includes an anti-rotation lug on at least two of the aft shroud segments to receive a recess on an end section of two retainer ring segments.
A further aspect of the present disclosure includes an axial interface feature that extends from an outer diameter of each of the multiple of retainer ring segments.
A further aspect of the present disclosure includes that the axial interface feature comprises a ramped surface.
A further aspect of the present disclosure includes that the axial interface feature is engageable with a corresponding ramped surface on a feature of an intermediate case (IMC) of the gas turbine engine.
A further aspect of the present disclosure includes that each pair of forward and aft shroud segments are aligned via two or more alignment pins that are arranged within respective apertures that are axially parallel to the engine central longitudinal axis.
A gas turbine engine according to one disclosed non-limiting embodiment of the present disclosure includes an engine case with a ramped surface on an inboard extending feature; and an inner shroud assembly of a variable vane actuation system, the inner shroud assembly comprises an axial interface feature that extends from an outer diameter of each of a multiple of retainer ring segments, the axial interface feature comprises a ramped surface that engages with the ramped surface on the inboard extending feature.
A further aspect of the present disclosure includes that the multiple of retainer ring segments are each 90 degree segments.
A further aspect of the present disclosure includes a shroud assembly comprising a multiple of forward shroud segments and a respective multiple of aft shroud segments, the multiple of retainer ring segments operable to retain the forward and aft shroud segments together.
A further aspect of the present disclosure includes that the multiple of forward shroud segments and a respective multiple of aft shroud segments are 60 degree segments.
A further aspect of the present disclosure includes that the multiple of forward shroud segments and the respective multiple of the aft shroud segments are manufactured of a non-metallic material.
A further aspect of the present disclosure includes a multiple of variable vanes rotationally retained at an inboard trunion between the forward and aft shroud segments of the shroud assembly.
A further aspect of the present disclosure includes that the engine case is an intermediate case (IMC) of the gas turbine engine.
A method of assembling a variable vane actuation system according to one disclosed non-limiting embodiment of the present disclosure includes assembling a multiple of variable vanes between a respective forward and aft shroud segment of a shroud assembly, the shroud assembly comprising a multiple of shroud segments; sliding at least one of a multiple of forward and an aft shroud segments of the shroud assembly at least partially into a retainer ring segment, a multiple of retainer ring segments forming a retaining ring assembly of an inner shroud assembly, the inner shroud assembly comprises an axial interface feature with a ramped surface that extends from an outer diameter of each of a multiple of retainer ring segments; and assembling the inner shroud assembly into an engine case with a ramped surface on an inboard extending feature that engages with the ramped surface that extends from the outer diameter of each of the multiple of retainer ring segments.
A further aspect of the present disclosure includes that the engine case is a split case.
A further aspect of the present disclosure includes that the engine case is an intermediate case (IMC) of the gas turbine engine.
A further aspect of the present disclosure includes that the inner shroud assembly is retained within the engine case without fasteners between the retaining ring assembly and the engine case.
The foregoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated otherwise. These features and elements as well as the operation thereof will become more apparent in light of the following description and the accompanying drawings. It should be appreciated; however, the following description and drawings are intended to be exemplary in nature and non-limiting.
Various features will become apparent to those skilled in the art from the following detailed description of the disclosed non-limiting embodiment. The drawings that accompany the detailed description can be briefly described as follows:
The engine 20 generally includes a low spool 30 and a high spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine case structure 36 via several bearing compartments 38. The low spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure compressor (“LPC”) 44 and a low pressure turbine (“LPT”) 46. The inner shaft 40 drives the fan 42 directly or through a geared architecture 48 to drive the fan 42 at a lower speed than the low spool 30. An exemplary reduction transmission is an epicyclic transmission, namely a planetary or star gear system.
The high spool 32 includes an outer shaft 50 that interconnects a high pressure compressor (“HPC”) 52 and high pressure turbine (“HPT”) 54. A combustor 56 is arranged between the high pressure compressor 52 and the high pressure turbine 54. The inner shaft 40 and the outer shaft 50 are concentric and rotate about the engine central longitudinal axis A which is collinear with their longitudinal axes.
Core airflow is compressed by the LPC 44 then the HPC 52, mixed with the fuel and burned in the combustor 56, then expanded over the HPT 54 and the LPT 46. The HPT 54 and the LPT 46 rotationally drive the respective high spool 32 and low spool 30 in response to the expansion.
With reference to
Each of the variable vanes 102 includes an inner trunion 104 that is receivable into a corresponding socket in an inner shroud assembly 114 and an outer trunion 106 mounted to an outer engine case 108 such that each of the variable vanes 102 can rotate about a vane axis T. The inner shroud assembly 114 defines the inner diameter of the flowpath and supports the vane inner trunnions 104 in a circumferentially spaced relationship.
The variable vane system 100 may further include a synchronizing ring assembly 110 to which, in one disclosed non-limiting embodiment, each of the outer trunions 106 are attached through a vane arm 112 along a respective axis D. The variable vane system 100 is driven by an actuator system 118 with an actuator 120, a drive 122, and an actuator arm 124. Rotation of the synchronizing ring assembly 110 about the engine axis A drives the vane arm 112 to rotate the outer trunion 106 of each of the variable vanes 102. Although particular components are separately described, it should be appreciated that alternative or additional components may be provided.
With reference to
The shroud assembly 130 defines the inner flowpath and properly spaces the inner ends of the variable vanes 102. The shroud assembly 130 operates as a bearing material for each inner trunion 104 and may be manufactured of a ceramic matrix composite (CMC) or organic matrix composite (OMC) material. Examples of CMC materials include, but are not limited to, carbon-fiber-reinforced carbon (C/C), carbon-fiber-reinforced silicon carbide (C/SiC), silicon-carbide-fiber-reinforced silicon carbide (SiC/SiC), alumina-fiber-reinforced alumina (Al2O3/Al2O3), or combinations thereof.
Each inner trunion 104 may include a flange 105 that is radially retained by being sandwiched between the forward and aft shroud segments 140, 142 (
The retainer assembly 132 includes a multiple of retainer ring segments 160 that slide over the forward and aft shroud segments 140, 142 to retain together the forward and aft shroud segments 140, 142 (
An end section 162 of each retainer ring segment 160 includes a recess 164 that engages an anti-rotation lug 166 formed on the aft shroud segments 142 (
With reference to
This inner shroud assembly 114 configuration eliminates axial fasteners and inserts and thereby reduces the assembly part count. In addition to the cost savings and weight decrease, there is no need for a table of limits for bolt torque during assembly.
The foregoing description is exemplary rather than defined by the limitations within. Various non-limiting embodiments are disclosed herein, however, one of ordinary skill in the art would recognize that various modifications and variations in light of the above teachings will fall within the scope of the appended claims. It is therefore to be understood that within the scope of the appended claims, the disclosure may be practiced other than as specifically described. For that reason, the appended claims should be studied to determine true scope and content.
This invention was made with Government support awarded by the United States. The Government has certain rights in this invention.