The present invention relates to an improved strainer for filtering molten metal wherein the strainer comprises an inoculant pellet in operational association therewith. More specifically, the present invention relates to an improved strainer-inoculant combination providing improved straining and improved inoculation of molten iron passing there through.
Filtration of molten metal is a long practised art. Innoculation of the molten metal, particularly iron, is also a widely practiced art. It has been a long-standing desire to combine the filtration, or straining, of molten iron with inoculation.
Various treatment units have been presented in the art. Many of these utilize some form of flow restriction or redirection in an attempt to maximize contact between the molten metal and the inoculant. U.S. Pat. No. 4,511,401, for example, comprises a unit which is integral to the ladle. Molten metal is inoculated upon introduction into the ladle. While this technique is convenient, the inoculant tends to fade with time and the inoculation is therefore inefficient in such a device.
Converter chambers are described in the prior art wherein a separate inoculation chamber is employed. These typically include some form of flow restrictor, such as perforated walls or overflowing dams. Representative teachings of this type of device are provided in, U.S. Pat. Nos. 4,666,133; 4,509,979; 4,464,198; 4,391,636; 4,330,024 and 4,238,231.
These devices are deficient for several reasons. One reason is the problem associated with solid inoculant breaching the flow restrictor and being incorporated as an impurity in the, flowing molten metal. This typically occurs when the inoculant particle becomes sufficiently small to traverse the flow restrictor. These particles will then either continue to dissolve, be removed by subsequent straining or become an impurity in the solidified metal. Potential incorporation of solid inoculant in the flowing molten metal makes it difficult to determine the effectiveness of the inoculation. It is also difficult to insure that all of the metal is in sufficient contact with the inoculant to provide adequate inoculation.
Continued addition of an inoculant powder, as described in U.S. Pat. No. 4,517,019, overcomes some of the problems associated with flow restrictors. These devices are expensive to operate and the powder can agglomerate creating flow problems for the solid. The flow problems result in inconsistent powder delivery and inconsistent inoculation.
Formation of the inoculant into a filter is described in U.S. Pat. No. 5,690,161. The molten metal is caused to flow through the inoculant. As would be realized, the inoculants dissolve. As the inoculant dissolves the structure is weakened thereby leading to the possibility of breakage.
Combining an inoculant, typically in ingot form, with a filter or strainer is described in U.S. Pat. No. 3,881,937 and DE 4,318,309 A1. These represent improvements over the prior art yet they are still deficient for a number of reasons.
Incorporating an inoculant pellet into a cavity, as described in DE 4,318,309 A1 has several deficiencies. The inoculant tablet is not flush with the inlet face, or surface, of the strainer. The protruded pellet is typically a compressed powder which is highly susceptible to breakage. This creates a packaging problem requiring complex internal packing materials to protect the protruded pellet. The packaging problem is made worse by the lack of bonding between the strainer and pellet. Furthermore, the side peripheral surface of the inoculant tablet within the strainer body is not sufficiently exposed to the molten metal stream. This creates inefficient treatment. If the inoculant pellet is made flush the packaging problems decrease but the deficiencies with regard to dissolution are exasperated. Filters incorporating inoculant in a cavity have inferior inclusion removal.
Securing a pellet to the face of a filter with a protruding element, as described in U.S. Pat. No. 3,881,937 reduces the problems associated with insufficient surface area yet other problems are created. The packaging problems remain and are exasperated. Problems associated with inclusion removal efficiency remain. There is a further problem associated with the weakness of the protrusion. This weakness creates a continual packaging problem resulting in expensive packing or extensive losses during shipping.
The lack of a suitable system and method for treating molten metal has been a long felt need in the art. This need is met by the present invention.
It is an object of the present invention to provide a straining system for molten metal which inoculates and strains the metal without the problems associated with the prior art.
It is another object of the present invention to provide a strainer for molten metal which secures an inoculation pellet without decreasing the dissolution of the pellet and that allows adequate contact between the molten metal and pellet to effect suitable and reproducible treatment.
It is another object of the present invention to provide a strainer with improved inclusion removal and the strainer is associated with an inoculant.
A particular feature is the absence of a protruding pellet and the packaging efficiencies provided thereby.
Another particular feature is the enhanced treatment achieved by the inventive system due, in part, to the improved contact between the metal and inoculant. The improved treatment is done in concert with improved inclusion removal.
A particular feature of the present invention is the advantage provided in a strainer comprising a well within which an inoculant pellet is contained wherein the molten metal can encompass and flow completely around the pellet without decreasing the straining effectiveness.
These and other advantages, as would be realised to one of ordinary skill in the art, are provided in a strainer for molten metal. The strainer comprises a well and a multiplicity of passages. Each passage comprises a first cavity a second cavity with a smaller equivalent diameter than the first cavity. A neck is between the first cavity and second cavity.
Another embodiment is provided in a treatment device for molten metal. The treatment devices comprising a strainer. The strainer comprises a well and a multiplicity of progressively stepped down passages. A pellet, comprising an inoculant for the molten metal, is received in the well.
Another embodiment is provided in a strainer for molten metal. The strainer comprises a multiplicity of passages and a well. The well comprises a floor; a multiplicity of well passages through the floor and a multiplicity of shelves on the floor. At least two lugs extend into the well.
The inventors of the present application have developed, through diligent research, an improved strainer for use in straining and an improved method for treating molten metal with an inoculant. The inventors have also developed an improved method for straining molten metal which allows treatment at the filter while eliminating the problems associated with the prior art.
The invention will be described with reference to the figures forming a part of the present application. In the various figures similar elements are numbered accordingly.
A strainer assembly comprising an inoculation pellet is illustrated in top view in
A perspective view of a preferred strainer, without a pellet, is provided in
A bottom view of the preferred strainer of
A partial cutaway of the strainer is provided in
Strainers are preferably at least 0.5 inches thick with at least 2 cavities. It is most preferable to have a strainer of no more than 3 inches thick with no more than about 20 step-downs. The difference in equivalent diameter from the larger cavity to the adjacent smaller cavity is preferably at least about 10%, more preferably at least about 20%. Most preferably the difference in equivalent diameter from the larger cavity to the adjacent smaller cavity is at least about 50%. It is most preferred that the difference in equivalent diameter from the larger cavity to the adjacent smaller cavity be no more than about 75%. Equivalent diameter is defined herein as the diameter of a circle having the same cross-sectional area as the cavity. A cylindrical cavity is most preferred due to manufacturing considerations but other shapes such as oblong, trigonal, square, polygonal, etc. are within the scope of the present invention.
The thickness of the neck, measured as the distance between the upper cavity and lower cavity, is determined by the angle of the neck relative to the upper cavity. It is preferable that the thickness of the neck be sufficiently large to form an angle, relative to the face of the larger cavity, of over 90° to insure that there are no eddies created in the flowing molten metal. It is more preferably that the neck be sufficiently large to form an angle, relative to the face of the larger cavity of no more than about 160°. Above about 160° the turbulence created in the flow is theorized to be insufficient to improve inclusion capture efficiency. An angle of about 110° to about 150° is preferred with about 135° being most preferred.
The depth of the cavity is preferably at least about 0.1 inches to no more than about 1 inch. More preferably the cavities are at least about 0.2 inches to no more than about 0.5 inches. A strainer comprising three 0.30 inch deep cavities with equivalent diameters of about 0.140 inches, about 0.105 inches and about 0.070 inches with each cavity being about 0.30 inches in depth and each neck thickness being about 0.01 inches is exemplary.
A cross-sectional view of a strainer assembly is provided in
A preferred embodiment is illustrated in
A closer view of the well of
Another embodiment will be described in reference to
The pellet can be secured by friction fit between the lugs or by an adhesive. The adhesive may be between the lugs and pellet, between the well floor and pellet, between the shelves and pellet or a combination thereof. The pellet may also be friction fit between the lugs and secured by adhesive to the well floor and/or shelves.
A perspective bottom view of the embodiment of
The inoculant pellet is preferably a cylindrical pellet comprising elements known to dissolve and treat molten metal. The treatment may be for nodulization, carbide elimination, etc. Control of the dissolution rate of the pellet is important to insure the proper treatment is acheived.
Controlling the dissolution rate to allow for a wide range of flow rates, or approach velocities, allows for predictable inoculation at the strainer without regard for approach velocities within a working range of 1–60 cm/sec measured at 30.25 cm2 flow cross-section.
The effective inoculation component of one embodiment of the present invention comprises a ferrosilicon carrier and at least one active element. The ferrosilicon carrier is a non-active element which dissolves in molten iron without forming seed nuclei. The active element is an element, or combination of elements, which dissolve in molten iron and react with elements in the molten iron to form seed nuclei upon which graphite preferentially crystallizes.
The effective component of one embodiment of the inoculant pellet preferably comprises 40–99.5%, by weight, carrier and 0.5–60%, by weight active element. Particularly preferred carriers are prepared from ferrosilicon comprising non-reactive impurities. Ferrosilicon is available commercially from a variety of sources. Ferrosilicon is typically provided as 75% ferrosilicon which indicates, by nomenclature in the art, that the material comprises approximately 75%, by weight, silicon and 25%, by weight, iron. Ferrosilicon is widely available as 50% ferrosilicon which indicates that the material comprises approximately 50%, by weight, silicon and 50%, by weight, iron. For the purposes of the present invention the binder includes all non-inoculating elements. It is most preferred that the carrier comprise at least about 30%, by weight ferrosilicon. It is preferable to add a binder to the effective components prior to forming a pellet. The binder, such as sodium silicate, is well known in the art to assist in pellitization of a powder.
The active inoculant elements preferably include at least one inoculating agent chosen from the group consisting of cerium, strontium, zirconium, calcium, manganese, barium, bismuth, magnesium, titanium, aluminum, silicon and lanthanum and alloys, particularly iron alloys, of these inoculating agents. Particularly preferred inoculating agents include at least one element chosen from the group consisting of strontium, aluminum, barium, zirconium and calcium. The inoculant preferably comprises about 0.5–60%, by weight inoculating agent. More preferably, the inoculant comprises about 0.5–40%, by weight, active inoculating agent. Most preferably, the inoculant comprises about 1–20%, by weight, active inoculating agent. Effective inoculation is described in U.S. patent application Nos. 10/043,644 filed Jan. 10, 2002 and 60/398,268 filed Jul. 24, 2002 which are included herein by reference thereto.
In one embodiment the inoculant tablet contains concentrated amounts of sulfide and oxide forming elements. The tablet preferably contains enough inoculating elements to effectively inoculate molten iron as the metal flows through the gating system during mold filling. The concentrated levels of inoculating elements gives an improved microstructure and chill reduction and dissolves rapidly without the use of auxiliary binders or energy consuming sintering.
The silicon levels in one embodiment of the tablet are preferably maintained at above 15% so as to provide exothermicity or a positive heat of solution and to assist other slower dissolving additions so as to improve the dissolution rate of the inoculant. Various levels of oxy-sulfide forming elements, may be added to the base alloy blend to enhance properties for specific applications.
In one embodiment the inoculant tablet has a specific gravity in the range of about 2.2 to about 2.5 grams/cc. The tablet preferably has a high solubility in cast iron with temperatures as low as 2250° F. The blend of ingredients used for tablet fabrication, but without the iron powder, can also be used in the granular form and have provided similar property improvement.
It is most preferred that the pellets be prepared from powders with a particle size of less than 1 mm and having a particular internal particle size distribution defined in the following way: passing to 1 mm: 100%; fraction between 50μ and 250μ: 30% to 60%, and preferentially 40% to 50%; fraction below 50μ: less than 25% and preferentially less than 20%.
A powder of this type agglomerates easily which makes it possible to operate with lower proportions of binding agent. Thus with sodium silicate, which is a well-known binding agent, doses of 0.3 cm3 for 100 g of powder to 3 cm3 for 100 g of powder are sufficient according to the pressures employed which may vary from 50 to 500 Mpa. Since the mechanical performance of the pellet is easily acquired, the pressure and binding agent percentage parameters may be used to control the dissolution speed of the pellet and not its mechanical performance.
The preparation of powder with this particle size distribution is preferably prepared by a dosing of size fractions prepared in isolation.
The dissolution rate of the inoculant is defined as the amount of inoculating agent introduced as a function of time. The analysis of certain inoculants is difficult therefore the dissolution rate is based on the analysis of a determinant element, either an inoculant or marker. The weight ratio of the determinant element to other inoculating agents is assumed to be the same in the cast iron as the weight ratio in the original pellet. For the purposes of the present invention zirconium is used as an inoculating determinate element. Therefore, the total inoculant in the cast iron is determined as the amount of zirconium plus other inoculants in the iron. For example, if an inoculant has 1 part zirconium, by weight, to 1 part calcium, by weight, and the amount of zirconium in the iron is 20 ppm then the amount of calcium will also be 20 ppm for a total inoculant of 40 ppm. The grams of zirconium plus calcium, or a total amount of 40 ppm, divided by the pour time is the inoculant dissolution rate.
An inoculant dissolution rate of at least approximately 0.02 g/sec. is necessary to have sufficient inoculation for approach velocities of 1–60 cm/sec. Below 0.02 g/sec. an insufficient inoculation rate is observed, particularly early in the pour, to insure minimum or no chill and to substantially eliminate the formation of iron carbide. Alternatively, the approach velocity must be lowered to a level which is impractical with an inoculant dissolution rate below approximately 0.02 g/sec. More preferably, the inoculant dissolution rate is no less than 0.03 g/sec. An inoculant dissolution rate of no more than approximately 0.32 g/sec. is required to insure that the rate of dissolution is sufficiently slow to insure that pellet remains throughout the entire pour at approach velocities of 1–60 cm/sec. Above approximately 0.32 g/sec. the pellet may dissolve prematurely thereby failing to inoculate the late portions of the pour. Alternatively, the approach velocity must be increased to a level which is impractical. More preferably, the inoculant dissolution rate is no more than approximately 0.25 g/sec. Most preferably, the inoculant dissolution rate is no more than approximately 0.20 g/sec.
The present invention illustrates that a ferrosilicon based inoculant can be prepared which, when prepared to a narrow range of dissolution rates, can be utilized as an inoculant pellet and the resulting cast iron has a low level of chill. Furthermore, the proper dissolution rate allows for superior inoculation with minimal inoculating agent. This substantially decreases the cost of inoculation and increases the predictability. Yet another advantage offered by the teachings herein is the ability to determine the proper amount of inoculant pellet to achieve a proper level of inoculation.
A dissolution rate of approximately 0.02 to approximately 0.32 g/sec. allows for the same pellet to by used at approach velocities of 1–60 cm/sec. without fade or under inoculation in any portion of the pour. More preferably, the dissolution rate is approximately 0.02 to approximately 0.32 g/sec. at approach velocities of approximately 1 to approximately 40 cm/sec. Even more preferably, approach velocities of 10 to 30 cm/sec. can be utilized and most preferably an approach velocity of 15–25 cm/sec. can be utilized with the preferred pellet dissolution rate of 0.05 to 0.25 g/sec. A particularly preferred pellet dissolution rate is 0.05 to 0.15 g/sec.
In a particularly preferred embodiment the dissolution rate of the pellet is determined at an approach velocity of 15 cm/sec. measured at a cross-sectional area of 30.25 cm2. At an approach velocity of 15 cm/sec. the pellet preferably has a dissolution rate of at least approximately 0.05 g/sec. to no more than approximately 0.3 g/sec. More preferably, measured at an approach velocity of 15 cm/sec. the pellet has a preferred dissolution rate of at least approximately 0.05 g/sec. to no more than approximately 0.20 g/sec.
Approach velocity is a practical measure, well known in the industry, to indicate the volume of metal flowing to, and through, a filter. As would be apparent to one of ordinary skill in the art the approach velocity is determined at a fixed cross-sectional flow area. For the purposes of the present invention all approach velocities are calculated at a cross-sectional area of 30.25 cm2 unless otherwise stated. It would be readily apparent to one of ordinary skill in the art that different cross-sectional areas would generate different approach velocities, however, the approach velocity could be easily compared to those cited herein by simple conversion as known in the art.
The dissolution rate of the pellet is controlled by composition and packing density. As the packing density increases the dissolution rate decreases. For the purposes of the present invention a ferrosilicon binder compressed to achieve a density of approximately 2.3 g/cc to approximately 2.6 g/cc is suitable to obtain the dissolution range required for the invention. Such a result can be obtained by adjusting the density of a pellet which can be obtained between 60% and 80% of the true density of the inoculant alloy the pellet is made of, depending on the pressure used for agglomerating which can vary from 50 to 500 MPa. Filter inoculant packages according to the invention, may be sized for the treatment of molten iron flow rates between 1 and 10 kg/s.
The form of the inoculant agent in one embodiment can be either a very dense pellet or a mixture of the same elements packed in a pellet with binders and the like. The range of chemistries available using this approach are much broader and allows the incorporation of concentrated levels of the critical elements needed for the inoculation process compared to traditional inoculating alloys which are produced by a smelting and casting process.
In one embodiment of inoculant tablets, the product is produced on a high pressure press utilizing iron powder as the primary ‘carrier’ and densification agent. The iron powder provides improved specific gravity and heat transfer for improved alloy dissolution. The iron powder provides a source of ‘mechanical particle interlocking’ that assists in the consolidation of the alloy ingredients into a tablet which possesses outstanding green handling properties. Use of iron as the “carrier” agent essentially eliminates the need for ferrosilicon based inoculating alloys.
In one embodiment the inoculating pellet comprises at least one element chosen from the group consisting of silicon, calcium, sulfur, magnesium and aluminum.
In one embodiment an inoculating pellet is made with varying blends of oxy-sulfide forming elements blended to form a mixture consisting essentially of 15–49% silicon, 7 to 22% calcium, 3 to 10% sulfur, 2 to 4% oxygen, 2.5 to 7.5% magnesium and 0.50 to 5.0% aluminum, the balance being iron and incidental impurities.
A preferred form of one embodiment of the inoculating insert or tablet consists of essentially about 15% silicon, 7.0% calcium, 3.0% sulfur, 4.5% aluminum, 2.0% oxygen, 5.0% magnesium, the balance being iron and incidental impurities. The preferred granulated inoculant consists of 49% silicon, 22% calcium, 2.7% magnesium, 2.8% sulfur, 2.8% oxygen, 1.5% rare earths, and 3.5% aluminum.
The pellet, either spheriodization or inoculation, is preferably secured to the filter by pressing the pellet into the well of the strainer. The pellet is preferably secured by friction fit between the lugs and the pellet. The pellet can be further secured to the surface by a suitable adhesive.
The invention has been described with particular emphasis on the preferred embodiments. It would be realized from the teachings herein that other embodiments, alterations, and configurations could be employed without departing from the scope of the invention which is more specifically set forth in the claims which are appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
3881937 | Teufel | May 1975 | A |
4238231 | Dunks et al. | Dec 1980 | A |
4330024 | Wallace | May 1982 | A |
4391636 | Windish | Jul 1983 | A |
4464198 | Mannion et al. | Aug 1984 | A |
4509979 | Bauer | Apr 1985 | A |
4511401 | Mannion et al. | Apr 1985 | A |
4517019 | Taniguchi | May 1985 | A |
4666133 | Fehr et al. | May 1987 | A |
5028036 | Sane et al. | Jul 1991 | A |
5083753 | Soofi | Jan 1992 | A |
5690161 | Daussan et al. | Nov 1997 | A |
6793707 | Craig et al. | Sep 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20040178546 A1 | Sep 2004 | US |