The present invention relates to building panels. More specifically, the presently described technology relates to an inorganic composite building panel and method and system for manufacturing thereof.
Cements formed of magnesium phosphate are used in many applications. For example, magnesium phosphate cements have been used as patching materials for roads. In addition, magnesium phosphate cements are also used in dental applications, such as in crowns for teeth. However, magnesium phosphate cements currently used are created in a chemical reaction that is highly exothermic. The reaction occurs at a very high reaction rate. Therefore, it is currently difficult to create large batches of magnesium phosphate cements.
As it is difficult to create large amounts of these cements, it is also difficult to use the cements in applications where a large amount of the cements are required. For example, in the construction industry, it is currently difficult, if not impossible, to use current systems and methods for creating building panels (such as panels for the outside walls of buildings, floor panels, and roof panels) made of magnesium phosphate cements.
In addition, current magnesium phosphate cements exhibit large compressive strengths, but typically weak tensile strengths. Therefore, such cements may not be useful in applications where materials experience large tensile forces. For example, building panels such as floor panels and roof panels experience a large compressive load on the top, or load-bearing side, and large tensile forces on the opposite side of the panels. Therefore, it is difficult to fabricate floor and/or roof panels using currently available magnesium phosphate cements, as these cements may not be capable of withstanding the tensile forces typically experienced in roof and floor panels. While current cements can be used to create roof and floor panels, typically a large amount of cement must be used in order to provide sufficient tensile strength. However, with increasing the amount of cement used in these panels comes added weight to the panel and cost in producing the panel.
Current systems and methods for producing magnesium phosphate cements incorporate chopped fibers into the cement to provide for increased strength. However, these fibers tend to act as crack inhibitors and provide very little additional tensile strength to the cement.
Moreover, current fibers used in the cements do not chemically bond with the cement and leave voids between the chopped fibers and the surrounding cement. These voids can decrease the actual strength of the cement below its potential strength. In other words, while the incorporation of fibers can increase a cement's strength, the increase in strength can be increased even more if chemical bonding existed between the fibers and the cement.
Therefore, there is a need for an inorganic composite building panel. More particularly, there is a need for a low-cost inorganic composite building panel that is lightweight and exhibits improved compressive and tensile strength. Additionally, there is a need for a system and method of manufacturing an inorganic composite building panel.
The presently described technology provides an integrated inorganic composite building panel. The building panel includes a first exterior member, a second exterior member, and a plurality of interior support members. The first and second exterior members are attached to the interior support members.
The presently described technology also provides a method for manufacturing an inorganic composite building panel. The method includes providing a plurality of interior support members and attaching the plurality of interior support members to the first and second exterior members.
The presently described technology also provides a system for manufacturing an inorganic composite building panel. The system includes a first slurry applicator for applying cement to a plurality of fibers to produce a first exterior member, a second exterior member, and a plurality of interior support members, and an assembly unit for bonding the plurality of interior support members to said first and second exterior members.
The cement 110 can encapsulate the fibers 120. In addition, the cement 110 can be attached to the fiber 120. More particularly, the cement 110 can be chemically and/or mechanically bonded to the fibers 110. Alternatively, the cement 110 can encapsulate only a portion of the fibers 120. The unencapsulated fibers 120 can be attached or chemically and/or mechanically bonded to other inorganic composites 100, as described below.
The cement 110 can include phosphate, water, metal oxide, and filler. The phosphate can include potassium phosphate (KH2PO4) and/or ammonium phosphate, for example. The metal oxide can include one or more of magnesium oxide (MgO), aluminum oxide (Al2O3), titanium oxide (TiO2), iron oxide (Fe2O3), calcium oxide (CaO), and/or copper oxide (CuO or Cu2O), for example. The filler can include C fly ash, boron carbide, sand, calcium silicate, or wollastonite (CaSiO3), for example.
The fibers 120 can include basalt, glass, ceramic, metal, carbon, and/or aramid fibers, for example. The fibers 120 can be continuous or longer than a dimension of an object or structure to be formed with the composite 100. Additionally, continuous fibers can be formed into various shapes, such as a mat. Alternatively, the fibers 120 can be non-continuous or shorter than a dimension of an object or structure to be formed with the composite 100. Non-continuous fibers can include chopped fibers, for example.
At step 210, phosphate, such as potassium phosphate (KH2PO4) and/or ammonium phosphate, can be mixed with water (H2O) to form a solution. More particularly, the KH2PO4 can be mixed with H2O in a high shear mixture for about 5 to 20 minutes, for example.
At step 220, metal oxide, such as magnesium oxide (MgO), aluminum oxide (Al2O3), calcium oxide (CaO), titanium oxide (TiO2), iron oxide (Fe2O3), and/or copper oxide (CuO or Cu2O), and filler, such as C fly ash, boron carbide, sand, calcium silicate, and/or wollastonite (CaSiO3), can be mixed with the solution to form a cement slurry. More particularly, MgO and C fly ash can be mixed with the KH2PO4 solution in a high shear mixture for about 8 minutes or until a flowable slurry forms, for example.
At step 230, fibers, such as basalt, glass, ceramic, metal, carbon, and/or aramid fibers, can be added to the slurry. More particularly, fibers can be added to the slurry in a batch process. For example, basalt fibers can be placed into a mold. Next, the slurry can be poured into the mold and over the basalt fibers. Alternatively, fibers can be added to the slurry in a continuous process. For example, a basalt fiber mat can be transported by a conveyor. Then, the slurry can be poured over the basalt fiber mat. Next, the slurry can be impregnated into the fiber mat by applying compressive force. For example, the slurry and fiber mat can pass between a plurality of rollers that apply compressive force to the slurry and mat, as described below.
In at least one embodiment of the presently described technology, a wetting agent can be applied to the fibers to decrease the surface tension of fibers prior to introduction into the slurry, as described below.
At step 240, the slurry and fiber combination can be set or cured to form a chemically and/or mechanically bonded inorganic composite, such as the chemically and/or mechanically bonded inorganic composite 100 of
In at least one embodiment of the presently described technology, one or more curing agents can be added to the ceramic composite before and/or during curing. For example, one or more of phosphoric acid, a phosphate (such as monopotassium phosphate) and a water soluble metal oxide (such as magnesium hydroxide) can be used.
In at least one embodiment of the presently described technology, one or more of the steps 210-240 can be performed in a vacuum, as described below.
As will be appreciated by those of skill in the art, certain steps can be performed in ways other than those recited above and the steps can be performed in sequences other than those recited above.
In operation, a mat of fiber moves through the system 300 on the conveying unit 350, such as a conveyor, as shown by direction arrows 360. The mat passes under the wetting agent applicator 310. The wetting agent applicator 310 continuously applies a wetting agent, such as saline, magnesium hydroxide (Mg(OH)2), potassium phosphate (K2HPO4), and/or other surfactant, to the mat. The wetting agent applicator 310 can apply the wetting agent to the mat by spraying, rolling, or brushing the wetting agent onto the mat. The amount of wetting agent applied to the mat can be varied by adjusting the speed at which the mat passes under the wetting agent applicator 310 (that is, the speed of the conveying unit 350) and/or by adjusting the rate at which the wetting agent is expelled from the wetting agent applicator 310.
Next, the mat passes under the first slurry applicator 320. The first slurry applicator 320 continuously applies a ceramic concrete or cement slurry, such as the slurry described in step 220 of
Next, the mat passes between a plurality of rollers 340. The rollers 340 include rounded surfaces capable of applying compressive pressure to the mat and the slurry applied by the first slurry applicator 320. For example, the rollers 340 can include a non-reactive material shaped in a cylindrical form. In such an example, the rollers 340 can be utilized in a manner similar to dough rollers. For example, a pair of rollers 340, each rotating in the opposite direction, can compress the slurry and the mat. By applying pressure, the fibers in mat can be impregnated with the slurry.
In an embodiment of the presently described technology, one or more of the first slurry applicator 320 and the rollers 340 can be enclosed in a vacuum as the mat passes under and through. For example, the first slurry applicator 320 and/or the rollers 340 can be enclosed in a volume that includes an atmosphere with air pressure less than ambient air pressure. In such an embodiment, the vacuum surrounding the first slurry applicator 320 and/or the rollers 340 can be a partial or total vacuum. Such a vacuum can assist with removing air pockets or voids as the fibers of the mat are impregnated with the slurry.
Next, the mat, impregnated with the slurry, passes under a second slurry applicator 330. The second slurry applicator 330 continuously applies additional ceramic concrete or cement slurry, such as the slurry described in step 220 of
Additional slurry can be provided by the second slurry applicator 330 to provide a uniform thickness to the mat and slurry. After passing through the rollers 340, the mat and slurry can have a non-uniform thickness and/or a non-uniform surface (that is, a rough surface). By applying additional slurry, the final composite material can possess a more uniform thickness and/or surface.
Next, the mat and slurry combination can be placed into a position of rest. In other words, the mat and slurry combination stops moving (that is, the conveying unit 350 stops moving). Once the mat and slurry combination stops moving, the ceramic concrete or cement slurry can set or cure.
In at least one embodiment of the presently described technology, an entire mat passes through the system 300 before coming to rest to cure or set. Once the mat and slurry has set or cured, a chemically and/or mechanically bonded inorganic composite, such as the chemically and/or mechanically bonded inorganic composite 100 of
In at least one embodiment of the presently described technology, the mat and slurry pass continuously through the system 300. The mat and slurry combination can be cut into a desired length or shape as it passes beyond the second slurry applicator 330. In other words, once a desired amount of the mat and slurry have passed the second slurry applicator 330, the mat can be cut. The cut portion of the mat and slurry can then be placed in a position of rest to cure or set, as described above.
In at least one embodiment of the presently described technology, the ceramic concrete or cement slurry can start to cure or set before the mat is placed in a position of rest. For example, the ceramic concrete or cement slurry can start to cure or set when expelled from the first and second slurry applicators 320, 300. Alternatively, for example, the ceramic concrete or cement slurry can start to cure or set when mixed.
The first exterior member 410, the second exterior member 420, and the interior support members 430 may be referred to as members, elements, components or trusses. The panel 400 may be referred to as a panel or sheet. Additionally, the terms interior, exterior, top, bottom, front, and back can be interchangeable depending on the orientation and function of a particular embodiment of the presently described technology.
The first exterior member 410 can be oriented substantially parallel to the second exterior member 420. The interior support members 430 can be placed between the exterior members 410, 420. For example, the supports 430 can be oriented substantially perpendicular to the exterior members 410, 420 of the building panel 400. Alternatively, the supports 430 can be oriented at various angles to the exterior members 410, 420, for example. Additionally, the interior support members 430 can be attached to the first and second exterior members 410, 420. For example, the supports 430 can be chemically and/or mechanically bonded to the exterior members 410, 420 of the building panel 400.
The exterior members 410, 420 and supports 430 can include a chemically and/or mechanically bonded inorganic composite, such as the chemically and/or mechanically bonded inorganic composite 100 of
Any one or more of the exterior members 410, 420 and supports 430 can include a different thickness of cement and/or volume of fiber. For example, the nominal thickness of the first exterior member or top 410 can be about 0.25 inch (0.64 centimeters). The nominal thickness of the second exterior member or bottom 420 and the interior support members or trusses 430 can be about 0.25 inch (0.64 cm) to about 0.5 inch (1.27 cm), for example. Although a thinner composite can be more cost effective (that is, less material, quicker cure), a thicker composite can provide additional compressive strength. Additionally, for example, one or more of the exterior members 410, 420 and supports 430 can include a fiber volume from about 10 percent to about 40 percent. However, the fiber volume can also be larger or smaller. Although a larger fiber volume can increase the tensile strength of the composite, and thus, the component or member of the building panel, it can also result in a reduction of compressive strength.
Additionally, one or more of the exterior members 410, 420 and supports 430 can be formed differently (that is, formed by different process and under different conditions). As described above, a chemically and/or mechanically bonded inorganic composite, such as the chemically and/or mechanically bonded inorganic composite 100 of
Also, as described above, the composite can be formed in atmosphere or in a vacuum. Thus, one or more of the elements or components of the building panel, such as the exterior members 410, 420 and the supports 430, can include composites formed in atmosphere or in a vacuum. Composites formed in a vacuum can be stronger than composites formed in atmosphere because of reduced porosity, as described above.
The insulation 440 between the supports 430 can include air, foam, fiberglass, or cardboard, for example.
The chemically and/or mechanically bonded inorganic composite building panel 400 can be useful in a many different types of structures, such as residential, commercial, and industrial buildings. More particularly, the building panels 400 can include the wall panels, roof panels, and/or floor panels in a residential, commercial, or industrial building, for example. Furthermore, the building panels 400 can be stronger (in tension and/or compression) than conventional building panels, as well as lightweight and flame retardant and/or fire resistant.
For example, in concrete roof panels and floor panels used in buildings, the top of the panels typically experience a compressive load while the bottom of the panels typically experience a tensile load. By incorporating the composite described herein into floor and roof panels, the added tensile strength achieved by the composite allows for less total material to be used in order to achieve comparable compressive and tensile strengths. In other words, as the composite described herein is considerably stronger in tension than current concretes, a smaller amount of the composite can be used to achieve similar compressive and tensile strength requirements.
Moreover, the increased tensile strength of the composite cement can provide for lighter and cheaper building panels. For example, as the composite cement is stronger than traditional cements used in building panels, less of the composite cement can be used to replace traditional cements while still providing equal or greater tensile and/or compressive strengths. Therefore, by using less material to achieve the same or greater strength, the total weight of building panels made with the composite cement can be considerably lighter. Similarly, by using less material to achieve the same function, the total cost of producing a building panel decreases.
Additionally, for example, the composite material can be used as vertical support members, or trusses, in a building panel.
At step 510, interior support members, such as the interior support members 430 of
At step 520, the supports can be attached to a first exterior member, such as the first exterior member 410 of
At step 530, insulation, such as the insulation 440 of
At step 540, the supports can be attached to a second exterior member, such as the second exterior member 420 of
Alternatively, for example, the second exterior member can be placed onto the supports, which are already attached to the bottom and include insulation in between. More particularly, some of the fibers and cured cement in the supports can chemically bond with some of the partially cured cement in the second exterior member. As described above, the second exterior member can include partially cured cement.
In at least one embodiment of the presently described technology, one or more of the components in the panel can be prefabricated as a core. For example, the core can include supports, such as the supports 430 of
As will be appreciated by those of skill in the art, certain steps can be performed in ways other than those recited above and the steps can be performed in sequences other than those recited above.
As described above, after the fiber mat and cement or concrete slurry travel past the second slurry applicator 630 (as indicated by the direction arrows 660), the mat, impregnated with slurry, comes to a stop so that the slurry can set or cure. While the slurry is partially set or cured, the assembly unit 670 introduces other components of the building panel. For example, as a first exterior member, such as the first exterior member 410 of
Additionally, for example, as a second exterior member, such as the second exterior member 420 of
Alternatively, for example, as the second exterior member cures or sets, the assembly unit 670, positioned at the same level as or slightly below the conveyer 650, can hold the first exterior member, supports, and insulation while the conveyor 650 carries the second exterior member onto the other components of the building panel, as described above.
As described above, the fiber mat and cement slurry may not stop to rest, but rather, can cure or set while traveling along the conveying unit 650. The assembly unit 670 can introduce other elements of the building panel, such as the supports, as the mat and slurry are in motion.
The assembly unit 670 can be stationary or in motion. Additionally, the assembly unit 670 can include robotics or other devices for selecting, moving, and placing the various elements of the building panel.
In an embodiment of the presently described technology, the functions of the conveying unit can be performed by the assembly unit. Alternatively, the functions of the assembly unit can be performed by the conveying unit. In other words, the functions of conveying and assembly, as described above, can be performed by a single unit, referred to as either the conveying unit or the assembly unit.
While particular elements, embodiments and applications of the present invention have been shown and described, it will be understood that the invention is not limited thereto since modifications can be made by those skilled in the art without departing from the scope of the present disclosure, particularly in light of the foregoing teachings.
This application relates to and claims priority benefits from U.S. Provisional Patent Application Ser. No. 60/751,446, filed Dec. 16, 2005, entitled “Inorganic Composite Building Panel”. The '446 provisional application is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
60751446 | Dec 2005 | US |