1. Field of the Invention
The present invention relates generally to a combined inorganic, dielectric grid polarizer and diffraction grating to polarize and further control light, such as by reducing zero order back reflection.
2. Related Art
Diffraction gratings are a periodic structure of dielectric material with a period (p) greater than half the wavelength (λ) of incident light, or p≧λ/2. The diffraction grating scatters the incident light at discrete angles or directions in accordance with mλ=p sin θ, where m is the order and θ is the angle with respect to normal from the diffraction grating. Thus, different wavelengths are reflected or scattered at different angles.
Wire grid polarizers are a periodic structure of conductive elements with a length greater than the wavelength and a period less than half the wavelength of the incident light, or p≧λ/2. Wire grid polarizers have been proven to be effective for visible light (˜300-700 nm, or ˜0.3-0.7 microns or μm) and their use demonstrated as polarizers and beam splitters in optical imaging systems.
Various imaging systems, such as projection displays, using liquid crystal spatial light modulators, such as liquid crystal on silicon (LCOS), have been proposed that utilize polarizers, such as wire grid polarizers. For example, see U.S. Pat. Nos. 6,234,634 and 6,447,120. Such polarizers, however, can also back reflect a portion of the incident light resulting in a ghost image. One solution has been to tilt or angle the polarizer to direct the back reflection out of or away from the optical path. Tilting the polarizer, however, can take-up valuable space in a compact design, and can cause unwanted astigmatism. In addition, the conductive metal of the wires can absorb light.
Various types of polarizers or polarizing beam splitters (PBS) have been developed for polarizing light, or separating orthogonal polarization orientations of light. A MacNeille PBS is based upon achieving Brewster's angle behavior at the thin film interface along the diagonal of the high refractive index cube in which it is constructed. Such MacNeille PBSs generate no astigmatism, but have a narrow acceptance angle, and have significant cost and weight.
Another polarizing film includes hundreds of layers of polymer material stretched to make the films birefringent. Such stretched films have relatively high transmission contrast, but not reflection contrast. In addition, polymer materials are organic and not as capable of withstanding higher temperatures or higher energy flux. For example, see Vikuiti™ polarizing films by 3M.
Composite wire-grid polarizers have been proposed in which the wires include alternating layers of dielectric and conductive layers. For example, see U.S. Pat. Nos. 6,532,111; 6,665,119 and 6,788,461. Such polarizers, however, still have conductive materials.
It has been recognized that it would be advantageous to develop a polarizer device capable of reducing back reflection, and thus capable of reducing ghost images when used in an imaging system or display system. In addition, it has been recognized that it would be advantageous to develop a polarizer device capable of polarizing and further controlling the light, such as the direction or modes of reflection. In addition, it has been recognized that it would be advantageous to develop a non-zero order type polarizer device capable of polarizing light while reflecting only light of non-zero order, and without reflecting light of the zero order. Furthermore, it has been recognized that it would be advantageous to develop an imaging system with such a wire grid polarizer or polarizer device capable of conserving space in the optical design, and capable reducing ghost images and unwanted astigmatism. It has been recognized that it would be advantageous to develop a polarizer or polarizing beam splitter that has high contrast in reflection and/or transmission, can withstand high temperatures and/or high energy flux, and that is simpler to manufacture. In addition, it has been recognized that it would be advantageous to develop a polarizer that is inorganic and dielectric.
The invention provides an inorganic, dielectric grid polarizer configured to polarize and further control light incident on the device and includes an optical stack with a diffraction grating and an inorganic, dielectric grid polarizer, with one disposed over the other and configured to be disposed in the light. The inorganic, dielectric grid polarizer includes: a stack of film layers, each film layer being formed of a material that is both inorganic and dielectric; adjacent film layers having different refractive indices; at least one of the film layers being discontinuous to form a form birefringent layer with an array of parallel ribs in accordance with PGP<λ/2 where PGP is the period of the ribs and λ is the wavelength of the light, to polarize the light by substantially reflecting the light with s-polarization orientation and substantially transmitting the incident light with p-polarization orientation. The diffraction grating includes an array of elongated parallel dielectric ribs in accordance with PDG>λ/2 where PDG is the period of the ribs, to substantially diffract light with the s-polarization orientation of non-zero order at a non-orthogonal angle. The diffraction grating and the grid polarizer together pass light having p-polarization orientation while diffracting light having s-polarization orientation.
Additional features and advantages of the invention will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, features of the invention; and, wherein:
a is a cross-sectional side view of a polarizer device in accordance with an embodiment of the present invention;
b is a detailed cross-sectional side view of the polarizer device of
c is a cross-sectional side view of another polarizer device in accordance with another embodiment of the present invention;
a and 9b are schematic views of image projection systems with a polarizer device in accordance with an embodiment of the present invention;
Reference will now be made to the exemplary embodiments illustrated, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended.
The terms polarizer and polarizing beam splitter are used interchangeably herein. Both are referred to herein as polarizers or polarizer devices.
The term dielectric is used herein to mean non-metallic.
The term continuous is used here to denote continuous in at least two dimensions, such as continuous in a plane or continuous across a planar surface in both directions.
Description
As illustrated in
Referring to
The diffraction grating 18 can include an array of elongated parallel dielectric ribs 26 with a period in accordance with PDG>λ/2, where PDG is the period of the ribs (and λ is the wavelength of the visible light beam). In one aspect, the period PGD can be greater than 0.21 microns and less than 0.7 microns. (As described below, the period of the diffraction grating can be approximately five times greater than the period of the grid polarizer.) Thus, the diffraction grating diffracts reflected or transmitted light, and specifically substantially diffracts light with the s-polarization orientation of non-zero order at a non-orthogonal angle (θ≠0) or angle greater than zero (θ>0). Furthermore, each rib 26 of a diffraction grating 18b of a device 10b can be split into at least a pair of ribs 26a and 26b, as shown in
The inorganic, dielectric grid polarizer 22 includes an array of elongated, parallel ribs 30 with a period in accordance with PGP<λ/2 where PGP is the period of the wires (and λ is the wavelength of the visible light beam). In one aspect, the period can be less than about 0.21 microns to polarize the incident light. The grid polarizer 22 substantially reflects the incident light with s-polarization orientation, and substantially transmits the incident light with p-polarization orientation.
The grid polarizer 22 can include a stack 34 of film layers 34a-34f disposed over a substrate 38. The substrate 38 can be formed of an inorganic and dielectric material, such as BK7 glass. In addition, the film layers 34a-34f, and thus the stack 34, can be formed of inorganic and dielectric materials. Thus, the entire polarizer can be inorganic and dielectric, or formed of only inorganic and dielectric materials.
In addition, the dielectric material can further be optically transmissive with respect to the incident light. Furthermore, the dielectric material can further have negligible absorption. Thus, the light incident on the grid polarizer is not absorbed, but reflected and transmitted.
The material of each film layer can have a refractive index n. Adjacent film layers have different refractive indices (n1≠n2). In one aspect, film layers alternate between higher and lower refractive indices (for example n1<n2>n3; n1>n2<n3; n1<n2<n3 or n1>n2>n3). In addition, the first film layer 34a can have a different refractive index n1 than the refractive index ns of the substrate 38 (n1≠ns). The stack of film layers can have a basic pattern of two or more layers with two or more reflective indices, two or more different thicknesses, and two or more different materials. This basic pattern can be repeated.
In addition, the thickness of each layer can be tailored to transmit substantially all light of p-polarization orientation, and to reflect substantially all light of s-polarization orientation. Therefore, while the thicknesses t1-6 shown in the figures are the same, it will be appreciated that they can be different.
While the stack 34 is shown with six film layers 34a-f, it will be appreciated that the number of film layers in the stack can vary. In one aspect, the stack can have between three and twenty layers. It is believed that less than twenty layers can achieve the desired polarization. In addition, while the film layers are shown as having the same thickness, it will be appreciated that the thicknesses of the film layers can very, or can be different. The thickness of all the film layers in the stack over the substrate can be less than 2 micrometers.
At least one of the film layers is discontinuous to form a form birefringent layer with an array of parallel ribs 30. The ribs have a pitch or period PGP less than the wavelength being treated, and in one aspect less than half the wavelength being treated. For visible light applications (λ≈400-700 nm), such as projection display systems, the ribs can have a pitch or period less than 0.35 microns or micrometers (0.35 μm or 350 nm) for visible red light (λ≈700 nm) in one aspect; or less than 0.20 microns or micrometers (0.20 μm or 200 nm) for all visible light in another aspect. For infrared applications (λ≈1300-1500 nm), such as telecommunication systems, the ribs can have a pitch or period less than 0.75 micron or micrometer (0.75 μm or 750 nm) in one aspect, or less than 0.4 microns or micrometers (0.40 μm or 400 nm) in another aspect. Thus, an incident light beam 12 incident on the polarizer 22 separates the light into two orthogonal polarization orientations, with light having s-polarization orientation (polarization orientation oriented parallel to the length of the ribs) being reflected, and light having p-polarization orientation (polarization orientation oriented perpendicular to the length of the ribs) being transmitted or passed. (It is of course understood that the separation, or reflection and transmission, may not be perfect and that there may be losses or amounts of undesired polarization orientation either reflected and/or transmitted.) In addition, it will be noted that the array or grid of ribs with a pitch less than about half the wavelength of light does not act like a diffraction grating (which has a pitch about half the wavelength of light). Thus, the grid polarizer avoids diffraction. Furthermore, it is believed that such periods also avoid resonant effects or anomalies.
As shown in
The grooves 42 can be unfilled, or filed with air (n=1). Alternatively, the grooves 42 can be filled with a material that is optically transmissive with respect to the incident light.
In one aspect, a thickness of all the film layers in the stack over the substrate is less than 2 microns. Thus, the grid polarizer 22 can be thin for compact applications, and can be thinner than many multi-layered stretched film polarizers that have hundreds of layers.
It is believed that the birefringent characteristic of the film layers, and the different refractive indices of adjacent film layers, causes the grid polarizer 22 to substantially separate polarization orientations of incident light, substantially reflecting light of s-polarization orientation, and substantially transmitting or passing light of p-polarization orientation. In addition, it is believed that the number of film layers, thickness of the film layers, and refractive indices of the film layers can be adjusted to vary the performance characteristics of the grid polarizer.
Referring to
In one aspect, the continuous layers can be formed of a material that is naturally birefringent, as opposed to form birefringent. Thus, the entire stack of thin film layers can be birefringent, without having to form ribs in the layers of naturally birefringent material.
Referring to
Referring to
Referring to
Referring to
The array of inorganic, dielectric ribs 30 of the grid polarizer 22 and the array of dielectric ribs 26 of the diffraction grating 18 can be substantially parallel with one another, as shown. In other words, the ribs 30 can be parallel with the ribs 26. As stated above, the period PGD of the diffraction grating 18 can be greater than the period PGP of the grid polarizer 22. It is believed that a diffraction grating period PGD approximately five times greater (PGD≈5 PGP) than the grid polarizer period PGP will provide adequate diffraction of the light with s-polarization orientation or adequate reduction of light with the s-polarization orientation of zero-order. The arrays of both the ribs can be aligned so that the period of one begins at the period of another, as shown. Alternatively, the arrays can be staggered so that the starting period of one does not correspond to the other.
Referring to
The ribs 26 of the diffraction grating 18 and the ribs 30 of the grid polarizer 22 can form periodic structures or discontinuous layers with spaces between the ribs. The spaces between the ribs can contain a material different than the material of the ribs or wires. For example, the spaces between the ribs 30 can be filed with a dielectric material. As another example, a device 10f can have the lower layer 52f extend into the spaces between the ribs 30 of the grid polarizer 22, as shown in
The grid polarizer 22 can include, or the ribs 30 and optical stack 14 can be supported by, a substrate 38. The ribs 30 can be formed or deposited on the substrate, such as by using a lithography process. The other layers can be formed or deposited over the wires. Similarly, the ribs 26 can be formed using a lithography process.
As stated above, such a polarizer device (represented by 10a) described above can be utilized in an image or projection display system. Referring to
A polarizer device (represented by 10a) can be utilized as an analyzer, post polarizer, or clean-up polarizer, and disposed between the recombination prism and the LCOS/WGP-PBS pair, or immediately subsequent to the WGP-PBS 88 or image assimilator 92 in the optical path. Thus, the polarizer device 10a can further analyze or clean-up the image beam reflected from the WGP-PBS to further improve contrast, particularly for certain wavelength, such as the blue color channel. In addition, as described above, the polarizer device 10a also substantially diffracts light of the s-polarization orientation, and substantially reduces back reflection of light of the s-polarization of the zero-order, and thus reduces ghost images in the system. In addition, the polarizer device 10a can be oriented orthogonal to the incident light to maintain a compact design. Therefore, the polarizer device 10a can be configured or oriented in a projection system to be orthogonal or normal to the optical path, both efficiently utilizing space and reducing unwanted astigmatism, and reducing back reflection and ghost images.
In addition, a polarizer device (represented by 10a) can be disposed in other locations where a polarizer can be used, such as in the light source, the beam shaping optics, after the beam shaping optics, and/or before the LCOS/WGP-PBS pair as a pre-polarizer. For example, the polarizer device 10a can be disposed prior to the WGP-PBS 88. Again, the polarizer device 10a can both polarize (or further polarize) the incident light and reduce back reflection in the optical path.
Referring to
At least one beam splitter 88b can be disposable in one of the color light beams to transmit a polarized color light beam. The beam splitter 88b can be an inorganic, dielectric grid polarizer, as described in U.S. patent application Ser. No. 11/469,210, filed Aug. 31, 2006. Alternatively, the beam splitter can be a wire-grid polarizer. At least one reflective spatial light modulator 84, such as an LCOS panel, can be disposable in the polarized color light beam to encode image information thereon to produce an image bearing color light beam. The beam splitter 88b can be disposable in the image bearing color light beam to separate the image information and to reflect a polarized image bearing color light beam. As shown, three beam splitters 88b and three spatial light modulators 84 can be used, one for each color of light (blue, green, red). The polarized image bearing color light beams can be combined with an image combiner, such as an X-cube or recombination prism 96. Projection optics 120 can be disposable in the polarized image bearing color light beam to project the image on a screen 124.
A polarizer device (represented by 10a) can be utilized as an analyzer, post polarizer, or clean-up polarizer, as described above. The projection display system 80b can be a three-channel or three-color system which separates and treats three different color beams, such as red, green and blue, as described above. Thus, the system can use at least three polarizer devices 10a. The polarizer devices 10a can be the same and can be configured to operate across the visible spectrum. Alternatively, two or more of the polarizer devices 10a may be tuned to operate with a particular color or wavelength of light. For example, the display system 80b can have two or three different polarizer devices each configured or tuned to operate with one or two colors or wavelengths.
The polarizer devices 10a can face, or can have an image side that faces the incoming direction of the light or beam.
The polarizer device 10a of the present invention reduces heat transfer associated with conductive materials. Thus, it is believed that the polarizer device can be disposed adjacent to, or even abutting to, other components without transferring as much heat to those components. In addition, use of the polarizer device is believed to reduce thermal stress induced birefringence.
Referring to
As described above, the reflective spatial light modulator 84 can be configured to selectively encode image information on a polarized incident light beam to encode image information on a reflected beam. The beam splitter 88b can be disposed adjacent the reflective spatial light modulator to provide the polarized incident light beam to the reflective spatial light modulator, and to separate the image information from the reflected beam.
Although a three-channel, or three-color, projection system has been described above, it will be appreciated that a display system 150, 150b, 160, 164 or 164b can have a single channel, as shown in
Although a projection system and modulation optical system were shown in
Referring to
Various aspects of projection display systems with wire-grid polarizers or wire-grid polarizing beam splitters are shown in U.S. Pat. Nos. 6,234,634; 6,447,120; 6,666,556; 6,585,378; 6,909,473; 6,900,866; 6,982,733; 6,954,245; 6,897,926; 6,805,445; 6,769,779 and U.S. patent application Ser. Nos. 10/812,790; 11/048,675; 11/198,916; 10/902,319; which are herein incorporated by reference.
Although a rear projection system has been described herein it will be appreciated that a projection system can be of any type, including a front projection system.
The above descriptions of the grid polarizer and various applications have been directed to visible light (˜400 nm-˜700 nm). It will be appreciated, however, that a grid polarizer can be configured for use in infrared light (>˜700 nm) and ultra-violet light (<˜400 nm) and related applications. Such a grid polarizer can have a larger period and thicker layers.
While the forgoing examples are illustrative of the principles of the present invention in one or more particular applications, it will be apparent to those of ordinary skill in the art that numerous modifications in form, usage and details of implementation can be made without the exercise of inventive faculty, and without departing from the principles and concepts of the invention. Accordingly, it is not intended that the invention be limited, except as by the claims set forth below.
This is a continuation-in-part of U.S. patent application Ser. No. 11/640,112 filed Dec. 15, 2006, which is a continuation-in-part of U.S. patent application Ser. No. 11/005,927 filed Dec. 6, 2004, U.S. Pat. No. 7,570,424, which is herein incorporated by reference. This is a continuation-in-part of U.S. patent application Ser. Nos. 11/469,210; 11/469,226; 11/469,241 (abandon); 11/469,253 abandon and 11/469,266 (abandon), filed Aug. 31, 2006; which are herein incorporated by reference. This is related to U.S. patent application Ser. Nos. 11/475,857 and 11/478,459, filed Jun. 26, 2006; which are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2224214 | Brown | Dec 1940 | A |
2237567 | Land | Apr 1941 | A |
2287598 | Brown | Jun 1942 | A |
2391451 | Fischer | Dec 1945 | A |
2403731 | MacNeille | Jul 1946 | A |
2605352 | Fishcer | Jul 1952 | A |
2748659 | Geffcken et al. | Jun 1956 | A |
2813146 | Glenn | Nov 1957 | A |
2815452 | Mertz | Dec 1957 | A |
2887566 | Marks | May 1959 | A |
3046839 | Bird et al. | Jul 1962 | A |
3084590 | Glenn, Jr. | Apr 1963 | A |
3202039 | Lang et al. | Aug 1965 | A |
3235630 | Doherty et al. | Feb 1966 | A |
3291550 | Bird et al. | Dec 1966 | A |
3436143 | Garrett | Apr 1969 | A |
3479168 | Bird et al. | Nov 1969 | A |
3536373 | Bird et al. | Oct 1970 | A |
3566099 | Makas | Feb 1971 | A |
3627431 | Komarniski | Dec 1971 | A |
3631288 | Rogers | Dec 1971 | A |
3731986 | Fergason | May 1973 | A |
3857627 | Harsch | Dec 1974 | A |
3857628 | Strong | Dec 1974 | A |
3876285 | Schwarzmüller | Apr 1975 | A |
3877789 | Marie | Apr 1975 | A |
3912369 | Kashnow | Oct 1975 | A |
3969545 | Slocum | Jul 1976 | A |
4009933 | Firester | Mar 1977 | A |
4025164 | Doriguzzi et al. | May 1977 | A |
4025688 | Nagy et al. | May 1977 | A |
4049944 | Garvin et al. | Sep 1977 | A |
4068260 | Ohneda et al. | Jan 1978 | A |
4073571 | Grinberg et al. | Feb 1978 | A |
4104598 | Abrams | Aug 1978 | A |
4181756 | Fergason | Jan 1980 | A |
4220705 | Sugibuchi et al. | Sep 1980 | A |
4221464 | Pedinoff et al. | Sep 1980 | A |
4268127 | Oshima et al. | May 1981 | A |
4289381 | Garvin et al. | Sep 1981 | A |
4294119 | Soldner | Oct 1981 | A |
4308079 | Venables et al. | Dec 1981 | A |
4441791 | Hornbeck | Apr 1984 | A |
4456515 | Krueger et al. | Jun 1984 | A |
4466704 | Schuler et al. | Aug 1984 | A |
4492432 | Kaufmann et al. | Jan 1985 | A |
4512638 | Sriram et al. | Apr 1985 | A |
4514479 | Ferrante | Apr 1985 | A |
4515441 | Wentz | May 1985 | A |
4515443 | Bly | May 1985 | A |
4532619 | Sugiyama et al. | Jul 1985 | A |
4560599 | Regen | Dec 1985 | A |
4679910 | Efron et al. | Jul 1987 | A |
4688897 | Grinberg et al. | Aug 1987 | A |
4701028 | Clerc et al. | Oct 1987 | A |
4711530 | Nakanowatari et al. | Dec 1987 | A |
4712881 | Shurtz et al. | Dec 1987 | A |
4724436 | Johansen et al. | Feb 1988 | A |
4743092 | Pistor | May 1988 | A |
4743093 | Oinen | May 1988 | A |
4759611 | Downey, Jr. | Jul 1988 | A |
4759612 | Nakatsuka et al. | Jul 1988 | A |
4795233 | Chang | Jan 1989 | A |
4799776 | Yamazaki et al. | Jan 1989 | A |
4818076 | Heppke et al. | Apr 1989 | A |
4840757 | Blenkhorn | Jun 1989 | A |
4865670 | Marks | Sep 1989 | A |
4895769 | Land et al. | Jan 1990 | A |
4904060 | Grupp | Feb 1990 | A |
4913529 | Goldenberg et al. | Apr 1990 | A |
4915463 | Barbee, Jr. | Apr 1990 | A |
4939526 | Tsuda | Jul 1990 | A |
4946231 | Pistor | Aug 1990 | A |
4966438 | Mouchart et al. | Oct 1990 | A |
4991937 | Urino | Feb 1991 | A |
5029988 | Urino | Jul 1991 | A |
5039185 | Uchida et al. | Aug 1991 | A |
5061050 | Ogura | Oct 1991 | A |
5087985 | Kitaura et al. | Feb 1992 | A |
5092774 | Milan | Mar 1992 | A |
5113285 | Franklin et al. | May 1992 | A |
5122887 | Mathewson | Jun 1992 | A |
5122907 | Slocum | Jun 1992 | A |
5139340 | Okumura | Aug 1992 | A |
5157526 | Kondo et al. | Oct 1992 | A |
5177635 | Keilmann | Jan 1993 | A |
5196926 | Lee | Mar 1993 | A |
5196953 | Yeh et al. | Mar 1993 | A |
5204765 | Mitsui et al. | Apr 1993 | A |
5206674 | Puech et al. | Apr 1993 | A |
5216539 | Boher et al. | Jun 1993 | A |
5222907 | Katabuchi et al. | Jun 1993 | A |
5225920 | Kasazumi et al. | Jul 1993 | A |
5235443 | Barnik et al. | Aug 1993 | A |
5235449 | Imazeki et al. | Aug 1993 | A |
5239322 | Takanashi et al. | Aug 1993 | A |
5245471 | Iwatsuka et al. | Sep 1993 | A |
5279689 | Shvartsman | Jan 1994 | A |
5295009 | Barnik et al. | Mar 1994 | A |
5298199 | Hirose et al. | Mar 1994 | A |
5305143 | Taga et al. | Apr 1994 | A |
5325218 | Willett et al. | Jun 1994 | A |
5333072 | Willett | Jul 1994 | A |
5349192 | Mackay | Sep 1994 | A |
5357370 | Miyatake et al. | Oct 1994 | A |
5383053 | Hegg et al. | Jan 1995 | A |
5387953 | Minoura et al. | Feb 1995 | A |
5391091 | Nations | Feb 1995 | A |
5422756 | Weber | Jun 1995 | A |
5436761 | Kamon | Jul 1995 | A |
5455589 | Huguenin et al. | Oct 1995 | A |
5466319 | Zager et al. | Nov 1995 | A |
5477359 | Okazaki | Dec 1995 | A |
5485499 | Pew et al. | Jan 1996 | A |
5486935 | Kalmanash | Jan 1996 | A |
5486949 | Schrenk et al. | Jan 1996 | A |
5490003 | Van Sprang | Feb 1996 | A |
5499126 | Abileah et al. | Mar 1996 | A |
5504603 | Winker et al. | Apr 1996 | A |
5506704 | Broer et al. | Apr 1996 | A |
5508830 | Imoto et al. | Apr 1996 | A |
5510215 | Prince et al. | Apr 1996 | A |
5513023 | Fritz et al. | Apr 1996 | A |
5513035 | Miyatake et al. | Apr 1996 | A |
5517356 | Araujo et al. | May 1996 | A |
5535047 | Hornbeck | Jul 1996 | A |
5548427 | May | Aug 1996 | A |
5555186 | Shioya | Sep 1996 | A |
5557343 | Yamagishi | Sep 1996 | A |
5559634 | Weber | Sep 1996 | A |
5570213 | Ruiz et al. | Oct 1996 | A |
5570215 | Omae et al. | Oct 1996 | A |
5574580 | Ansley | Nov 1996 | A |
5576854 | Schmidt et al. | Nov 1996 | A |
5579138 | Sannohe et al. | Nov 1996 | A |
5594561 | Blanchard | Jan 1997 | A |
5600383 | Hornbeck | Feb 1997 | A |
5609939 | Petersen et al. | Mar 1997 | A |
5612820 | Schrenk et al. | Mar 1997 | A |
5619352 | Koch et al. | Apr 1997 | A |
5619356 | Kozo et al. | Apr 1997 | A |
5620755 | Smith, Jr. et al. | Apr 1997 | A |
5626408 | Heynderickx et al. | May 1997 | A |
5638197 | Gunning, III et al. | Jun 1997 | A |
5652667 | Kurogane | Jul 1997 | A |
5658060 | Dove | Aug 1997 | A |
5686979 | Weber et al. | Nov 1997 | A |
5706063 | Hong | Jan 1998 | A |
5719695 | Heimbuch | Feb 1998 | A |
5731246 | Bakeman, Jr. et al. | Mar 1998 | A |
5748368 | Tamada et al. | May 1998 | A |
5748369 | Yokota | May 1998 | A |
5751388 | Larson | May 1998 | A |
5751466 | Dowling et al. | May 1998 | A |
5767827 | Kobayashi et al. | Jun 1998 | A |
5798819 | Hattori et al. | Aug 1998 | A |
5808795 | Shimomura et al. | Sep 1998 | A |
5826959 | Atsuchi | Oct 1998 | A |
5826960 | Gotoh et al. | Oct 1998 | A |
5828489 | Johnson et al. | Oct 1998 | A |
5833360 | Knox et al. | Nov 1998 | A |
5838403 | Jannson et al. | Nov 1998 | A |
5841494 | Hall | Nov 1998 | A |
5844722 | Stephens et al. | Dec 1998 | A |
5886754 | Kuo | Mar 1999 | A |
5890095 | Barbour et al. | Mar 1999 | A |
5898521 | Okada | Apr 1999 | A |
5899551 | Neijzen et al. | May 1999 | A |
5900976 | Handschy et al. | May 1999 | A |
5907427 | Scalora et al. | May 1999 | A |
5912762 | Li et al. | Jun 1999 | A |
5914818 | Tejada et al. | Jun 1999 | A |
5917562 | Woodgate et al. | Jun 1999 | A |
5918961 | Ueda | Jul 1999 | A |
5930050 | Dewald | Jul 1999 | A |
5943171 | Budd et al. | Aug 1999 | A |
5958345 | Turner et al. | Sep 1999 | A |
5965247 | Jonza et al. | Oct 1999 | A |
5969861 | Ueda et al. | Oct 1999 | A |
5973833 | Booth et al. | Oct 1999 | A |
5978056 | Shintani et al. | Nov 1999 | A |
5982541 | Li et al. | Nov 1999 | A |
5986730 | Hansen et al. | Nov 1999 | A |
5991075 | Katsuragawa et al. | Nov 1999 | A |
5991077 | Carlson et al. | Nov 1999 | A |
6005918 | Harris et al. | Dec 1999 | A |
6008951 | Anderson | Dec 1999 | A |
6010121 | Lee | Jan 2000 | A |
6016173 | Crandall | Jan 2000 | A |
6018841 | Kelsay et al. | Feb 2000 | A |
6053616 | Fujimori et al. | Apr 2000 | A |
6055103 | Woodgate et al. | Apr 2000 | A |
6056407 | Iinuma et al. | May 2000 | A |
6062694 | Oikawa et al. | May 2000 | A |
6075235 | Chun | Jun 2000 | A |
6081312 | Aminaka et al. | Jun 2000 | A |
6081376 | Hansen et al. | Jun 2000 | A |
6082861 | Dove et al. | Jul 2000 | A |
6089717 | Iwai | Jul 2000 | A |
6096155 | Harden et al. | Aug 2000 | A |
6096375 | Ouderkirk et al. | Aug 2000 | A |
6108131 | Hansen et al. | Aug 2000 | A |
6122103 | Perkins et al. | Sep 2000 | A |
6141075 | Ohmuro et al. | Oct 2000 | A |
6147728 | Okumura et al. | Nov 2000 | A |
6172813 | Tadic-Galeb et al. | Jan 2001 | B1 |
6172816 | Tadic-Galeb et al. | Jan 2001 | B1 |
6181386 | Knox | Jan 2001 | B1 |
6208463 | Hansen et al. | Mar 2001 | B1 |
6215547 | Ramanujan et al. | Apr 2001 | B1 |
6234634 | Hansen et al. | May 2001 | B1 |
6243199 | Hansen et al. | Jun 2001 | B1 |
6247816 | Cipolla et al. | Jun 2001 | B1 |
6249378 | Shimamura et al. | Jun 2001 | B1 |
6250762 | Kuijper | Jun 2001 | B1 |
6282025 | Huang et al. | Aug 2001 | B1 |
6288840 | Perkins et al. | Sep 2001 | B1 |
6310345 | Pittman et al. | Oct 2001 | B1 |
6339454 | Knox | Jan 2002 | B1 |
6340230 | Bryars et al. | Jan 2002 | B1 |
6345895 | Maki et al. | Feb 2002 | B1 |
6348995 | Hansen et al. | Feb 2002 | B1 |
6375330 | Mihalakis | Apr 2002 | B1 |
6398364 | Bryars | Jun 2002 | B1 |
6406151 | Fujimori | Jun 2002 | B1 |
6409525 | Hoelscher et al. | Jun 2002 | B1 |
6424436 | Yamanaka | Jul 2002 | B1 |
6426837 | Clark et al. | Jul 2002 | B1 |
6447120 | Hansen et al. | Sep 2002 | B1 |
6452724 | Hansen et al. | Sep 2002 | B1 |
6460998 | Watanabe | Oct 2002 | B1 |
6486997 | Bruzzone et al. | Nov 2002 | B1 |
6496239 | Seiberle | Dec 2002 | B2 |
6496287 | Seiberle et al. | Dec 2002 | B1 |
6511183 | Shimizu et al. | Jan 2003 | B2 |
6520645 | Yamamoto et al. | Feb 2003 | B2 |
6532111 | Kurtz et al. | Mar 2003 | B2 |
6547396 | Svardal et al. | Apr 2003 | B1 |
6580471 | Knox | Jun 2003 | B2 |
6583930 | Schrenk et al. | Jun 2003 | B1 |
6585378 | Kurtz et al. | Jul 2003 | B2 |
6624936 | Kotchick et al. | Sep 2003 | B2 |
6643077 | Magarill et al. | Nov 2003 | B2 |
6661475 | Stahl et al. | Dec 2003 | B1 |
6661484 | Iwai et al. | Dec 2003 | B1 |
6665119 | Kurtz et al. | Dec 2003 | B1 |
6666556 | Hansen et al. | Dec 2003 | B2 |
6669343 | Shahzad et al. | Dec 2003 | B2 |
6698891 | Kato | Mar 2004 | B2 |
6704469 | Xie et al. | Mar 2004 | B1 |
6710921 | Hansen et al. | Mar 2004 | B2 |
6714350 | Silverstein et al. | Mar 2004 | B2 |
6721096 | Bruzzone et al. | Apr 2004 | B2 |
6764181 | Magarill et al. | Jul 2004 | B2 |
6769779 | Ehrne et al. | Aug 2004 | B1 |
6781640 | Huang | Aug 2004 | B1 |
6785050 | Lines et al. | Aug 2004 | B2 |
6788461 | Kurtz et al. | Sep 2004 | B2 |
6805445 | Silverstein et al. | Oct 2004 | B2 |
6809864 | Martynov et al. | Oct 2004 | B2 |
6811274 | Olczak | Nov 2004 | B2 |
6813077 | Borrelli et al. | Nov 2004 | B2 |
6816290 | Mukawa | Nov 2004 | B2 |
6821135 | Martin | Nov 2004 | B1 |
6823093 | Chang et al. | Nov 2004 | B2 |
6829090 | Katsumata et al. | Dec 2004 | B2 |
6844971 | Silverstein et al. | Jan 2005 | B2 |
6846089 | Stevenson et al. | Jan 2005 | B2 |
6859303 | Wang et al. | Feb 2005 | B2 |
6876784 | Nikolov et al. | Apr 2005 | B2 |
6896371 | Shimizu et al. | May 2005 | B2 |
6897926 | Mi et al. | May 2005 | B2 |
6899440 | Bierhuizen | May 2005 | B2 |
6900866 | Kurtz et al. | May 2005 | B2 |
6909473 | Mi et al. | Jun 2005 | B2 |
6920272 | Wang | Jul 2005 | B2 |
6922287 | Wiki et al. | Jul 2005 | B2 |
6926410 | Weber et al. | Aug 2005 | B2 |
6927915 | Nakai | Aug 2005 | B2 |
6934082 | Allen et al. | Aug 2005 | B2 |
6954245 | Mi et al. | Oct 2005 | B2 |
6972906 | Hasman et al. | Dec 2005 | B2 |
6976759 | Magarill et al. | Dec 2005 | B2 |
6981771 | Arai et al. | Jan 2006 | B1 |
7013064 | Wang | Mar 2006 | B2 |
7023512 | Kurtz et al. | Apr 2006 | B2 |
7023602 | Aastuen et al. | Apr 2006 | B2 |
7025464 | Beeson et al. | Apr 2006 | B2 |
7046422 | Kimura et al. | May 2006 | B2 |
7046441 | Huang et al. | May 2006 | B2 |
7046442 | Suganuma | May 2006 | B2 |
7050233 | Nikolov et al. | May 2006 | B2 |
7075722 | Nakai | Jul 2006 | B2 |
7113335 | Sales | Sep 2006 | B2 |
7131737 | Silverstein et al. | Nov 2006 | B2 |
7142363 | Sato et al. | Nov 2006 | B2 |
7155073 | Momoki et al. | Dec 2006 | B2 |
7158302 | Chiu et al. | Jan 2007 | B2 |
7159987 | Sakata | Jan 2007 | B2 |
7177259 | Nishi et al. | Feb 2007 | B2 |
7185984 | Akiyama | Mar 2007 | B2 |
7213920 | Matsui et al. | May 2007 | B2 |
7221420 | Silverstein et al. | May 2007 | B2 |
7221501 | Flagello et al. | May 2007 | B2 |
7230766 | Rogers | Jun 2007 | B2 |
7234816 | Bruzzone et al. | Jun 2007 | B2 |
7236655 | Momoki et al. | Jun 2007 | B2 |
7255444 | Nakashima et al. | Aug 2007 | B2 |
7256938 | Barton et al. | Aug 2007 | B2 |
20010006421 | Parriaux | Jul 2001 | A1 |
20010022687 | Takahashi et al. | Sep 2001 | A1 |
20020001128 | Moseley et al. | Jan 2002 | A1 |
20020003661 | Nakai | Jan 2002 | A1 |
20020040892 | Koyama et al. | Apr 2002 | A1 |
20020122235 | Kurtz et al. | Sep 2002 | A1 |
20020167727 | Hansen et al. | Nov 2002 | A1 |
20020176166 | Schuster | Nov 2002 | A1 |
20020181824 | Huang et al. | Dec 2002 | A1 |
20020191286 | Gale et al. | Dec 2002 | A1 |
20030058408 | Magarill et al. | Mar 2003 | A1 |
20030072079 | Silverstein et al. | Apr 2003 | A1 |
20030081178 | Shimizu et al. | May 2003 | A1 |
20030081179 | Pentico et al. | May 2003 | A1 |
20030117708 | Kane | Jun 2003 | A1 |
20030156325 | Hoshi | Aug 2003 | A1 |
20030161029 | Kurtz et al. | Aug 2003 | A1 |
20030180024 | Edlinger et al. | Sep 2003 | A1 |
20030193652 | Pentico et al. | Oct 2003 | A1 |
20030202157 | Pentico et al. | Oct 2003 | A1 |
20030218722 | Tsao et al. | Nov 2003 | A1 |
20030223118 | Sakamoto | Dec 2003 | A1 |
20030223670 | Nikolov et al. | Dec 2003 | A1 |
20040008416 | Okuno | Jan 2004 | A1 |
20040042101 | Wang et al. | Mar 2004 | A1 |
20040047039 | Wang et al. | Mar 2004 | A1 |
20040047388 | Wang et al. | Mar 2004 | A1 |
20040051928 | Mi | Mar 2004 | A1 |
20040070829 | Kurtz et al. | Apr 2004 | A1 |
20040071425 | Wang | Apr 2004 | A1 |
20040095637 | Nikolov et al. | May 2004 | A1 |
20040120041 | Silverstein et al. | Jun 2004 | A1 |
20040125449 | Sales | Jul 2004 | A1 |
20040165126 | Ooi et al. | Aug 2004 | A1 |
20040201889 | Wang et al. | Oct 2004 | A1 |
20040201890 | Crosby | Oct 2004 | A1 |
20040218270 | Wang | Nov 2004 | A1 |
20040227994 | Ma et al. | Nov 2004 | A1 |
20040233362 | Kashima | Nov 2004 | A1 |
20040240777 | Woodgate et al. | Dec 2004 | A1 |
20040258355 | Wang et al. | Dec 2004 | A1 |
20050045799 | Deng et al. | Mar 2005 | A1 |
20050046941 | Satoh et al. | Mar 2005 | A1 |
20050078374 | Taira et al. | Apr 2005 | A1 |
20050084613 | Wang et al. | Apr 2005 | A1 |
20050088739 | Chiu et al. | Apr 2005 | A1 |
20050122587 | Ouderkirk et al. | Jun 2005 | A1 |
20050128567 | Wang et al. | Jun 2005 | A1 |
20050128587 | Suganuma | Jun 2005 | A1 |
20050152033 | Kang et al. | Jul 2005 | A1 |
20050179995 | Nikolov et al. | Aug 2005 | A1 |
20050180014 | Nikolov et al. | Aug 2005 | A1 |
20050181128 | Nikolov et al. | Aug 2005 | A1 |
20050190445 | Fukuzaki | Sep 2005 | A1 |
20050195485 | Hirai et al. | Sep 2005 | A1 |
20050201656 | Nikolov et al. | Sep 2005 | A1 |
20050213043 | Nakashima et al. | Sep 2005 | A1 |
20050259324 | Flagello et al. | Nov 2005 | A1 |
20050271091 | Wang | Dec 2005 | A1 |
20050275944 | Wang et al. | Dec 2005 | A1 |
20050277063 | Wang et al. | Dec 2005 | A1 |
20060001969 | Wang et al. | Jan 2006 | A1 |
20060061862 | Mi et al. | Mar 2006 | A1 |
20060072074 | Matsui et al. | Apr 2006 | A1 |
20060072194 | Lee | Apr 2006 | A1 |
20060092513 | Momoki | May 2006 | A1 |
20060113279 | Little | Jun 2006 | A1 |
20060118514 | Little et al. | Jun 2006 | A1 |
20060119937 | Perkins et al. | Jun 2006 | A1 |
20060127829 | Deng et al. | Jun 2006 | A1 |
20060187416 | Ouchi et al. | Aug 2006 | A1 |
20060215263 | Mi et al. | Sep 2006 | A1 |
20060238715 | Hirata et al. | Oct 2006 | A1 |
20060268207 | Tan et al. | Nov 2006 | A1 |
20070146644 | Mi et al. | Jun 2007 | A1 |
20070183035 | Asakawa et al. | Aug 2007 | A1 |
20070195676 | Hendriks et al. | Aug 2007 | A1 |
20070217008 | Wang et al. | Sep 2007 | A1 |
20070223349 | Shimada et al. | Sep 2007 | A1 |
20070242187 | Yamaki et al. | Oct 2007 | A1 |
20070242228 | Chen et al. | Oct 2007 | A1 |
20070242352 | MacMaster | Oct 2007 | A1 |
Number | Date | Country |
---|---|---|
2003267964 | Dec 2003 | AU |
0296391 | Feb 1954 | CH |
03815026.3 | Aug 2005 | CN |
1692291 | Nov 2005 | CN |
03814105.1 | Nov 2005 | CN |
416157 | Jul 1925 | DE |
296391 | Feb 1950 | DE |
3707984 | Sep 1988 | DE |
103 27 963 | Jan 2005 | DE |
0336334 | Oct 1989 | EP |
0349309 | Jan 1990 | EP |
0357946 | Mar 1990 | EP |
407830 | Jan 1991 | EP |
416157 | Mar 1991 | EP |
0488544 | Jun 1992 | EP |
0507445 | Oct 1992 | EP |
0518111 | Dec 1992 | EP |
0543061 | May 1993 | EP |
566 004 | Oct 1993 | EP |
0588937 | Mar 1994 | EP |
0606940 | Jul 1994 | EP |
0349144 | Sep 1994 | EP |
0634674 | Jan 1995 | EP |
0670506 | Sep 1995 | EP |
0521591 | Oct 1995 | EP |
0731456 | Sep 1996 | EP |
0744634 | Nov 1996 | EP |
56156815 | Dec 1981 | JP |
02-308106 | Dec 1990 | JP |
3005706 | Jan 1991 | JP |
04 366916 | Jun 1991 | JP |
4-12241 | Jan 1992 | JP |
5134115 | May 1993 | JP |
5288910 | Nov 1993 | JP |
7005316 | Jan 1995 | JP |
7-146469 | Jun 1995 | JP |
9090122 | Apr 1997 | JP |
9090129 | Apr 1997 | JP |
9178943 | Jul 1997 | JP |
09-507926 | Aug 1997 | JP |
9288211 | Nov 1997 | JP |
10-003078 | Jan 1998 | JP |
10073722 | Mar 1998 | JP |
10084502 | Mar 1998 | JP |
10-153706 | Jun 1998 | JP |
10-260403 | Sep 1998 | JP |
10-268301 | Oct 1998 | JP |
11142650 | May 1999 | JP |
11237507 | Aug 1999 | JP |
11-306581 | Nov 1999 | JP |
2000-147487 | May 2000 | JP |
2000284117 | Oct 2000 | JP |
2001074935 | Mar 2001 | JP |
2004157159 | Jun 2004 | JP |
2004309903 | Nov 2004 | JP |
2005513547 | May 2005 | JP |
2005195824 | Jul 2005 | JP |
2005534981 | Nov 2005 | JP |
2006047813 | Feb 2006 | JP |
2006201540 | Aug 2006 | JP |
10-2003-0079268 | Oct 2003 | KR |
10-2003-0090021 | Nov 2003 | KR |
10-2004-0046137 | Jun 2004 | KR |
1781659 | Dec 1992 | RU |
1283685 | Jan 1987 | SU |
WO9615474 | May 1996 | WO |
WO 9701788 | Jan 1997 | WO |
WO0070386 | Nov 2000 | WO |
WO0189677 | Apr 2001 | WO |
WO03054619 | Jul 2003 | WO |
WO03102652 | Dec 2003 | WO |
WO03107046 | Dec 2003 | WO |
WO2004013684 | Feb 2004 | WO |
WO2004019070 | Mar 2004 | WO |
WO2004072692 | Aug 2004 | WO |
WO2005019503 | Mar 2005 | WO |
WO2005065182 | Jul 2005 | WO |
WO2005079233 | Sep 2005 | WO |
WO2005101112 | Oct 2005 | WO |
WO2005123277 | Dec 2005 | WO |
WO2006014408 | Feb 2006 | WO |
WO2006036546 | Apr 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20070165307 A1 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11640112 | Dec 2006 | US |
Child | 11669765 | US | |
Parent | 11005927 | Dec 2004 | US |
Child | 11640112 | US | |
Parent | 11669765 | US | |
Child | 11640112 | US | |
Parent | 11469210 | Aug 2006 | US |
Child | 11669765 | US | |
Parent | 11469226 | Aug 2006 | US |
Child | 11469210 | US | |
Parent | 11469241 | Aug 2006 | US |
Child | 11469226 | US | |
Parent | 11469253 | Aug 2006 | US |
Child | 11469241 | US | |
Parent | 11469266 | Aug 2006 | US |
Child | 11469253 | US |