Inorganic fiber composition

Information

  • Patent Grant
  • 5332699
  • Patent Number
    5,332,699
  • Date Filed
    Friday, April 23, 1993
    31 years ago
  • Date Issued
    Tuesday, July 26, 1994
    30 years ago
Abstract
Inorganic fibers which have a silicon extraction of greater than about 0.02 wt % Si/day in physiological saline solutions. The fiber contains SiO.sub.2, MgO, CaO, and at least one of Al.sub.2 O.sub.3, ZrO.sub.2, TiO.sub.2, B.sub.2 O.sub.3, iron oxides, or mixtures thereof. Also disclosed are inorganic fibers which have diameters of less than 3.5 microns and which pass the ASTM E-119 two hour fire test when processed into a fiber blanket having a bulk density in the range of about 1.5 to 3 pcf.
Description

FIELD OF THE INVENTION
This invention relates to inorganic fiber compositions and more particularly it relates to inorganic fiber compositions which can contain silica, magnesia, calcium oxide, alumina, and other oxides. Some of the inventive fibers have excellent fire ratings, some have especially low durabilities in physiological saline solutions, and some have combinations of these foregoing properties.
BACKGROUND OF THE INVENTION
For many years inorganic fibers, generically referred to in the industry as "mineral wool fibers", made from slag, rock, fly ash, and other by-product raw materials have been manufactured. These fibers have been typically manufactured by melting the slag, rock, etc., containing such oxides as silica, alumina, iron oxide (ferrous and ferric), calcium oxide, and magnesia; allowing the molten material to be blown by gas or steam or to impinge on rotors at high speeds; and causing the resulting blown or spun fibers to be accumulated on a collecting surface. These fibers are then used in bulk or in the form of mats, blankets, and the like as both low and high temperature insulation. U.S. Pat. No. 2,576,312 discloses a conventional mineral wool composition and method for making the same.
In the past, the industry has well recognized the standard drawbacks associated with conventional mineral wool fibers. Conventional mineral wool fibers may have high contents of undesired oxides which often detract from their refractory properties. The conventional mineral wools are coarse, i.e. they have average fiber diameters of 4 to 5 microns (measured microscopically) and have high shot contents in the range of 30 to 50 weight percent. The coarseness of the fiber reduces the insulating value of the fiber and makes conventional mineral wool unpleasant to handle and unfriendly to the touch. For example, because of their coarse fiber diameters, conventional mineral wool blankets must have bulk densities of from 4 to 8 pcr and even higher in order to pass the ASTM E-119 two hour fire test. On the other hand, fiber glass blankets are often made with bulk densities of 2 pcf or lower. While the fiber glass blankets are friendly because of their low bulk densities and relatively fine fiber diameter, they do not have sufficient fire resistance so as to pass even the one hour ASTM E-119 fire test.
Recently, another potential problem with traditional mineral wool and other types of fiber has been recognized. It is well known that inhalation of certain types of fiber can lead to elevated incidence of respiratory disease, including cancers of the lung and surrounding body tissue. Several occurrences are well-documented in humans for several types of asbestos fiber. Although for other varieties of natural and manmade mineral fiber direct and unequivocal evidence for respiratory disease is lacking, the potential for such occurrence has been inferred from results of tests on laboratory animals. In the absence or insufficiency of direct human epidemiclogical data, results from fiber inhalation or implantation studies on animals provides the best "baseline information" from which to extrapolate disease potential.
Chronic toxicological studies on animals have, however, been able to statistically demonstrate the importance of three key factors that relate directly to the potential for respiratory disease and especially carcinoma: (a) dose of fiber received (including time of exposure); (b) dimension of the inhaled fiber; and (c) persistence of the fiber within the lung. The effects of dose and dimension have been well-characterized from such studies and as a result are fairly well known in regard to human disease potential. The dose is obviously a product of the environment in which the fiber is used and the manner in which it is used. The dimension and persistence of the fiber within the lung, on the other hand, are functions of the manner in which the fiber is formed and of its chemical composition. In general, the smaller the fiber the more likely that it will become embedded in lung tissue when inhaled, thus increasing the danger of respiratory disease.
Although less is known about the link between persistence of the fiber within the lung and respiratory disease, increasing attention is being focused on this aspect of the health issue. Biological persistence refers to the length of time a fiber endures as an entity within the body. The physiochemical concept that most closely relates to persistence and is perhaps more easily quantified is that of "durability"--specifically, the chemical solubility (or resistance to solubility) of fibers in body fluids and the tendency of such fibers to maintain physical integrity within such an environment. In general, the less durable a fiber is, the less will be the potential health risk associated with the inhalation of that fiber. One method of measuring the chemical durability of a fiber in body fluids is to measure its durability in physiological saline solutions. This can be done by quantifying the rate of extraction of a chemical component of the fiber such as silicon into the physiological saline solution over a certain period of time.
Thus, as can be easily concluded from the foregoing discussion, conventional mineral wool fibers have several serious drawbacks. However, even the alternatives to mineral wools have problems. For example, as mentioned earlier glass fibers have a fire resistance problem and whereas the refractory ceramic fibers have been gaining increasing use in recent years as an alternative to mineral wool fibers because of their ultra-high temperature resistance and superior ability to pass all fire rating tests, their use is limited by the fact that they are relatively expensive and have a relatively high chemical durability in physiological saline solutions as well.
In conclusion, there is a great need in the industry for low cost, friendly feeling low bulk density inorganic fibers which have good fire resistance properties as measured by their ability to pass the ASTM E-119 two hour fire test. Additionally, there is a tremendous demand for fibers which have especially low durabilities in physiological saline solutions. What would be particularly advantageous to the industry would be fibers with combinations of the above mentioned sought after properties. Also advantageous would be fibers which also have excellent refractory properties as well, e.g. high continuous service temperatures.
SUMMARY OF THE INVENTION
In one embodiment of the present invention there are provided inorganic fibers having a silicon extraction of greater than about 0.02 wt % Si/day in physiological saline solutions and a composition consisting essentially of about 0-10 wt % of either Al.sub.2 O.sub.3, ZrO.sub.2, TiO.sub.2, B.sub.2 O.sub.3, iron oxides, or mixtures thereof; 35-70 wt % SiO.sub.2 ; 0-50 wt % MgO; and CaO.
In another embodiment of the present invention, there are provided inorganic fibers which have a 5 hour silicon extraction in physiological saline solutions of at least about 10 ppm. These fibers can broadly have compositions consisting essentially of the following ingredients at the indicated weight percentage levels:
0-1.5 wt % of either Al.sub.2 O.sub.3, ZrO.sub.2, TiO.sub.2, B.sub.2 O.sub.3, iron oxides, or mixtures thereof; 40-70 wt % SiO.sub.2 ; 0-50 wt % MgO; and CaO
1.5-3 wt % of either Al.sub.2 O.sub.3, ZrO.sub.2, TiO.sub.2, B.sub.2 O.sub.3, iron oxides, or mixtures thereof; 40-66 wt % SiO.sub.2 ; 0-50 wt % MgO; and CaO
3-4 wt % of either Al.sub.2 O.sub.3, ZrO.sub.2, TiO.sub.2, B.sub.2 O.sub.3, iron oxides, or mixtures thereof; 40-63 wt % SiO.sub.2 ; 0-50 wt % MgO; and CaO
4-6 wt % of either Al.sub.2 O.sub.3, ZrO.sub.2, TiO.sub.2, B.sub.2 O.sub.3, iron oxides, or mixtures thereof; 40-59 wt % SiO.sub.2 ; 0-25 wt % MgO; and CaO
6-8 wt % of either Al.sub.2 O.sub.3, ZrO.sub.2, TiO.sub.2, B.sub.2 O.sub.3, iron oxides, or mixtures thereof; 35-54 wt % SiO.sub.2 ; 0-25 wt % MgO; and CaO
8-10 wt % of either Al.sub.2 O.sub.3, ZrO.sub.2, TiO.sub.2, B.sub.2 O.sub.3, iron oxides, or mixtures thereof; 35-45 wt % SiO.sub.2 ; 0-20 wt % MgO; and CaO
In a preferred embodiment, inventive fibers with 5 hour silicon extractions of greater than about 20 ppm and most preferably greater than about 50 ppm are provided.
In another embodiment of the present invention there are provided inorganic fibers having a diameter of less than 3.5 microns and which pass the ASTM E-119 two hour fire test when processed into a fiber blanket having a bulk density in the range of about 1.5 to 3 pcf and having a composition consisting essentially of about: 0-10 wt % of either Al.sub.2 O.sub.3, ZrO.sub.2, TiO.sub.2, B.sub.2 O.sub.3, iron oxides, or mixtures thereof; 58-70 wt % SiO.sub.2 ; 0-21 wt % MgO; 0-2 wt % alkali metal oxides; and CaO and wherein the amount of alumina+zirconia is less than 6 wt % and the amount of iron oxides or alumina+iron oxides is less than 2 wt %. Preferably, the inventive fibers in this embodiment may have compositions consisting essentially of about:
0-1.5 wt % of either Al.sub.2 O.sub.3, ZrO.sub.2, TiO.sub.2, B.sub.2 O.sub.3, iron oxides, or mixtures thereof; 58.5-70 wt % SiO.sub.2 ; 0-21 wt % MgO; 0-2 wt % alkali metal oxides; and CaO
greater than 1.5 wt % up to and including 3 wt % of either Al.sub.2 O.sub.3, ZrO.sub.2, TiO.sub.2, B.sub.2 O.sub.3,iron oxides, or mixtures thereof; 58.5-66 wt % SiO.sub.2 ; 0-21 wt % MgO; 0-2 wt % alkali metal oxides; and CaO
greater than 3 wt % up to and including 4 wt % of either Al.sub.2 O.sub.3, ZrO.sub.2, TiO.sub.2, B.sub.2 O.sub.3, iron oxides or mixtures thereof; 58-63 wt % SiO.sub.2 ; 0-8 wt % MgO; 0-2 wt % alkali metal oxides; and CaO
greater than 4 wt % up to and including 6 wt % of either Al.sub.2 O.sub.3, ZrO.sub.2, TiO.sub.2, B.sub.2 O.sub.3, iron oxides, or mixtures thereof; 58-59 wt % SiO.sub.2 ; 0-7 wt % MgO; 0-2 wt % alkali metal oxides; and CaO.
As discussed herein earlier, there has been a demand in the industry for inorganic fibers with an excellent fire rating at low bulk densities and fibers with especially low chemical durabilities in physiological saline solutions. Therefore, each category of inventive fibers should fulfill a real need in the industry and should be available for applications where heretofore low cost, mineral wool type fibers have not been available. What is particularly advantageous about the present invention is the fact that fibers are provided where a special demand exists, i.e. applications in the industry where fibers with both an excellent fire rating and an especially low durability in physiological saline solutions are in demand.
Other features and aspects, as well as the various benefits and advantages, of the present invention will be made clear in the more detailed description which follows.





DETAILED DESCRIPTION OF THE INVENTION
The inventive fiber compositions of the present invention can be made from either pure metal oxides or less pure raw materials which contain the desired metal oxides. Table I herein gives an analysis of some of the various raw materials which can be used to make inventive fiber compositions. Physical variables of the raw materials such as particle size may be chosen on the basis of cost, handleability, and similar considerations.
Except for melting, the inventive fibers are formed in conventional inorganic fiber forming equipment and by using standard inorganic fiber forming techniques as known to those skilled in the art. Preferably, production will entail electric furnace melting rather than cupola melting since electric melting keeps molten oxides of either pure or less pure raw materials more fully oxidized thereby producing longer fibers and stronger products. The various pure oxides or less pure raw materials are granulated to a size commonly used for electric melting or they may be purchased already so granulated.
The granulated raw materials are then mixed together and fed to an electric furnace where they are melted by electric resistance melting with electrodes preferably positioned according to the teachings of U.S. Pat. No. 4,351,054. Melt formation can be either continuous or batchwise although the former is preferred. The molten mixture of oxides is then fiberized as disclosed in U.S. Pat. No. 4,238,213.
While the fiberization techniques taught in U.S. Pat. No. 4,238,213 are preferred for making the inventive fibers, other conventional methods may be employed such as sol-gel processes and extrusion through holes in precious metal alloy baskets.
The fibers so formed will have lengths in the range of from about 0.5 to 20 cm and diameters in the range of from about 0.05 to 10 microns with the average fiber diameter being in the range of about 1.5 to 3.5 microns. Table 2 shows the average fiber diameter (measured microscopically) and the unfiberized shot content of various inventive fibers. As may be seen, the average microscopic fiber diameter was 2.3 microns and the average unfiberized shot content was 27%.
For purposes of comparison, conventional mineral wool fibers were also tested with the results being given in Table 2 as numbers 226 to 229. These conventional fibers averaged 4.7 microns (measured microscopically) in diameter and had an average 40 wt % shot content. The continuous service temperature ranged from 1370.degree. F. to 1490.degree. F., averaging 1420.degree. F.
Table 3 contains an extensive chemical analysis of a number of inventive fibers. Because of the large number of fiber samples containing alumina additives made to the base calcium oxide/magnesia/silica system, only the average analysis of the minor constituent of these fibers are given in Table 3. The silica, alumina, magnesia, and calcium oxide contents for these fibers are given in Table 4.
As used herein, the "service temperature" of an inorganic fiber is determined by two parameters. The first is the obvious condition that the fiber must not soften or sinter at the temperature specified. It is this criterion which precludes the use of glass fibers at temperatures above about 800.degree. F. to 1000.degree. F. (425.degree. to 540.degree. C.). Additionally, a felt or blanket made from the fibers must not have excessive shrinkage when soaking at its service temperature. "Excess shrinkage" is usually defined to be a maximum of 5% linear or bulk shrinkage after prolonged exposure (usually for 24 hours) at the service temperature. Shrinkage of mats or blankets used as furnace liners and the like is of course a critical feature, for when the mats or blankets shrink they open fissures between them through which the heat can flow, thus defeating the purpose of the insulation. Thus, a fiber rated as a "1500.degree. F. (815.degree. C.) fiber" would be defined as one which does not soften or sinter and which has acceptable shrinkage at that temperature, but which begins to suffer in one or more of the standard parameters at temperatures above 1500.degree. F. (815.degree. C.).
The service temperatures for a representative number of fibers in the inventive compositional range are listed in Table 2. The continuous service temperature for constant silica/magnesia/calcium oxide ratios are given in Table 6. As may be seen in all cases, the lower the alumina content of the fiber, the higher the service temperature will be, with the highest service temperature being at zero percent alumina for alumina contents less than 30%. Thus to attain the most desired properties of the inventive fiber it is not possible to accept any of the alumina contents resulting from melting the traditional mineral wool raw materials. Rather, various amounts of sufficiently pure oxides will be required to dilute the alumina contents to the desired low levels. To attain fibers of the highest service temperatures, only pure raw materials with essentially no significant amounts of alumina must be used.
A series of inventive fibers were also tested for their silicon extraction in a saline solution according to the following procedure:
A buffered model physiological saline solution was prepared by adding to 6 liters of distilled water the following ingredients at the indicated concentrations:
______________________________________Ingredient Concentration, g/l______________________________________MgCl.sub.2 6H.sub.2 O 0.160NaCl 6.171KCl 0.311Na.sub.2 HPO.sub.4 0.149Na.sub.2 SO.sub.4 0.079CaCl.sub.2 2H.sub.2 O 0.060NaHCO.sub.3 1.942NaC.sub.2 H.sub.3 O.sub.2 1.066______________________________________
Before testing, this solution was buffered to a pH of 7.6 by bubbling with a gaseous mixture of 5% CO.sub.2 /95% N.sub.2.
One half (1/2) gram of each sample of fiber listed in Table III was then placed into separate closed, plastic bottles along with 50 cc of the prepared physiological saline solution and put into an ultrasonic bath for 5 hours. The ultrasonic vibration application was adjusted to give a temperature of 104.degree. F. at the end of the 5 hour period. At the end of the test period, the saline solution was filtered and the solution chemically analyzed for silicon content. The silicon concentration in the saline solution was taken to be a measure of the amount of fiber which solubilized during the 5 hour test period. The CaO and MgO contents of the fiber were similarly solubilized.
One of the inventive fibers was tested for silicon extraction in a physiological saline solution for periods of up to 6 months. Results were as follows:
__________________________________________________________________________ Steady State Total Comments on Silicon Silicon Extraction Amphoteric Fiber ResidueFiber Extraction Rate For 0.20 m.sup.2 /g Oxides in After 6Number in 6 Months Surface Area, % Si/day Fiber Months__________________________________________________________________________29 (inventive) 96% 0.16% 1.0% carbonate hydroxyl apatite fiber, disintegrated into small particles137 (non- 3% 0.013% 8.9% slight fine grainedinventive) fibers with uniform corrosion235 (non- 4% 0.012% 25.6% no fiberinventive) corrosion; some surface deposition__________________________________________________________________________
Categorization of oxides melts according to scales of acidity or basicity has been well known for many years. (See "A Scale of Acidity and Bascity in Glass", Glass Industry, February 1948, pp 73-74) We have now found that by strictly controlling the compositions of the oxide melts according to the acidic or basicity behavior of the respective oxides, fibers can be made which are suprisingly soluble in saline solutions. Increasing the content of silica, alumina, and the amphoteric oxides in the fiber increases the acid ratio of the fiber composition. This tends to stabilize the system against silicon extraction by weak solutions as a result of relative changes in the interatomic bonding forces and extension of the silica network. Other amphoteric oxides besides alumina will have an alumina equivalency with respect to extraction by saline solutions. The amphoratio oxides zirconia and titania appear to have an alumina equivalency of close to 1 to 1. We have found that in general for desired high saline solubility the amount of total amphoratio oxides must be kept below about 10% depending upon the amount of silica present. On the other hand, with the exception of iron and manganese oxides, the basic oxides can vary widely since their alumina equivalency is small. However, while iron and manganese oxides are generally considered to be basic in nature, their behavior with respect to saline solubility more closely relate to the amphoratio oxides, thus the amounts of iron and manganese oxides must be similarly limited.
Many of the fibers were tested for their fire resistance according to the following simulated fire rating test procedure:
For screening test purposes, a small furnace was constructed using an electrically heated flat-plate element at the back of the heat source. A 6 inch.times.6 inch.times.2 inch thick sample of 13/4 to 61/2 pcf density of each formulated fiber was mounted parallel with the element and 1 inch from it. Thermocouples were then positioned at the center of the fiber sample surfaces. A computer was used to control power via a simple on-off relay system to the heating element. The position of the relay was based on the reading of the thermocouple on the sample surface nearest the element and the programmed fire test heat-up schedule.
The furnace was heated so as to follow a standard ASTM E-119 time/temperature curve for the 2-hour test period. In the test utilized herein, failure of the fiber is considered to occur when the furnace is unable to maintain the standard temperature per ASTM E-119 because the fiber insulation has sintered sufficiently to allow heat to escape through the fiber layer.
The results of the testing of the fibers for saline solubility and the two hour ASTM E-119 fire test are given in Table 4 for the fibers made with alumina addition and in Table 5 for the remaining fibers to which other oxidic constituents were added. These additions included: B.sub.2 O.sub.3, P.sub.2 O.sub.5, TiO.sub.2, ZrO.sub.2, Fe.sub.2 O.sub.3 +MnO, La.sub.2 O.sub.3, Cr.sub.2 O.sub.3, and Na.sub.2 O. For glass fibers within the scope of the invention to function in an ASTM E-119 fire test, i.e. to withstand the rising temperatures of a simulated fire which can reach 1850.degree. F. in two hours, it is necessary that they convert from an amorphous condition to a beneficial psuedo crystalline state during heat-up. The inventive fibers do this but can be assisted in this function by the inclusion of suitable crystal nucleating agents. Such agents may include TiO.sub.2, ZrO.sub.2, platinum, Cr.sub.2 O.sub.3, P.sub.2 O.sub.5, and others. Such additions are within the scope of this invention.
TABLE 1__________________________________________________________________________RAW MATERIALS USED Less Pure Raw Materials Pure Raw Materials Blast Silica Quick Calcined Aluminum Magnesium Furnace Nepheline Sand Lime Dolomite Oxide Oxide Kaolin Slag Syenite Talc__________________________________________________________________________ACIDIC OXIDESSiO.sub.2 99.0 0.34 0.50 0.02 0.4 50.5 35.16 61.3 61.2AMPHOTERIC OXIDESTiO.sub.2 nil nil nil 0.002 nil 1.61 0.62 0.003 nilAl.sub.2 O.sub.3 0.30 0.26 0.50 98.8 0.1 43.6 12.88 23.4 0.7BASIC OXIDESFe.sub.2 O.sub.3 0.30 0.05 0.15 0.02 0.7 0.80 0.20 0.07 0.85MnO -- -- -- -- -- -- 0.62 -- --MgO 0.02 0.14 40.0 nil 96.3 0.01 16.06 0.05 31.7CaO 0.03 97.75 57.0 0.01 2.0 0.04 32.94 0.58 0.19Na.sub.2 O 0.04 0.02 0.01 0.30 0.02 0.06 0.45 9.60 --K.sub.2 O 0.01 0.01 nil 0.01 0.01 0.02 0.25 4.50 --MISCELLANEOUSSO.sub.3 -- -- 0.4 -- -- -- 0.28 -- --S.sup..dbd. -- -- -- -- -- -- 1.03 -- --C -- -- -- -- -- -- 0.30 -- --LOI 0.2 0.7 3.0 0.20 1.8 2.90 -- 0.62 5.0TOTAL 99.90 99.27 101.56 99.36 101.33 99.54 100.79 100.12 99.64__________________________________________________________________________ Silica Sand: Ottawa Silica Silco-Sil Grade 295 Quick Lime: Mississippi Lime Pulverized Quick Lime Calcined Dolomite: Ohio Lime NO. 16 Burnt Dolomitic Lime Aluminum Oxide: Reynolds Calcined Alumina, RC23 Magnesium Oxide: Baymag 56 Feed Grade Kaolin: American Cyanamide Andersonville Kaolin Blast Furnace Slag: Calumite Morrisville Slag Nepheline Syenite: Indusmin Grad A400 Talc: Pfizer Grade MP4426 Additives: Soda Ash: 58.3% Na.sub.2 O Boric Acid: 55.5% B.sub.2 O.sub.3 Magnetite Iron Concentrates: 98.5% Iron Oxides Zircon: 66.2% ZrO.sub.2 Manganese Oxide: 99% MnO.sub.2 Titanium Dioxide: 99% TiO.sub.2 Chromium Oxide: 99.5% Cr.sub.2 O.sub.3 Lanthanum Carbonate: Moly Corp.
TABLE 2______________________________________FIBER DIAMETER, SHOT CONTENT, ANDSERVICE TEMPERTURE OF TEST FIBERS Average Fiber Shot Service Diameter Content TemperatureTest No. Microns % .degree.F.______________________________________0-11/2% Amphoteric Oxides 4 -- -- 1410 10 -- 28 -- 12 -- -- 1380 16 -- 26 1400 17 1.9 -- 1420 19 -- -- 1430 20 2.3 22 1440 22 2.9 -- 1350 23 -- 34 1390 24 2.8 33 1400 25 2.9 -- 1440 29 1.6 -- 1450 30 1.5 -- 1450 32 1.5 23 1450 34 -- -- 1400 35 1.7 -- 1450 37 2.4 22 1450 39 1.9 -- 1450 40 -- 33 1460 43 1.9 32 1460 50 2.3 -- 1500 58 -- -- 1490 65 2.0 25 1420 81 -- -- 1500 82 -- -- 1370 83 -- -- 139011/2To 3% Amphoteric Oxides 87 1.9 24 1410 90 2.0 -- 1430 95 2.1 -- 1440 97 -- 24 --107 -- -- 14203 To 4% Amphoteric Oxides110 -- -- 1320111 -- 23 1440114 -- -- 1380117 -- -- 1450120 -- -- 14404 To 6% Amphoteric Oxides122 3.3 -- 14106 To 8% Amphoteric Oxides126 1.8 26 1470127 2.2 -- 1370128 3.3 -- 1380129 3.4 -- 1430131 -- 25 --133 -- -- 14208 To 10% AmphotericOxides134 -- -- 1380135 2.9 -- 1410137 3.1 -- 1370138 1.8 -- 1450139 1.8 -- 1370140 -- -- 140010 To 12% Amphoteric Oxides141 1.9 -- 1460141 2.0 -- 1460143 2.6 -- 1360144 3.0 -- 136012 To 20% AmphotericOxides146 2.0 -- 146020-30% AmphotericOxides150 2.5 -- 1460152 3.4 -- 1520153 3.8 32 --Oxide Additions other thanAlumina167 2.5 -- --173 -- -- 1800174 3.1 25 1600176 2.1 -- --178 1.41 -- --179 0.9 -- --182 -- 30 --183 1.7 26 --186 -- 25 1500189 -- 26 --192 1.8 -- --200 2.0 36 --211 -- -- 1400216 1480No. of Measurements: 42 22 56Average Value: 2.3 27 --Conventional Mineral WoodFibers226 4.3 33 1370227 4.7 48 1350228 5.4 45 1450229 4.4 35 1490Average 4.7 40 1420Refractory Fiber233 3.0 38 1600234 2.9 37 2400235 3.3 44 1600236 2.4 37 2300237 2.8 29 2300238 3.0 28 2400239 3.0 27 2400240 3.0 20 2450241 3.0 20 2450Average: 2.9 31 --______________________________________
TABLE 3 COMPOSITION OF FIBERS ACIDIC OXIDES AMPHOTERIC OXIDES BASIC OXIDES MISCELLANEOUS TEST SUB SUB SUB SUB NO. B.sub.2 O.sub.3 SiO.sub.2 P.sub.2 O.sub.5 TOTAL TiO.sub.2 Al.sub.2 O.sub.3 ZrO.sub.2 TOTAL FeO.sub.3 MnO La.sub.2 O.sub.3 Cr.sub.2 O.sub.3 MgO Li.sub.2 O CaO BaO Na.sub.2 O K.sub.2 O TOTAL SO.sub.3 Misc. TOTAL TOTAL Composition of Fibers wit Al.sub.2 O.sub.3 additions (minor constituents only) 1 to 0.00 -- 0.00 -- 0.01 -- 0.01 0.02 0.06 0.02 0.00 0 .02 -- 0.00 -- 0.04 0.04 0.1 .19 .05/ .02 .07/ .14 163 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- .20 -- .22 .44 Composition of Fibers with B.sub.2 O.sub.3 additions 164 0.32 64.8 -- 65.12 -- 0.06 -- 0.06 -- -- -- -- 8.7 -- 26.6 -- -- -- 35.3 -- -- -- 100.48 165 0.52 63.9 -- 64.42 -- 1.20 -- 1.20 -- -- -- -- 8.6 -- 26.2 -- -- -- 34.8 -- -- -- 100.42 166 0.64 64.6 -- 65.24 -- 0.06 -- 0.06 -- -- -- -- 8.7 -- 26.5 -- -- -- 35.2 -- -- -- 100.5 167 0.82 64.5 -- 65.32 -- 0.06 -- 0.06 -- -- -- -- 8.7 -- 26.5 -- -- -- 35.2 -- -- -- 100.58 168 1.33 64.1 -- 65.43 -- 0.06 -- 0.06 -- -- -- -- 8.6 -- 26.3 -- -- -- 34.9 -- -- -- 100.39 169 1.37 64.1 -- 65.47 -- 0.06 -- 0.06 -- -- -- -- 8.6 -- 26.3 -- -- -- 34.9 -- -- -- 100.43 170 2.22 63.6 -- 65.82 -- 0.06 -- 0.06 -- -- -- -- 8.5 -- 26.1 -- -- -- 34.6 -- -- -- 100.48 171 8.41 59.6 -- 68.01 -- 0.06 -- 0.06 -- -- -- -- 8.0 -- 24.0 -- -- -- 32.0 -- -- -- 100.07 Composition of Fibers with P.sub. 2 O.sub.5 additions 172 -- 49.6 6.05 55.65 0.06 0.38 0.04 0.48 0.21 0.00 -- 0.68 11.15 0.00 31.45 0.00 0.05 0.04 43.58 -- 0.02 0.02 99.73 Composition of Fibers with TiO.sub.2 additions 173 -- 4 8.6 -- 48.6 10.0 41.4 -- 51.4 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 100.0 Composition of Fibers with ZrO.sub.2 additions 174 -- 63.5 -- 63.5 . 01 0.88 0.21 1.10 -- -- -- -- 0.33 -- 35.55 -- .03 .01 35.92 -- -- -- 100.52 175 -- 59.2 -- 59.2 --0.33 0.40 0.73 -- -- -- -- 0.41 -- 39.1 -- -- -- 39.51 -- -- -- 99.44 176 -- 59.5 -- 59.5 -- 0.31 0.42 0.73 -- -- -- -- 0.42 -- 39.1 -- -- -- 39.52 -- -- -- 99.75 177 -- 59.7 -- 59.7 -- 0.34 0.50 0.84 -- -- -- -- 0.46 -- 38.7 -- -- -- 39.16 -- -- -- 99.70 178 -- 60.0 -- 60.0 -- 0.36 0.54 0.90 -- -- -- -- 0.48 -- 38.3 -- -- -- 38.78 -- -- -- 99.68 179 -- 59.2 -- 59.2 -- 0.35 0.58 0.93 -- -- -- -- 0.98 -- 37.0 -- -- -- 37.98 -- -- -- 98.11 180 -- 54.3 -- 54.3 .01 1.29 0.58 1.88 .09 .01 -- -- 10.20 -- 32.75 .01 .04 .02 43.12 -- .01 .01 99.31 181 -- 59.2 -- 59.2 -- 0.32 0.83 1.15 -- -- -- -- 1.13 -- 36.6 -- -- -- 37.73 -- -- -- 98.08 182 -- 46.85 -- 46.85 .02 2.03 0.84 2.89 .08 .01 -- -- 20.6 -- 29.2 .03 .05 .01 49.98 -- .02 .02 99.74 182(a) -- 59.4 -- 59.4 -- 0.38 2.31 2.69 -- -- -- -- 2.06 -- 34.9 -- -- -- 36.96 -- -- -- 99.05 183 -- 59.05 -- 59.05 -- 0.30 2.65 2.95 .06 .00 -- .05 3.08 -- 34.84 .00 .03 .01 38.07 -- .02 .02 100.09 184 -- 57.96 -- 57.96 -- 0.42 3.11 3.53 -- -- -- -- 3.55 -- 35.17 -- -- -- 38.72 -- -- -- 100.21 185 -- 57.8 -- 57.80 -- 0.56 3.12 3.68 -- -- -- -- 3.74 -- 34.4 -- -- -- 38.14 -- -- -- 99.62 186 -- 59.05 -- 59.05 -- 0.38 3.27 3.65 -- -- -- -- 2.57 -- 36.94 -- -- -- 39.51 -- -- -- 102.21 187 -- 56.88 -- 56.88 -- 0.32 3.30 3.62 -- -- -- -- 4.00 -- 36.45 -- -- -- 40.45 -- -- -- 100.95 188 -- 57.7 -- 57.7 -- 0.20 3.30 3.50 -- -- -- -- 3.00 -- 36.0 -- -- -- 39.0 -- -- -- 100.20 189 -- 58.19 -- 58.19 -- 0.39 3.36 3.75 -- -- -- -- 3.26 -- 35.39 -- -- -- 38.65 -- -- -- 100.59 190 -- 57.86 -- 57.86 -- 0.36 3.37 3.73 -- -- -- -- 3.22 -- 35.66 -- -- -- 38.88 -- -- -- 100.47 191 -- 58.6 -- 58.6 -- 0.58 3.67 4.25 -- -- -- -- 2.72 -- 33.5 -- -- -- 36.22 -- -- -- 99.07 192 -- 58.4 -- 58.4 -- 0.65 3.69 4.34 -- -- -- -- 2.59 -- 33.2 -- -- -- 35.79 -- -- -- 98.53 193 -- 56.65 -- 56.65 .02 3.35 4.50 7.87 .05 .00 -- .00 3.35 -- 31.9 .00 .05 .01 35.36 -- .01 .01 99.89 Composition of Fibers with FeO.sub.3 and MnO additions 194 -- 64.9 -- 64.9 -- 0.06 -- 0.06 0.06 -- -- -- 8.72 -- 26.6 -- -- -- 35.38 -- -- -- 100.34 195 -- 49.8 -- 49.8 .01 18.0 .01 18.02 .22 -- -- -- 0.2 -- 31.5 -- -- -- 31.92 .05 .02 .07 99.81 196 -- 50.4 -- 50.4 .03 7.45 .01 7.49 .48 .04 -- -- 15.2 -- 26.2 -- .07 .05 42.04 .05 .02 .07 100.00 197 -- 64.34 -- 64.34 -- 0.06 -- 0.06 .50 -- -- -- 7.80 -- 26.4 -- -- -- 34.7 -- -- -- 99.1 198 -- 63.70 -- 63.70 -- 1.20 -- 1.20 .69 -- -- -- 7.73 -- 25.30 -- -- -- 33.72 -- -- -- 98.62 199 -- 63.54 -- 63.54 -- 1.20 -- 1.20 .72 -- -- -- 7.70 -- 25.04 -- -- -- 33.46 -- -- -- 98.20 200 -- 38.9 -- 38.9 .01 6.70 .01 6.72 .80 -- -- -- 16.1 -- 37.5 -- -- -- 54.40 .05 .02 .07 100.09 201 -- 64.3 -- 64.3 -- 0.06 -- 0.06 .96 -- -- -- 8.6 -- 26.4 -- -- -- 35.96 -- -- -- 100.32 202 -- 44.6 -- 44.6 .01 0.92 .01 0.94 1.02 -- -- -- 18.1 -- 32.8 -- -- -- 51.92 -- -- -- 97.46 203 -- 63.3 -- 63.3 -- 1.15 -- 1.15 1.61 -- -- -- 7.98 -- 25.4 -- -- -- 34.99 -- -- -- 99.44 204 -- 63.6 -- 63.6 -- 0.06 -- 0.06 1.92 -- -- -- 8.6 -- 26.1 -- -- -- 36.62 -- -- -- 100.28 205 -- 43.8 -- 43.8 .01 15.26 . 01 15.28 2.90 .04 -- .14 22.7 -- 15.05 -- .10 .01 40.94 .05 .08 .13 100.15 206 -- 62.3 -- 62.3 -- 1.20 -- 1.20 3.05 -- -- -- 8.0 -- 25.0 -- -- -- 36.05 -- -- -- 99.55 207 -- 63.3 -- 63.3 -- 0.06 -- 0.06 3.45 -- -- -- 8.0 -- 25.5 -- -- -- 36.95 -- -- -- 100.31 208 -- 43.9 -- 43.9 .01 14.3 .01 14.32 3.50 -- -- -- 24.4 -- 13.7 -- -- -- 41.6 -- -- -- 99.82 209 -- 62.0 -- 62.0 -- 0.06 -- 0.06 4.81 -- -- -- 8.0 -- 25.5 -- -- -- 38.31 -- -- -- 100.37 210 -- 60.0 -- 60.0 -- 2.0 -- 2.0 -- 8.0 -- -- 30.0 -- -- -- -- -- 38.0 -- -- -- 100.0 211 -- 60.0 -- 60.0 -- -- -- -- -- 20.0 -- -- 20.0 -- -- -- -- -- 40.0 -- -- -- 100.0 Composition of Fibers with La.sub.2 O.sub.3 additions 212 -- 58.1 -- 58.1 -- 0.06 -- 0.06 0.16 -- 0.00 -- 4.60 -- 36.71 -- -- -- 41.47 -- -- -- 99.63 213 -- 57.8 -- 57.8 -- 0.06 -- 0.06 0.15 -- 0.56 -- 4.58 -- 36.53 -- -- -- 41.82 -- -- -- 99.68 214 -- 57.5 -- 57.5 -- 0.06 -- 0.06 0.15 -- 0.72 -- 4.55 -- 36.3 -- -- -- 41.72 -- -- -- 99.28 215 -- 56.9 -- 56.9 -- 0.06 -- 0.06 0.15 -- 0.92 -- 4.51 -- 36.0 -- -- -- 41.58 -- -- -- 98.54 Composition of Fibers with Cr.sub.2 O.sub.3 additions 216 -- 62.6 -- 62.6 0.01 0.49 0.01 0.51 0.08 .00 -- 0.09 2.30 -- 34.10 0.00 0.03 0.01 36.61 -- -- -- 99.72 Composition of Fibers with Na.sub.2 O additions 217 -- 64.7 -- 64.7 -- 0.06 -- 0.06 -- -- -- -- 8.7 -- 26.6 -- 0.28 -- 35.58 -- -- -- 100.34 218 -- 64.5 -- 64.5 -- 0.06 -- 0.06 -- -- -- -- 8.7 -- 26.5 -- 0.45 -- 35.65 -- -- -- 100.21 219 -- 64.4 -- 64.4 -- 0.06 -- 0.06 -- -- -- -- 8.6 -- 26.5 -- 0.71 -- 35.80 -- -- -- 100.26 220 -- 63.5 -- 63.5 -- 1.20 -- 1.20 -- -- -- -- 8.5 -- 26.1 -- 0.87 -- 35.70 -- -- -- 100.40 221 -- 64.3 -- 64.3 -- 0.06 -- 0.06 -- -- -- -- 8.5 -- 26.2 -- 0.93 -- 35.63 -- -- -- 99.99 222 -- 64.2 -- 64.2 -- 0.06 -- 0.06 -- -- -- -- 8.6 -- 26.4 -- 1.11 -- 36.11 -- -- -- 100.37 223 -- 64.0 -- 64.0 -- 0.06 -- 0.06 -- -- -- -- 8.6 -- 26.3 -- 1.40 -- 36.3 -- -- -- 100.36 224 -- 63.0 -- 63.0 -- 0.06 -- 0.06 -- -- -- -- 8.5 -- 25.9 -- 2.60 -- 37.0 -- -- -- 100.06 225 -- 60.3 -- 60.3 -- 0.06 -- 0.06 -- -- -- -- 8.1 -- 24.8 -- 6.84 -- 39.74 -- -- -- 100.1 Composition of Conventional Mineral Wools 226 -- 40.0 -- 40.0 0.37 9.1 0.03 9.50 0.47 0.64 -- 0.02 11.2 0.01 36.5 0.04 0.54 0.55 49.97 0.1 0.59 0.69 100.16 227 -- 39.9 0.02 39.92 1.11 12.85 0.03 13.99 0.35 0.24 -- 0.00 6.05 0.01 38.55 0.12 0.23 0.27 45.82 0.67 0.07 0.74 100.47 228 -- 37.65 0.84 38.49 2.35 9.85 0.04 12.24 9.7 0.22 -- 0.04 12.95 0.01 23.55 0.07 2.01 0.80 49.35 0.42 0.19 0.61 100.69 229 -- 41.75 0.12 41.87 1.07 16.0 0.03 17.10 3.75 0.23 -- 0.02 6.45 0.63 27.75 0.03 2.04 0.63 41.53 0.56 0.08 0.64 101.14 Composition of Refractory Fibers (Fibers with less than 25% Basic Oxides) 231 -- 31.0 -- 31.0 -- 47.5 0.02 47.52 -- -- -- -- -- -- 1.2 -- 20.2 -- 21.4 -- -- -- 99.92 232 -- 37.1 -- 37.1 -- 59.2 -- 59.2 -- -- -- -- -- -- 0.2 -- 3.1 -- 3.3 -- -- -- 99.6 233 -- 50.0 -- 50.0 -- 40.0 -- 40.0 -- -- -- -- -- -- 5.6 -- 4.4 -- 10.0 -- -- -- 100 234 -- 54.0 -- 54.0 -- 46.0 -- 46.0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 100 235 -- 58.47 1.15 59.62 0.98 24.54 0.03 25.55 3.70 0.02 -- 0.00 1.44 0.02 5.78 0.54 1.55 1.18 14.23 0.47 0.24 0.71 100.11 236 -- 52.1 -- 52.1 1.76 44.4 .23 46.39 .83 -- -- -- 0.07 -- 0.12 -- .05 .06 1.13 -- -- -- 99.62 237 -- 52.0 -- 52.0 1.71 42.2 2.93 46.84 .77 -- -- -- 0.07 -- 0.12 -- .05 .06 1.07 -- -- -- 99.91 238 -- 49.8 -- 49.8 1.60 38.3 9.32 49.22 .72 -- -- -- 0.07 -- 0.12 -- .05 .06 1.02 -- -- -- 100.04 239 -- 48.6 -- 48.6 1.55 36.2 12.3 50.05 .70 -- -- -- 0.07 -- 0.12 -- .05 .06 1.00 -- -- -- 99.65 240 -- 47.8 -- 47.8 1.50 34.4 15.1 51.00 .68 -- -- -- 0.07 -- 0.12 -- .05 .06 .98 -- -- -- 99.78 241 -- 46.2 -- 46.2 1.40 31.0 20.7 53.10 .63 -- -- -- 0.07 -- 0.12 -- .05 .06 0.93 -- -- -- 100.23 242 -- 28 -- 28 19 50 3 72 -- -- -- -- -- -- -- -- -- -- -- -- -- -- 100 243 -- 64.5 -- 64.5 -- 27.4 -- 27.4 -- -- -- -- -- 8.4 -- -- -- -- 8.4 -- -- -- 100.3
TABLE 4__________________________________________________________________________TEST RESULTS ON FIBERS MADE WITH ALUMINA ADDITIONSEXPERIMENTAL DATACOMPOSITION, WT % 5 HourAcidic Amphoteric Saline E-119 Fire TestOxides Oxides Basic Oxides Total Extraction Thickness 2 HourNO. SiO.sub.2 Al.sub.2 O.sub.3 Total CaO MgO Total Analytical ppm, Si Density Test**__________________________________________________________________________0 to 11/2% Amphoteric Oxides 1 32 0.2 0.22 39 28 68.1 100.37 * * * 2 31.3 0.2 0.22 33.3 35.5 68.9 100.47 * * * 3 41.9 0.28 0.30 57.5 0.1 57.7 99.95 80 -- -- 4 43.5 0.33 0.35 46.0 10.4 56.5 100.40 58 -- -- 5 43.7 0.25 0.27 39.8 16.6 56.5 100.52 49 2.0/1.27 F 6 45.0 0.50 0.52 54.4 0.1 54.6 100.17 75 -- -- 7 46.5 0.20 0.22 9.2 45.1 54.4 101.17 * * * 8 48.2 0.20 0.22 5.0 47.6 52.7 101.17 * * * 9 47.9 0.22 0.24 19.3 33.5 52.9 101.09 50 -- --10 48.5 0.56 0.58 8.8 43.0 51.9 101.03 51 -- --11 48.6 0.56 0.58 13.3 38.3 51.7 100.93 46 -- --12 49.2 0.42 0.44 28.0 22.9 51.0 100.69 67 -- --13 49.2 0.17 0.19 3.4 48.3 51.8 101.24 * * *14 50.0 0.10 0.12 7.0 43.0 50.1 100.27 56 -- --15 50.7 0.10 0.12 15.7 33.7 49.5 100.37 60 -- --16 51.1 0.45 0.47 29.8 19.0 48.9 100.52 65 -- --17 51.2 0.33 0.35 39.7 9.0 48.8 100.40 51 2.0/2.59 F18 53.2 0.64 0.66 2.8 44.3 47.2 101.11 56 -- F19 53.4 0.28 0.30 45.6 0.1 45.8 99.5 77 2.0/1.97 F20 53.8 0.33 0.35 35.1 10.8 46.0 100.20 83 2.0/1/97 F21 53.9 0.40 0.42 25.5 20.5 46.1 100.47 68 -- --22 54.5 1.00 1.02 7.5 36.5 44.1 99.67 30 -- --23 55.9 0.08 0.10 43.0 0.45 43.55 99.60 51 2.0/1.94 F24 56.0 0.40 0.42 27.0 17.0 44.1 100.57 69 2.0/2.12 F25 56.35 0.20 0.24 34.4 8.25 42.75 99.39 70 2.0/1.87 F26 56.4 0.91 0.93 35.1 7.39 42.59 99.97 47 -- --27 57.0 1.03 1.05 24.5 17.6 42.2 100.30 46 -- --28 57.0 1.09 1.11 35.0 6.84 41.94 100.10 40 -- --29 57.25 0.92 0.94 36.95 3.95 41.1 99.56 56 1.88/2.20 F30 57.8 0.75 0.78 34.75 6.2 41.05 99.85 -- 2.0/1.97 F31 58.1 0.03 0.05 36.7 4.53 41.33 99.53 59 2.0/1.91 F32 58.2 1.08 1.10 35.7 4.79 40.59 99.94 80 2.0/1.91 F33 58.3 0.03 0.05 40.8 0.31 41.21 99.61 49 2.0/1.91 F34 58.4 0.37 0.39 15.3 26.3 41.7 100.54 61 2.0/1.91 F35 58.6 0.09 0.11 35.0 5.36 40.46 99.22 74 2.0/1.94 F36 58.7 0.05 0.07 40.2 0.27 40.57 99.39 58 2.0/1.91 F37 58.5 0.49 0.53 34.4 5.6 40.1 99.32 59 2.0/2.01 F38 58.8 0.41 0.43 35.4 6.2 41.7 100.98 56 -- --39 58.9 0.08 0.10 34.2 6.10 40.4 99.45 67 2.0/1.86 P40 59.0 0.24 0.26 35.9 3.8 39.9 99.21 49 2.0/1.97 P41 59.1 0.09 0.11 40.3 0.43 40.83 100.09 68 2.0/1.90 P42 59.2 0.24 0.26 4.7 36.8 41.50 101.11 47 2.5/1.4 F43 59.15 0.32 0.34 35.55 4.75 40.40 99.94 60 2.0/1.95 P44 59.4 0.04 0.06 29.8 10.7 40.60 100.11 61 2.0/1.92 P45 59.5 0.02 0.04 34.2 5.98 40.28 99.87 77 2.0/1.90 P46 59.5 0.02 0.04 32.1 8.16 40.36 99.95 73 2.0/1.89 F47 59.6 1.43 1.45 22.5 16.8 39.6 100.8 51 2.0/1.88 F48 59.6 0.03 0.05 28.7 11.4 40.2 99.9 70 2.0/1.91 P50 59.8 0.28 0.30 40.5 0.11 40.71 100.86 30 2.0/2.01 P51 59.9 1.48 1.50 25.8 12.9 39.0 100.55 47 2.0/1.98 P52 59.9 1.31 1.33 28.1 11.0 39.4 100.78 45 2.0/1.95 P53 60.0 1.41 1.43 22.3 16.4 39.0 100.58 41 2.0/1.91 P54 60.3 0.17 0.19 32.3 6.36 38.76 99.30 59 2.0/1.89 P55 60.4 1.05 1.07 28.5 9.85 38.45 99.97 45 2.0/1.95 P56 60.5 1.11 1.13 27.9 10.7 38.9 100.68 36 2.0/1.94 F57 60.7 0.93 0.95 28.7 9.47 38.27 99.97 51 2.0/1.93 P58 60.8 0.2 0.22 36. 3. 39.10 100.17 56 -- --59 61.7 0.02 0.04 32.6 5.19 37.89 99.68 65 2.0/1.97 P60 62.4 0.04 0.06 21.7 15.5 37.3 99.81 76 2.0/1.88 P61 62.5 0.03 0.04 30.3 6.64 37.04 99.63 66 2.0/1.92 P62 62.5 0.03 0.05 29.5 7.70 37.30 99.90 64 2.0/1.82 P63 63.1 0.02 0.04 31.1 5.28 36.48 99.67 46 2.0/1.95 P64 63.1 1.25 1.27 25.2 10.2 35.5 99.92 19 2.0/1.96 P65 63.5 1.49 1.51 24.0 10.9 35.0 100.06 12 2.0/1.91 P66 63.8 1.13 11.5 28.4 5.79 34.29 99.29 52 2.0/2.01 P67 63.8 1.41 1.43 22.8 11.8 34.7 99.98 17 2.0/1.88 P68 64.1 1.23 1.25 30.97 2.60 33.67 99.07 7 2.0/1.88 P69 64.1 1.47 1.49 28.6 4.83 33.53 99.17 49 2.0/1.99 P70 65.3 0.03 0.05 27.4 6.68 34.18 99.58 37 2.0/1.91 P71 65.4 1.15 1.17 3.12 30.1 33.32 99.94 46 2.0/1.88 F72 65.6 0.01 0.03 27.4 6.50 34.0 99.68 34 2.0/2.00 P73 65.8 0.02 0.04 28.6 5.21 33.91 99.80 44 -- --74 65.9 0.03 0.05 21.9 11.8 33.8 99.80 30 2.0/1.87 P75 65.9 0.03 0.05 25.8 7.88 33.78 99.78 25 2.0/1.91 P76 65.4 1.15 1.17 3.12 30.1 33.23 99.84 46 2.0/1.98 F77 66.1 0.59 0.61 4.02 28.7 33.02 99.88 50 -- F78 67.1 -- -- 6.43 26.5 33.03 100.18 78 2.0/1.89 F79 67.2 0.02 0.04 8.67 24.0 32.77 100.06 84 2.0/2.03 F80 68.4 -- -- 1.6 30.1 31.8 100.25 * * *81 68.6 0.25 0.27 29.0 1.09 30.19 99.11 18 2.0/2.00 P82 68.8 -- -- 10.2 21.3 31.6 100.45 31 -- --83 68.9 0.03 0.05 18.1 12.7 30.9 99.9 30 2.0/2.00 P84 69.0 7.2 23.8 31.0 100.05 18 -- --11/2% to 3% Amphoteric Oxides85 50.0 2.00 2.02 5.0 43.0 48.1 100.17 -- * *86 52.6 2.00 2.02 3.8 41.7 45.6 100.27 41 2.0/1.88 F87 56.1 2.41 2.43 30.3 10.6 41.0 99.58 39 2.0/1.89 F88 56.2 1.82 1.84 24.4 17.3 41.8 99.89 65 -- --89 58.1 2.01 2.03 3.83 36.3 40.3 100.71 44 2.0/1.99 P90 58.9 2.26 2.28 36.6 1.4 38.1 99.33 18 2.0/1.82 P91 59.0 2.93 2.95 36.3 1.0 37.4 99.40 9 2.0/1.87 P92 59.4 0.38 2.69 34.9 2.1 37.1 99.24 25 2.0/2.06 P93 59.8 2.54 2.56 27.4 10.0 37.5 99.91 11 -- --94 60.1 1.68 1.70 28.0 9.9 38.0 99.85 29 2.0/1.98 P95 60.2 2.21 2.23 32.7 4.9 37.7 100.18 50 2.0/2.04 P96 61.4 2.17 2.19 26.2 10.1 36.4 100.04 18 2.0/1.87 P97 61.4 1.66 1.68 29.9 6.9 36.9 100.03 61 2.0/1.91 P98 61.8 2.84 2.86 34.0 0.2 34.3 99.01 51 2.0/1.93 P99 62.0 2.81 2.83 34.1 0.2 34.4 99.28 55 2.0/1.90 P100 62.1 2.75 2.77 33.8 0.2 34.1 99.02 13 2.0/1.91 P101 62.7 1.79 1.81 25.6 9.4 35.1 99.66 18 2.0/1.96 P102 63.0 2.54 2.56 33.1 0.2 33.4 99.05 37 2.0/1.87 P103 63.9 1.84 1.86 30.7 2.5 33.3 99.11 38 2.0/1.94 P104 64.1 1.83 1.85 17.7 16.3 34.3 100.4 12 2.0/1.95 P105 65.1 2.15 2.17 9.74 23.1 33.15 100.57 17 -- P106 65.6 1.56 1.58 2.7 29.7 32.5 99.73 33 2.0/1.91 P107 66.7 1.80 1.82 30.7 0.1 30.9 99.47 2 2.0/1.90 P3 to 4% Amphoteric Oxides108 49.8 3.5 3.52 4.98 40.9 46.18 99.65 33 -- --109 50.3 3.58 3.60 45.0 0.64 45.74 99.69 19 2.0/1.96 F110 55.1 3.77 3.79 7.89 33.7 41.89 100.93 33 2.0/2.06 P111 55.6 0.24 3.6 37.1 4.65 41.85 101.16 -- 2.0/2.12 F112 56.5 0.35 3.65 36.51 4.17 40.78 100.98 -- 2.0/1.99 F113 56.7 3.52 3.54 23.5 16.2 39.8 100.09 19 2.0/1.89 F114 56.7 3.06 3.08 23.4 16.6 40.28 100.11 40 2.0/4.02 F115 56.88 0.32 3.64 36.45 4.00 40.45 101.02 51 -- --115a 57.5 3.29 3.31 37.7 0.75 38.55 99.41 6 2.0/1.93 F116 58.1 3.05 3.07 25.6 12.8 38.5 99.72 20 2.0/1.9 F117 58.2 3.75 3.77 36.4 0.67 37.17 99.19 38 2.0/2.0 F119 58.80 3.76 3.78 36.7 0.24 37.04 99.67 28 2.0/1.97 F120 61.2 3.77 3.79 34.0 0.24 34.34 99.38 18 2.0/1.94 P4 to 6% Amphoteric Oxides121 49.7 4.04 4.06 26.4 19.6 46.1 99.91 37 -- --122 55.8 5.20 5.22 30.1 9.2 39.4 100.47 7 2.0/1.88 F123 56.85 5.40 5.41 31.8 5.65 37.55 99.91 4 2.0/1.99 F124 57.0 4.68 4.70 22.0 15.6 37.7 99.45 32 2.0/2.00 F6 to 8% Amphoteric Oxides125 39.2 6.90 6.92 38.5 14.0 52.6 98.72 37 -- --126 46.9 7.66 7.68 44.8 0.3 45.2 99.83 6 2.0/1.97 F127 49.3 6.40 6.42 25.3 18.4 43.8 99.57 19 2.0/2.0 F128 50.4 7.45 7.48 26.2 15.2 41.5 99.43 18 2.0/3.17 F129 54.7 7.60 7.62 30.7 6.5 37.3 99.67 7 2.0/1.98 F130 56.1 6.34 6.36 30.6 6.9 37.6 100.11 4 2.0/2.04 F131 57.9 6.7 6.72 5.9 29.7 35.6 99.93 2 -- --132 58.5 6.16 6.18 31.2 4.0 35.2 99.93 2 2.0/2.01 F133 59.7 7.08 7.10 27.9 5.1 33.1 99.9 2 2.0/2.04 F8 to 10% Amphoteric Oxides134 38.6 9.3 9.32 38.4 13.7 52.2 100.17 12 -- --135 42.8 8.8 9.13 36.7 9.6 46.76 98.69 13 -- --136 44.5 8.76 8.78 45.5 0.52 46.12 99.45 3 -- --137 52.1 8.9 8.92 23.7 16.2 40.0 101.02 1.2 -- --138 52.5 9.67 9.69 33.5 4.21 37.81 100.05 1.0 2.0/1.99 F139 53.7 8.7 8.72 22.5 16.3 38.9 101.37 1.7 -- --140 56.6 9.2 9.22 23.5 10.9 34.5 100.37 1.2 2.0/2.05 F141 41.0 10.05 10.07 48.25 0.3 38.70 99.87 6 2.0/2.00 F142 51.3 10.9 10.92 37.2 0.2 37.5 99.77 0.8 2.0/2.04 F143 52.4 10.7 10.72 23.1 16.1 39.3 102.42 0.7 2.0/2.00 F144 52.7 10.2 10.22 22.1 16.0 38.2 101.12 0.5 -- --12 to 20% Amphoteric Oxides145 41.5 13.0 13.02 44.2 0.5 44.8 99.37 1.2 -- --146 49.8 18.0 18.02 31.5 0.2 32.02 99.89 0.5 -- --147 55.6 12.9 12.92 13.2 18.4 31.7 100.27 1.8 2.0/2.54 F20 to 30% Amphoteric Oxides148 36.5 28.4 28.42 34.4 0.3 34.8 99.77 0.6 -- --149 40.3 21.5 21.52 37.5 0.3 37.9 99.77 0.8 -- --150 42.6 25.7 25.72 31.2 0.3 31.6 99.97 0.6 -- --151 48.4 22.4 22.42 16.5 12.6 29.2 100.07 0.5 2.0/2.01 F152 59.9 22.8 22.82 3.1 14.0 17.2 99.97 0.7 2.0/2.01 F30 to 40% Amphoteric Oxides153 45.9 31.3 31.32 5.9 16.7 22.7 99.97 2.3 -- --__________________________________________________________________________ * = Not Fiberizable ** P = Pass, F = Failed
TABLE 5__________________________________________________________________________FIBERS MADE WITH VARIOUS ADDITIVE CONSTITUENTS 5 HourANALYSES Saline E-119 Fire TestAcidic Amphoteric Basic % Additive Extraction Thickness 2 HourTest No. Oxides Oxides Oxides Misc. Total (Incl. in Total) ppm. Si Density Test__________________________________________________________________________Fibers with B.sub.2 O.sub.3 Additions164 65.12 0.06 35.3 -- 100.48 0.32% B.sub.2 O.sub.3 53 2.0/1.94 P165 64.42 1.20 34.8 -- 100.42 0.52% B.sub.2 O.sub.3 20 2.0/1.88 P166 65.24 0.06 35.2 -- 100.5 0.64% B.sub.2 O.sub.3 43 2.0/1.89 P167 65.32 0.06 35.2 -- 100.58 0.82% B.sub.2 O.sub.3 45 2.0/2.00 p168 65.43 0.06 34.9 -- 100.39 1.33% B.sub.2 O.sub.3 47 2.0/1.95 P169 65.47 0.06 34.9 -- 100.43 1.37% B.sub.2 O.sub.3 45 2.0/-- P170 65.82 0.06 34.6 -- 100.48 2.22% B.sub.2 O.sub.3 46 2.0/2.02 P171 68.01 0.06 32.0 -- 100.07 8.41% B.sub.2 O.sub.3 52 2.0/6.45 PFibers with P.sub.2 O.sub.5 additions172 55.65 0.48 43.58 0.02 99.7 6.06% P.sub.2 O.sub.5 71 2.0/1.94 FFibers with TiO.sub.2 additions173 48.6 51.4 -- -- 100. 10% TiO.sub.2 0.4 2.01/1.94 PFibers with ZrO.sub.2 additions174 63.5 1.10 35.92 -- 100.52 0.21% ZrO.sub.2 25 2.0/2.01 P175 59.2 0.73 39.51 -- 99.44 0.40% ZrO.sub.2 48 2.0/2.00 P176 59.5 0.73 39.52 -- 99.75 0.42% ZrO.sub.2 55 -- --177 59.7 0.84 39.16 -- 99.70 0.50% ZrO.sub.2 32 -- --178 60.0 0.90 38.78 -- 99.68 0.54% ZrO.sub.2 40 -- --179 59.2 0.93 37.98 -- 98.11 0.58% ZrO.sub.2 46 2.0/2.02 P180 54.3 1.88 43.12 .01 99.31 0.58% ZrO.sub.2 67 2.0/2.00 F181 59.2 1.15 37.73 -- 98.08 0.83% ZrO.sub.2 57 2.0/2.03 P182 46.85 2.89 49.98 .02 99.74 0.84% ZrO.sub.2 44 2.0/2.17 182a 59.4 2.69 36.96 .02 99.05 2.31% ZrO.sub.2 25 2.0/2.00 P183 59.05 2.95 38.07 -- 100.09 2.65% ZrO.sub.2 38 2.0/2.20 P184 57.96 3.53 38.72 -- 100.21 3.11% ZrO.sub.2 25 2.0/2.37 F185 57.80 3.68 38.14 -- 99.62 3.12% ZrO.sub.2 10 2.0/2.03 F186 59.05 2.65 39.51 -- 102.21 3.27% ZrO.sub.2 15 2.1/2.11 P187 56.88 3.62 40.45 -- 100.95 3.30% ZrO.sub.2 51 -- --188 57.7 3.50 39.0 -- 100.20 3.30% ZrO.sub.2 13 2.0/2.06 P189 58.19 3.75 38.65 -- 100.59 3.36% ZrO.sub.2 12 -- --190 57.86 3.73 38.88 -- 100.47 3.37% ZrO.sub.2 -- 2.0/2.00 F191 58.6 4.25 36.22 -- 99.07 3.67% ZrO.sub.2 7 2.0/2.00 P192 58.4 4.34 35.79 -- 98.53 3.69% ZrO.sub.2 3 2.0/2.00 P193 58.65 7.87 35.36 .01 99.89 4.50% ZrO.sub.2 1.3 2.0/2.07 FFibers with FeO.sub.3 additions194 64.9 0.06 35.38 -- 100.34 0.06% FeO.sub.3 & MnO 56 2.0/1.88 P195 49.8 18.02 31.92 0.07 99.81 0.22% FeO.sub.3 & MnO 0.5 -- --196 50.4 7.49 42.04 0.07 100.00 0.52% FeO.sub.3 & MnO 18 -- --197 64.34 0.06 34.7 -- 99.1 0.50% FeO.sub.3 & MnO 51 2.0/1.91 P198 63.70 1.0 33.02 -- 98.62 0.69% FeO.sub.3 & MnO 24 2.0/1.88 F199 63.54 1.20 33.46 -- 98.20 0.72% FeO.sub.3 & MnO 35 2.0/2.00 P200 38.9 6.72 54.40 0.07 100.09 0.80% FeO.sub.3 & MnO 17 -- --201 64.3 0.06 35.96 -- 100.32 0.96% FeO.sub.3 & MnO 45 2.0/1.88 P202 44.6 0.94 51.92 -- 97.46 1.02% FeO.sub.3 & MnO 49 -- --203 63.3 1.15 34.99 -- 99.44 1.61% FeO.sub.3 & MnO 12 2.0/1.95 F204 63.6 0.06 36.62 -- 100.15 1.92% FeO.sub.3 & MnO 31 2.0/1.91 P205 43.8 15.28 40.94 0.13 100.02 2.94% FeO.sub.3 & MnO 1.3 -- --206 62.3 1.20 36.05 -- 99.55 3.05% FeO.sub.3 & MnO 7 2.0/1.98 F207 63.3 0.06 36.95 -- 100.31 3.45% FeO.sub.3 & MnO 18 2.0/1.88 F208 43.9 14.32 41.6 -- 99.82 3.50% FeO.sub.3 & MnO 2 -- --209 62.0 0.06 38.31 -- 100.37 4.81% FeO.sub.3 & MnO 13 2.0/1.98 F210 60.0 2.0 38.0 -- 100.0 8.0% FeO.sub.3 & MnO 0.9 2.0/2.00 F211 60.0 -- 40.0 -- 100.0 20.0% FeO.sub.3 & MnO 0.7 2.0/2.00 FFibers with La.sub.2 O.sub.3 additions212 58.1 0.06 41.47 -- 99.63 0.00% La.sub.2 O.sub.3 76 2.0/1.97 F213 57.8 0.06 41.82 -- 99.68 0.56% La.sub.2 O.sub.3 69 2.0/1.97 F214 57.5 0.06 41.72 -- 99.28 0.72% La.sub.2 O.sub.3 78 2.0/1.98 F215 56.9 0.06 41.58 -- 99.54 0.92% La.sub.2 O.sub.3 70 2.0/1.98 FFibers with Cr.sub.2 O.sub.3 additions216 62.6 0.51 36.61 -- 99.72 0.09% Cr.sub.2 O.sub.3 28 2.0/2.16 PFibers with Ne.sub.2 O additions217 64.7 0.06 35.58 -- 100.34 0.28% Na.sub.2 O 45 2.0/1.91 P218 64.5 0.06 35.68 -- 100.21 0.45% Na.sub.2 O 57 2.0/1.97 P219 64.4 0.06 35.80 -- 100.26 0.71% Na.sub.2 O 54 2.0/1.97 P220 63.5 1.20 35.70 -- 100.40 0.87% Na.sub.2 O 30 2.0/1.90 P221 64.3 0.06 35.63 -- 99.99 0.93% Na.sub.2 O 51 2.0/1.90 P222 64.2 0.06 36.11 -- 100.37 1.11% Na.sub.2 O 57 2.0/1.99 P223 64.0 0.06 36.3 -- 100.36 1.40% Na.sub.2 O 43 2.0/1.99 P224 63.0 0.06 37.0 -- 100.06 2.60% Na.sub.2 O 50 2.0/2.16 F225 60.3 0.06 39.74 -- 100.1 6.84% Na.sub.2 O 70 2.0/1.87 FConventional Mineral Wool Fibers226 40.0 9.50 49.97 0.69 100.16 -- 7 2.0/3.50 F227 39.92 13.99 45.82 0.74 100.47 -- 1.2 2.0/5.23 F228 38.49 12.24 49.35 0.61 100.69 -- 0.6 2.0/3.42 F229 41.87 17.10 41.53 0.64 101.14 -- 1.0 2.0/3.86 FRefractory Fibers - (Fibers with less than 25% Basic Oxides)231 31.0 47.52 21.4 -- 99.92 -- 2 2.0/21.0 F232 37.1 59.2 3.3 -- 99.6 -- 0.6 2.0/5.38 F233 50.0 40.0 10.0 -- 100 -- 0.8 2.0/2.00 P234 54.0 46.0 -- -- 100 -- 0.3 2.0/2.00 P235 59.62 25.55 14.23 0.7 100.11 -- 0.3 2.0/2.00 P236 52.1 46.39 1.13 -- 99.62 -- 1.0 -- --237 52.0 46.84 1.07 -- 99.91 -- 0.4 -- --238 49.8 49.22 1.02 -- 100.04 -- 0.3 -- --239 48.6 50.05 1.00 -- 99.65 -- 0.4 -- --240 47.8 51.00 0.98 -- 99.78 -- 0.3 -- --241 46.2 53.10 0.93 -- 100.23 -- 0.4 -- --242 28 72 -- -- 100 -- 0.5 -- --243 64.5 27.4 8.4 -- 100.3 -- 0.8 2.0/1.85 F__________________________________________________________________________
TABLE 6______________________________________CONTINUOUS SERVICE TEMPERATUREFOR CONSTANT SiO.sub.2 /CaO/MgO RATIOS 0 5 10 20 30 Continuous Service Temperature forSiO.sub.2 /CaO/MgO Ratio max 5% shrinkage .degree.F.______________________________________50/50/0 1480 1480 1470 1420 155050/40/10 1440 1430 1420 1400 152050/30/10 1400 1380 1370 1350 148060/40/0 1500 1460 1460 1460 160060/30/10 1430 1420 1400 1410 152060/20/20 1380 1370 1360 1350 1500______________________________________
Reasonable modifications and variations are possible from the foregoing disclosure without departing from either the spirit or scope of the invention as defined in the claims.
Claims
  • 1. A process for decomposing a silica-containing fiber comprising the steps of:
  • 1. providing an inorganic fiber prepared from a composition consisting essentially of:
  • (a) 0-6 wt % of Al.sub.2 O.sub.3 ;
  • (b) 50-70 wt % SiO.sub.2 ;
  • (c) 0-30 wt % MgO; and
  • (d) the remainder consisting essentially of CaO, the total being 100% by weight;
  • 2. subjecting the silica-containing fiber to a physiological saline fluid; and
  • 3. extracting the silica at a rate of at least 5 parts per million (ppm) of silicon in 5 hours, thereby decomposing the silica-containing fiber.
  • 2. The process of claim 1 wherein the composition of subsection 1(a) ranges from 0.06-5 wt %.
  • 3. The process of claim 1 wherein the composition of subsection 1(c) ranges from 0.25-30 wt % MgO.
  • 4. The process of claim 1 wherein the composition consists essentially of:
  • (a) 0.06-1.5 wt % of Al.sub.2 O.sub.3 ;
  • (b) 50-70 wt % SiO.sub.2 ;
  • (c) 0-30 wt % MgO; and
  • (d) the remainder consisting essentially of CaO, the total being 100% by weight.
  • 5. The process of claim 4 wherein the composition in subsection 1(c) ranges from 0.25-30 wt % MgO.
  • 6. The process of claim 1 wherein the composition consists essentially of:
  • (a) 1.5-3 wt % of Al.sub.2 O.sub.3 ;
  • (b) 50-66 wt % SiO.sub.2 ;
  • (c) 0-30 wt % MgO; and
  • (d) the remainder consisting essentially of CaO, the total being 100% by weight.
  • 7. The process of claim 6 wherein the composition of subsection 1(c) ranges from 0.25-30 wt % MgO.
  • 8. The process of claim 1 wherein the composition consists essentially of:
  • (a) 3-4 wt % of Al.sub.2 O.sub.3 ;
  • (b) 50-63 wt % SiO.sub.2 ;
  • (c) 0-30 wt % MgO; and
  • (d) the remainder consisting essentially of CaO, the total being 100% by weight.
  • 9. The process of claim 8 wherein the composition of subsection 1(c) ranges from 0.25-30 wt % MgO.
  • 10. The process of claim 1 wherein the composition consists essentially of:
  • (a) 4-6 wt % of Al.sub.2 O.sub.3 ;
  • (b) 50-60 wt % SiO.sub.2 ;
  • (c) 0-25 wt % MgO; and
  • (d) the remainder consisting essentially of CaO, the total being 100% by weight.
  • 11. The process of claim 10 wherein the composition of subsection 1(c) ranges from 0.25-25 wt % MgO.
  • 12. The process of claim 1 wherein the fiber has an average diameter of less than 3.5 microns.
  • 13. The process of claim 1 wherein the silicon extraction rate is at least 20 ppm, the Al.sub.2 O.sub.3 content is about 0.06-6 wt %, and the SiO.sub.2 content is about 50-66 wt %.
  • 14. The process of claim 1 wherein the silicon extraction rate is at least about 50 ppm, the Al.sub.2 O.sub.3 content is about 0.06-3 wt %, and the SiO.sub.2 content is about 50-60 wt %.
  • 15. The process of claim 1 wherein the silicon extraction rate is at least about 50 ppm, the Al.sub.2 O.sub.3 content is about 0.06-0.75 wt %, and the SiO.sub.2 content is about 50-60 wt %.
  • 16. A process of protecting a structural member from fire comprising the steps of:
  • 1. providing a fiber blanket having a bulk density in the range of about 1.5 to about 3 lbs. per cubic foot (pcf); wherein the fiber blanket has the ability to pass ASTM E-119 two-hour fire test; the fibers in the blanket have an average diameter less than about 3.5 microns; and the fiber is an inorganic fiber prepared from a composition consisting essentially of:
  • (a) 0-10 wt % of Al.sub.2 O.sub.3 ;
  • (b) 58-70 wt % SiO.sub.2 ;
  • (c) 0-21 wt % MgO;
  • (d) 0-2 wt % alkali metal oxide; and
  • (e) the remainder consisting essentially of CaO, the total being 100% by weight; and
  • 2. placing the blanket next to the member, and thereby protecting the member from fire.
  • 17. The process of claim 16 wherein the composition of Subsection 1(a) ranges from 0.06-7 wt %.
  • 18. The process of claim 16 wherein the composition of subsection 1(c) ranges from 0.25-21 wt % MgO.
  • 19. The process of claim 16 wherein the composition consists essentially of:
  • (a) 0.06-3.0 wt % of Al.sub.2 O.sub.3 ;
  • (b) 58-70 wt % SiO.sub.2 ;
  • (c) 0-21 wt % MgO;
  • (d) 0-2 wt % alkali metal oxide; and
  • (e) the remainder consisting essentially of CaO, the total being 100% by weight.
  • 20. The process of claim 19 wherein the composition of subsection 1(c) ranges from 0.25-21 wt % MgO.
  • 21. The process of claim 16 wherein the composition consists essentially of:
  • (a) from about 3 wt % up to and including 4 wt % of Al.sub.2 O.sub.3 ;
  • (b) 58-63 wt % SiO.sub.2 ;
  • (c) 0-8 wt % MgO; and
  • (d) 0-2 wt % alkali metal oxide; and
  • (e) the remainder consisting essentially of CaO, the total being 100% by weight.
  • 22. The process of claim 2l wherein the composition in subsection 1(c) ranges from 0.25-8 wt % MgO.
  • 23. The process of claim 16 wherein the composition consists essentially of:
  • (a) from about 4 wt % up to and including 6 wt % of Al.sub.2 O.sub.3 ;
  • (b) 58-61 wt % SiO.sub.2 ;
  • (c) 0-7 wt % MgO; and
  • (d) 0-2 wt % alkali metal oxide; and
  • (e) the remainder consisting essentially of CaO, the total being 100% by weight.
  • 24. The process of claim 23 wherein the composition of subsection 1(c) ranges from 0.25-7 wt % MgO.
  • 25. The process of claim 1 wherein the materials that are present in subsection (a), (b) and (c) are made from pure oxidic raw materials.
  • 26. The process of claim 1 wherein the materials that are present in subsection (a), (b) and (c) are independently made from raw materials selected from a group consisting of talc, metallurgical slags, siliceous rocks, kaolin, and mixtures thereof.
  • 27. The process of any one of claims 1-11 or 12-15 wherein the composition has added thereto a material selected from the group consisting of ZrO.sub.2, TiO.sub.2, B.sub.2 O.sub.3, iron oxides and mixtures thereof.
  • 28. The process of any one of claims 16-24 wherein the composition has added thereto a material selected from the group consisting of ZrO.sub.2, TiO.sub.2, B.sub.2 O.sub.3, iron oxides and mixtures thereof.
Parent Case Info

This application is a continuation of U.S. patent application Ser. No. 07/356,595, filed May 24, 1989, now abandoned; which in turn is a continuation of U.S. patent application Ser No. 07/201,513, filed Jun. 1, 1988, now abandoned; which in turn is a continuation-in-part of U.S. patent application Ser. No. 07/016,041, filed Feb. 18, 1987, now abandoned; which in turn is a continuation-in-part of U.S. patent application Ser. No. 06/894,175, filed Aug. 7, 1986, now abandoned; which in turn is a continuation-in-part of U.S. patent application Ser. No. 06/831,217, filed Feb. 20, 1986, now abandoned.

US Referenced Citations (6)
Number Name Date Kind
2155107 Tyler et al. Apr 1939
2576312 Minnick Nov 1951
4036654 Yale et al. Jul 1977
4153439 Tomic et al. May 1979
4325724 Froberg Apr 1982
4366251 Rapp Dec 1982
Foreign Referenced Citations (10)
Number Date Country
76677 Apr 1983 EPX
1942991 Apr 1972 DEX
1165275 Jan 1957 FRX
51-13819 Feb 1976 JPX
51-133311 Nov 1976 JPX
52-4915 Jan 1977 JPX
56-54252 May 1981 JPX
520247 Apr 1940 GBX
1446910 Aug 1976 GBX
2083017 Aug 1981 GBX
Non-Patent Literature Citations (9)
Entry
Chemical Abstracts, vol. 89, No. 22, Nov. 27, 1978 at p. 28, Abstract 184615W.
"Effects of Glass Surface Area to Solution Volume Ratio on Glass Corrosion", E. C. Ethridge, etc., Physics and Chemistry of Glasses, vol. 20, No. 2, pp. 35-40 (Apr., 1979).
"Dissolution Kinetics of Magnesium Silicates", Robert W. Luce, etc., Geochimica et Cosmochimica Acta, vol. 36, pp. 35-50 (1972).
"Solubility of Asbestos and Man-Made Fibers in Vitro and in Vivo: Its Significance in Lung Disease", A. Morgan and A. Holmes, Environmental Research 39, pp. 475-484 (1986).
"Fiber Toxicology", J. P. Leineweber, Ph.D., Journal of Occupational Medicine, vol. 23, No. 6, pp. 431-434 (Jun., 1981).
"Man-Made Vitreous Fibers: An Overview of Studies on Their Biologic Effects":, Paul Gross, M.D., American Industrial Hygiene Assn.J.47 (II), pp. 717-723 (Nov. 1986).
"Pathogenicity of MMMF and the Contrasts with Natural Fibres", D. M. Bernstein, etc., Proc. 1982 WHO/IARC Conf., Copenhagen, vol. 2, pp. 169-195 (1984).
"The Dissolution of Asbestos Fibres in Water", Janet R. Gronow, Clay Minerals 22, pp. 21-35 (1987).
"Corrosion Phenomena in Glass Fibers and Glass Fiber Reinforced Thermosetting Resins", A. Bledzki, etc., Composites Science and Technology 23, pp. 263-285 (1985).
Continuations (2)
Number Date Country
Parent 356595 May 1989
Parent 201513 Jun 1988
Continuation in Parts (3)
Number Date Country
Parent 16041 Feb 1987
Parent 894175 Aug 1986
Parent 831217 Feb 1986