The invention pertains to laser light sources and particularly to vertical cavity surface emitting lasers. More particularly, the invention pertains to long wavelength surface emitting lasers.
A vertical cavity surface emitting laser (VCSEL) may include a first distributed Bragg reflector (DBR), also referred to as a mirror stack, formed on top of a substrate by semiconductor epitaxial growth techniques, an active region formed on top of the first mirror stack, and a second mirror stack formed on top of the active region. The VCSEL may be driven by a current forced through the active region, typically achieved by providing a first contact on the reverse side of the substrate and a second contact on top of the second mirror stack. The first contact may instead be on top of the first mirror stack in a coplanar arrangement.
VCSEL mirror stacks are generally formed of multiple pairs of layers often referred to as mirror pairs. The pairs of layers are formed of a material system generally consisting of two materials having different indices of refraction and being lattice matched to the semiconductor substrate. For example, a GaAs based VCSEL typically uses an AlAs/GaAs or AlxGa1-xAs/AlyGa1-yAs material system wherein the different refractive index of each layer of a pair is achieved by altering the aluminum content in the layers. The number of mirror pairs per stack may range from 20 to 50 to achieve a high percentage of reflectivity, depending on the difference between the refractive indices of the layers. The larger number of pairs increases the percentage of reflected light.
In many VCSELS, conventional material systems perform adequately. However, new products are being developed requiring VCSELs which emit light having longer wavelengths. VCSELs emitting light having a longer wavelength are of great interest in the optical telecommunications industry because of the low fiber dispersion at 1310 nanometers (nm) and the low fiber loss at 1550 nm. As an example, a long wavelength VCSEL may be obtained by using a VCSEL having an InAlGaAs/InAlAs active region. When an InAlGaAs/InAlAs active region is used, an InP/InGaAsP material system lattice-matched to the InP substrate may be used for the mirror stacks in order to achieve a lattice match. The lattice matching between the substrate and the layers need to be substantially close to ensure a true crystal film growth.
In the InP material based system, it is practically impossible to achieve a suitable monolithic DBR-based mirror structure because of the insignificant difference in the refractive indices available in this lattice matched material system. As a result, many layers, or mirror pairs, are needed in order to achieve useful reflectivity. Useful reflectivity must generally be 99.8 percent or greater. Numerous attempts have been made to address this problem including a wafer bonding technique in which a DBR mirror is grown on a separate substrate and bonded to the active region. This technique has had only limited success and also the interface defect density in the wafer fusion procedure causes potential reliability problems. Other approaches to making satisfactory long wavelength VCSELs have been fraught with one problem or another. For instance, lattice matched InP based mirrors used for 1550 nm VCSELs have a host of problems in growth, processing, and optical performance. The low index contrast of lattice matched InGaAsP and InAlGaAs leads to the requirement of extremely thick (ten microns or thicker) DBRs of 45 or more mirror periods. The AlGaAsSb or AlGaPSb systems may be difficult to grow by MOCVD, and with good contrast, may still require at least 25 mirror pairs to achieve adequate reflectivity for VCSEL operation.
The invention may be a vertical cavity surface emitting laser having a substrate, a first mirror situated on the substrate, an active region situated on the first mirror, a second mirror situated on the active region. The first mirror may have several pairs of layers with an oxidized layer in one or more pairs of that mirror. The invention may incorporate group III-V material. The substrate may include InP.
This invention may solve the problem of having to grow many layers of low contrast semiconductor DBRs by including a fully oxidized layer for half of each DBR pair in the lower mirror. A fully oxidized InAlAs, InAlGaAs, AlAsSb, AlGaAsSb, AlGaPSb, or AlPSb layer converts to AlxOy, and when combined with InP, may have enough index contrast to reduce the required number of mirror pairs to less than six. Portions of the VCSEL structure may be effectively lattice matched. An electrical circuit may be completed by making an electrical contact on the second mirror and another contact that may be intracavity on the first mirror.
Similar to 850 nm AlGaAs oxidation, a ring of spoked trenches (more than four) may be etched into the semiconductor surface. The structure may then be subjected to an oxidizing environment until certain lower mirror layers are fully oxidized. Processing then may proceed similarly to standard intracavity contact processing, with the bottom contact electrical current flowing through the lower conductive semiconductor layer between the etched trenches. Other options such as reversed growth design, oxidation, and wafer bonding are also possible means for utilizing fully oxidized InP based mirrors.
A mask (not shown) may be put on the central portion of structure 10 as shown by a dimension 29. Then an ion implantation 31 may be applied to create an electrical isolation of structure and a confinement of current within dimension 29 in structure 10. Implantation 31 may penetrate a top portion of top mirror 19 and an upper part of lower mirror 13 via the bottom of trench 23. The mask may then be removed. A layer 33 of nitride or the like may be formed on oxide 21 and trench 23. On layer 33 a layer 35 of oxide may be formed. Then a mask covering the area of about where implantation 31 was applied and the central portion of oxide layer 35 not masked may be removed leaving nitride layer 33 below it. With the same mask, the central portion of nitride layer 33 may be removed. That mask may be removed and replaced with a mask covering about the same area as the previous mask plus a portion on oxide layer 21 in the center of structure 10. Then a ring-like shape of the unmasked area incorporating an exposed portion of oxide layer 21 may be removed. On everything at the top of the structure, a layer 37 of metal may be applied. The masking material including metal 37 on the masking may be removed leaving a ring of metal layer 37 on the top of upper mirror 19. This remaining layer 37 may be an electrical contact for VCSEL structure 10. A mask may be placed on the central portion (which may be circular) of oxide layer 21 and most of the metal ring layer 37. Another layer 39 of may be applied on oxide layer 35 plus an outside edge of metal layer 37 for connection to the latter. The mask may be removed exposing again the central portion of oxide layer 21 and metal contact layer 37. Contact layer 37 and metal layer 39 are connected to each other. The bottom of substrate 15 may have a metal layer 41 formed on it. Metal layer 41 may constitute the other electrical contact for VCSEL structure 10.
Top mirror 19 which is formed on active layer or cavity 17 may be composed of about 35 pairs of quarter-wavelength layers. The layers may consist of alternating materials. For instance, a pair of materials may be InGaAsP and InP, or AlGaAsSb and InP, or AlGaPSb and InP. Layer 43 may be a quarter-wavelength thick of InP material and layer 44 may be a quarter-wavelength thick of InAlGaAs or InGaAsP or AlGaAsSb or AlGaPSb material. On the other hand, Layer 44 may be a quarter-wavelength thick of InP material and layer 43 may be a quarter-wavelength thick of InAlGaAs or InGaAsP or AlGaAsSb or AlGaPSb material. Or the order of the layers for each pair may be reversed. The wavelength may be an optical wavelength of the light that may be emitted from structure 10. Each pair of mirror 19 may include layers 43 and 44. These layers may be lattice matched to InP, and may or may not be fully N-doped. They may be partially doped for the intra-cavity type of device. Not all of the pairs are shown for upper mirror 19 in
Active region/cavity 17 may be composed of InGaAs/InGaAsP; that is, it may have InAlGaAs strained quantum wells and InAlAs barriers, also of a strained composition. Active region/cavity 17 would not be doped but it may be unintentionally doped. Region 17 may have one to five quantum wells.
Lower mirror 13 may have a particular structure of about 6 pairs, or more or less, of layers 45 and 46.
Layers 46 may be oxidized in several ways. They may be oxidized from the edge of structure 10 if it is cut or sawed from a wafer as a separate chip or die. Or, as illustrated in
A mask (not shown) may be put on the central and left portions of structure 50 from the left edge of structure 50 to a short distance before trench 23 on the right side. Then an ion implantation 31 may be applied to create an electrical isolation from items outside of the top contact on the right side of structure 50 in
A layer 33 of nitride or the like may be formed on oxide 21 and in trench 23. On layer 33 a layer 35 of oxide may be formed. Then a mask may be applied covering the top area except the central portion of oxide layer 35 just inside the inside perimeter of trench 23. The central portion of oxide layer 35 may be removed leaving nitride layer 33 below it. With the same mask, the central portion of nitride layer 33 may be likewise removed. That mask may be stripped and replaced with a mask covering about the same area as the previous mask plus a portion on oxide layer 21 in the center of structure 50. Then a ring-like shape of the unmasked area incorporating an exposed portion of oxide layer 21 may be removed. On the top of structure 50, a layer 37 of metal may be applied. The masking material including metal 37 on the masking may be removed leaving a ring of metal layer 37 on the top of upper mirror 19. This ring-like layer 37 may be an electrical contact for VCSEL structure 50. A mask may be placed on the central portion (which may be circular) of oxide layer 21 and most of the metal ring layer 37. Another layer 39 of may be applied on oxide layer 35 plus an outside edge of metal layer 37 for connection to the latter. The mask may be removed exposing again the central portion of oxide layer 21 and metal contact layer 37. Contact layer 37 and metal layer 39 are connected to each other.
Another mask may be formed on the top of structure 50 except for a portion just to the left of trench 23 of
Top mirror 19 which is formed on active layer or cavity 17 may be composed of about 35 pairs of quarter-wavelength layers. The layers may consist of alternating materials. For instance, a pair of materials may be InGaAsP and InP, or AlGaAsSb and InP, or AlGaPSb and InP. Layer 43 may be a quarter-wavelength thick of InP material and layer 44 may be a quarter-wavelength thick of InGaAsP or AlGaAsSb or AlGaPSb material. Each pair of mirror 19 may include layers 43 and 44. The order of layers 43 and 44 may be reversed. These layers may be lattice matched to InP and may or may not be fully N-doped. They may be partially doped for the intra-cavity type of device. Not all of the pairs are shown for upper mirror 19 in
Active region/cavity 17 may be composed of InAlGaAs/InAlAs; that is, it may have InAlGaAs strained quantum wells and InAlAs barriers, also of a strained composition. Active region/cavity 17 would not be doped but it may be unintentionally doped. Region 17 may have one to five quantum wells.
Lower mirror 13 may have a particular structure of only about 6 pairs, or less, of layers 45 and 46. There may be design reasons to have one or a few more pairs. The materials are selected and conditioned so that there is a significant disparity of the indices of refraction between two layers 45 and 46 for each pair. Layer 45 may be a non-oxidized InP or AlGaInAs material. Layer 46 may be an oxidized material of InGaAsP, InAlAs, InAlGaAs, AlAsSb, AlGaAsSb, AlGaPSb, or AlPSb. When the material of layer 46 is fully oxidized, such material may convert to an AlxOy material. When this oxidized layer 46 is combined with layer 45, there may be enough contrast between the layers to result in a sufficiently reflective lower mirror 13 having less than 6 pairs of layers. The order of layers 45 and 46 may be reversed.
Layers 46 may be oxidized in several ways. They may be oxidized from the edge of structure 50 if it is cut or sawed from a wafer as a separate chip or die. Or, as illustrated in
Although the invention has been described with respect to at least one illustrative embodiment, many variations and modifications will become apparent to those skilled in the art upon reading the present specification. It is therefore the intention that the appended-claims be interpreted as broadly as possible in view of the prior art to include all such variations and modifications.
Number | Name | Date | Kind |
---|---|---|---|
4317085 | Brunham et al. | Feb 1982 | A |
4466694 | MacDonald | Aug 1984 | A |
4660207 | Svilans | Apr 1987 | A |
4675058 | Plaster | Jun 1987 | A |
4784722 | Liau et al. | Nov 1988 | A |
4885592 | Kofol et al. | Dec 1989 | A |
4901327 | Bradley | Feb 1990 | A |
4943970 | Bradley | Jul 1990 | A |
4956844 | Goodhue et al. | Sep 1990 | A |
5031187 | Orenstein et al. | Jul 1991 | A |
5052016 | Mahbobzadeh | Sep 1991 | A |
5056098 | Anthony et al. | Oct 1991 | A |
5062115 | Thornton | Oct 1991 | A |
5068869 | Wang et al. | Nov 1991 | A |
5079774 | Mendez et al. | Jan 1992 | A |
5115442 | Lee et al. | May 1992 | A |
5117469 | Cheung et al. | May 1992 | A |
5140605 | Paoli et al. | Aug 1992 | A |
5157537 | Rosenblatt et al. | Oct 1992 | A |
5158908 | Blonder et al. | Oct 1992 | A |
5212706 | Jain | May 1993 | A |
5216263 | Paoli | Jun 1993 | A |
5216680 | Magnusson et al. | Jun 1993 | A |
5237581 | Asada et al. | Aug 1993 | A |
5245622 | Jewell et al. | Sep 1993 | A |
5258990 | Olbright et al. | Nov 1993 | A |
5262360 | Holonyak, Jr. et al. | Nov 1993 | A |
5285466 | Tabatabaie | Feb 1994 | A |
5293392 | Shieh et al. | Mar 1994 | A |
5317170 | Paoli | May 1994 | A |
5317587 | Ackley et al. | May 1994 | A |
5325386 | Jewell et al. | Jun 1994 | A |
5331654 | Jewell et al. | Jul 1994 | A |
5337074 | Thornton | Aug 1994 | A |
5337183 | Rosenblatt et al. | Aug 1994 | A |
5349599 | Larkins | Sep 1994 | A |
5351256 | Schneider et al. | Sep 1994 | A |
5359447 | Hahn et al. | Oct 1994 | A |
5359618 | Lebby et al. | Oct 1994 | A |
5363397 | Collins et al. | Nov 1994 | A |
5373520 | Shoji et al. | Dec 1994 | A |
5373522 | Holonyak, Jr. et al. | Dec 1994 | A |
5376580 | Kish et al. | Dec 1994 | A |
5386426 | Stephens | Jan 1995 | A |
5390209 | Vakhshoori | Feb 1995 | A |
5396508 | Bour et al. | Mar 1995 | A |
5404373 | Cheng | Apr 1995 | A |
5412678 | Treat et al. | May 1995 | A |
5412680 | Swirhum et al. | May 1995 | A |
5416044 | Chino et al. | May 1995 | A |
5428634 | Bryan et al. | Jun 1995 | A |
5438584 | Paoli et al. | Aug 1995 | A |
5446754 | Jewell et al. | Aug 1995 | A |
5465263 | Bour et al. | Nov 1995 | A |
5475701 | Hibbs-Brenner | Dec 1995 | A |
5493577 | Choquette et al. | Feb 1996 | A |
5497390 | Tanaka et al. | Mar 1996 | A |
5513202 | Kobayashi et al. | Apr 1996 | A |
5530715 | Shieh et al. | Jun 1996 | A |
5555255 | Kock et al. | Sep 1996 | A |
5557626 | Grodzinski et al. | Sep 1996 | A |
5561683 | Kwon | Oct 1996 | A |
5567980 | Holonyak, Jr. et al. | Oct 1996 | A |
5568498 | Nilsson | Oct 1996 | A |
5568499 | Lear | Oct 1996 | A |
5574738 | Morgan | Nov 1996 | A |
5581571 | Holonyak, Jr. et al. | Dec 1996 | A |
5586131 | Ono et al. | Dec 1996 | A |
5590145 | Nitta | Dec 1996 | A |
5598300 | Magnusson et al. | Jan 1997 | A |
5606572 | Swirhun et al. | Feb 1997 | A |
5625202 | Chai | Apr 1997 | A |
5625729 | Brown | Apr 1997 | A |
5642376 | Olbright et al. | Jun 1997 | A |
5645462 | Banno et al. | Jul 1997 | A |
5646978 | Kem et al. | Jul 1997 | A |
5648978 | Sakata | Jul 1997 | A |
5661075 | Grodzinski et al. | Aug 1997 | A |
5679963 | Klem et al. | Oct 1997 | A |
5692083 | Bennett | Nov 1997 | A |
5696023 | Holonyak, Jr. et al. | Dec 1997 | A |
5699373 | Uchida et al. | Dec 1997 | A |
5712188 | Chu et al. | Jan 1998 | A |
5719891 | Jewell | Feb 1998 | A |
5719892 | Jiang et al. | Feb 1998 | A |
5724374 | Jewell | Mar 1998 | A |
5726805 | Kaushik et al. | Mar 1998 | A |
5727013 | Botez et al. | Mar 1998 | A |
5727014 | Wang et al. | Mar 1998 | A |
5729566 | Jewell | Mar 1998 | A |
5747366 | Brillouet et al. | May 1998 | A |
5774487 | Morgan | Jun 1998 | A |
5778018 | Yoshikawa et al. | Jul 1998 | A |
5781575 | Nilsson | Jul 1998 | A |
5784399 | Sun | Jul 1998 | A |
5790733 | Smith et al. | Aug 1998 | A |
5805624 | Yang et al. | Sep 1998 | A |
5818066 | Duboz | Oct 1998 | A |
5828684 | Van de Walle | Oct 1998 | A |
5835521 | Ramdani et al. | Nov 1998 | A |
5838705 | Shieh et al. | Nov 1998 | A |
5838715 | Corzine et al. | Nov 1998 | A |
5864575 | Ohiso et al. | Jan 1999 | A |
5881085 | Jewell | Mar 1999 | A |
5882948 | Jewell | Mar 1999 | A |
5892784 | Tan et al. | Apr 1999 | A |
5892787 | Tan et al. | Apr 1999 | A |
5896408 | Corzine et al. | Apr 1999 | A |
5901166 | Nitta et al. | May 1999 | A |
5903588 | Guenter et al. | May 1999 | A |
5903589 | Jewell | May 1999 | A |
5903590 | Hadley et al. | May 1999 | A |
5908408 | McGary et al. | Jun 1999 | A |
5936266 | Holonyak, Jr. et al. | Aug 1999 | A |
5940422 | Johnson | Aug 1999 | A |
5953362 | Pamulapati et al. | Sep 1999 | A |
5978398 | Ramdani et al. | Nov 1999 | A |
5978401 | Morgan | Nov 1999 | A |
5978408 | Thornton | Nov 1999 | A |
5995531 | Gaw et al. | Nov 1999 | A |
6002705 | Thornton | Dec 1999 | A |
6008675 | Handa | Dec 1999 | A |
6014395 | Jewell | Jan 2000 | A |
6043104 | Uchida et al. | Mar 2000 | A |
6046065 | Goldstein et al. | Apr 2000 | A |
6052398 | Brillouet et al. | Apr 2000 | A |
6055262 | Cox et al. | Apr 2000 | A |
6060743 | Sugiyama et al. | May 2000 | A |
6078601 | Smith | Jun 2000 | A |
6086263 | Selli et al. | Jul 2000 | A |
6133590 | Ashley et al. | Oct 2000 | A |
6144682 | Sun | Nov 2000 | A |
6154480 | Magnusson et al. | Nov 2000 | A |
6185241 | Sun | Feb 2001 | B1 |
6191890 | Baets et al. | Feb 2001 | B1 |
6208681 | Thorton | Mar 2001 | B1 |
6212312 | Grann et al. | Apr 2001 | B1 |
6238944 | Floyd | May 2001 | B1 |
6266357 | Feld et al. | Jul 2001 | B1 |
6269109 | Jewell | Jul 2001 | B1 |
6297068 | Thornton | Oct 2001 | B1 |
6302596 | Cohen et al. | Oct 2001 | B1 |
6339496 | Koley et al. | Jan 2002 | B1 |
6369403 | Holonyak, Jr. | Apr 2002 | B1 |
6372533 | Jayaraman et al. | Apr 2002 | B2 |
6392257 | Ramdani et al. | May 2002 | B1 |
6410941 | Taylor et al. | Jun 2002 | B1 |
6411638 | Johnson et al. | Jun 2002 | B1 |
6427066 | Grube | Jul 2002 | B1 |
6455879 | Ashley et al. | Sep 2002 | B1 |
6459709 | Lo et al. | Oct 2002 | B1 |
6459713 | Jewell | Oct 2002 | B2 |
6462360 | Higgins, Jr. et al. | Oct 2002 | B1 |
6472694 | Wilson et al. | Oct 2002 | B1 |
6477285 | Shanley | Nov 2002 | B1 |
6487230 | Boucart et al. | Nov 2002 | B1 |
6487231 | Boucart et al. | Nov 2002 | B1 |
6490311 | Boucart et al. | Dec 2002 | B1 |
6493366 | Johnson et al. | Dec 2002 | B1 |
6493371 | Boucart et al. | Dec 2002 | B1 |
6493372 | Boucart et al. | Dec 2002 | B1 |
6493373 | Boucart et al. | Dec 2002 | B1 |
6496621 | Kathman et al. | Dec 2002 | B1 |
6498358 | Lach et al. | Dec 2002 | B1 |
6501973 | Foley et al. | Dec 2002 | B1 |
6515308 | Kneissl et al. | Feb 2003 | B1 |
6535537 | Kinoshita | Mar 2003 | B1 |
6535541 | Boucart et al. | Mar 2003 | B1 |
6536959 | Kuhn et al. | Mar 2003 | B2 |
6542531 | Sirbu et al. | Apr 2003 | B2 |
6545335 | Chua et al. | Apr 2003 | B1 |
6546031 | Jewell et al. | Apr 2003 | B1 |
6548908 | Chua et al. | Apr 2003 | B2 |
6553051 | Tan et al. | Apr 2003 | B1 |
6556607 | Jewell | Apr 2003 | B1 |
6567435 | Scott et al. | May 2003 | B1 |
6658041 | Uebbing | Dec 2003 | B2 |
6680964 | Kim et al. | Jan 2004 | B2 |
6717964 | Jiang et al. | Apr 2004 | B2 |
6782021 | Huang et al. | Aug 2004 | B2 |
6801558 | Burak | Oct 2004 | B2 |
6822995 | Kwon | Nov 2004 | B2 |
6870207 | Taylor | Mar 2005 | B2 |
6914925 | Shinagawa et al. | Jul 2005 | B2 |
6940885 | Cheng et al. | Sep 2005 | B1 |
7054345 | Ryou et al. | May 2006 | B2 |
7110427 | Johnson et al. | Sep 2006 | B2 |
20010004414 | Kuhn et al. | Jun 2001 | A1 |
20010019566 | Jewell | Sep 2001 | A1 |
20020084525 | Chua et al. | Jul 2002 | A1 |
20020154675 | Deng et al. | Oct 2002 | A1 |
20020158265 | Eisenbeiser | Oct 2002 | A1 |
20030072526 | Kathman et al. | Apr 2003 | A1 |
20030165171 | Jewell | Sep 2003 | A1 |
20050208688 | Otoma et al. | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
4240706 | Jun 1994 | DE |
0288184 | Oct 1988 | EP |
0776076 | May 1997 | EP |
60123084 | Jan 1985 | JP |
02054981 | Feb 1990 | JP |
5299779 | Nov 1993 | JP |
WO 9857402 | Dec 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20040264541 A1 | Dec 2004 | US |