This application claims priority to Japanese Patent Application No. 2008-321908 filed on Dec. 18, 2008. The entire disclosure of Japanese Patent Application No. 2008-321908 is hereby incorporated herein by reference.
1. Technical Field
The present invention relates to an input device and to a data processing system and the like.
2. Related Art
The need has recently increased for a system that utilizes an input device for generating and outputting a physical quantity signal in accordance with the movement (including at least one of the orientation (including rotation) of a main body and the movement (including translational movement) of a main body) of a main body (housing) in space (e.g., a three-dimensional mouse or the like).
Japanese Laid-Open Patent Publication No. 2001-56743, for example, discloses a technique that utilizes a button-operated device in which a cursor pointer is moved on an image display device by movement of a mobile device in three-dimensional space (a three-dimensional mouse).
Japanese Laid-Open Patent Publication No. 2001-56743 discloses an input device (pointing device) in which rotational motion in two axes (Y-axis, Z-axis) is detected using two gyroscopes or gyro sensors (angular velocity sensors), and the detection signal is sent in an unaltered form to a control device as operation information. This input device can be used instead of a pointing rod or a laser pointer. For example, when a user holding the input device in their hand waves the distal end of the main body (housing) of the input device to the left or right, the position of a cursor on a display unit, for example, moves correspondingly left or right.
In the input device (pointing device) disclosed in Japanese Laid-Open Patent Publication No. 2001-56743, no consideration is made regarding rotation of the housing about the pointing direction axis (point direction axis). A case is assumed in which the input device has the external appearance of a cylinder, and the input device is used instead of a laser pointer, for example.
For example, when a user gives a presentation while using the input device to point to characters or shapes on a display or screen, the user may unconsciously rotate the handheld cylindrical input device (main body) slightly about the pointing direction axis (point direction axis: the X-axis in this instance).
The two gyroscopes (angular velocity sensors) detect angular velocity of rotation about the Y-axis and the Z-axis (i.e., the detection axes). Since each gyroscope is fixed to a flat surface (e.g., an internal wall surface of the housing) provided to the main body of the input device, for example, when the main body (housing) of the input device rotates about an axis (X-axis) other than the detection axes (Y-axis, Z-axis), the Y-axis and Z-axis also rotate, and the position of each gyroscope (angular velocity sensor) varies as a result.
Consequently, even though the same movement occurs at the distal end of the main body of the input device, a difference occurs between the angular velocity detected in a state in which there is no rotation about the X-axis and the angular velocity detected in a state in which there is rotation about the X-axis. Specifically, a detection error occurs due to rotation of the main body (housing) about the axis (X-axis) other than the detection axes (Y-axis, Z-axis).
Rotation of the main body (housing) about the axis (X-axis) other than the detection axes (Y-axis, Z-axis) preferably does not occur, and in order to prevent such rotation, the user must constantly be aware so as not to rotate the main body of the input device. In this case, the operating properties of the input device are adversely affected. Particularly when a button, touch sensor, or the like that is necessary for operation is provided to the main body of the input device, the limitation described above makes it impossible for the user to hold the device in a manner that enables easy operation, and the user is forced to hold the device in an inconvenient manner. This drawback places a burden on the user.
As the user holds and operates the main body of the input device, some unwanted and unintentional rotation of the main body is unavoidable during actual use. There is therefore a need to improve the operating properties of a three-dimensional input device.
Through at least one embodiment of the present invention, rotation about a detection axis can be detected with high precision regardless of the manner in which the main body (housing) is held by the user. Consequently, an input device (e.g., three-dimensional pointing device, three-dimensional mouse, or the like) can be provided that has similar operating properties to a pointing rod or laser pointer, for example.
An input device according to one aspect of the present invention includes a main body, a motion sensor unit and a coordinate conversion processing unit. The motion sensor unit is configured and arranged to generate a physical quantity signal corresponding to movement of the main body in a first two-dimensional orthogonal coordinate system defined by a mutually orthogonal Y-axis and Z-axis in a first plane perpendicular to an X-axis that coincides with a pointing direction of the main body. The motion sensor unit includes a Y-axis angular velocity sensor, a Z-axis angular velocity sensor, a Y-axis acceleration sensor and a Z-axis acceleration sensor. The Y-axis angular velocity sensor is configured and arranged to detect an angular velocity of the main body about the Y-axis. The Z-axis angular velocity sensor is configured and arranged to detect an angular velocity of the main body about the Z-axis. The Y-axis acceleration sensor is configured and arranged to detect an acceleration of the main body in a Y-axis direction. The Z-axis acceleration sensor is configured and arranged to detect an acceleration of the main body in a Z-axis direction. The coordinate conversion processing unit is configured to perform coordinate conversion processing based on the Y-axis acceleration detected by the Y-axis acceleration sensor and the Z-axis acceleration detected by the Z-axis acceleration sensor. The coordinate conversion processing unit is configured to convert the Y-axis angular velocity detected by the Y-axis angular velocity sensor and the Z-axis angular velocity detected by the Z-axis angular velocity sensor to a U-axis angular velocity and a V-axis angular velocity, respectively, in a second two-dimensional orthogonal coordinate system defined by a U-axis corresponding to a horizontal axis in the first plane and a V-axis perpendicular to the U-axis in the first plane.
In the present aspect, an X-axis is defined that coincides with the pointing direction (point direction) of the main body of the input device, and a two-dimensional first orthogonal coordinate system is defined by a Y-axis and Z-axis orthogonal to each other in a first plane that is perpendicular to the X-axis. The motion sensor unit provided to the input device detects movement in the three-dimensional space of the input device (main body of the input device) based on the first orthogonal coordinate system.
Specifically, the Y-axis angular velocity sensor detects the angular velocity of rotation about the Y-axis as the detection axis thereof. The Z-axis angular velocity sensor detects the angular velocity of rotation about the Z-axis as the detection axis thereof. Each angular velocity sensor is fixed to a flat surface (e.g., internal wall surface of the housing) provided to the main body of the input device, for example, and when the main body (housing) of the input device rotates about the axis (X-axis) other than the detection axes (Y-axis, Z-axis), the Y-axis and Z-axis also rotate. As described above, a measurement error is included in the angular velocity detected by each angular velocity sensor in a state in which there is unwanted rotation about the X-axis.
In the present aspect, a two-dimensional second orthogonal coordinate system is defined by a U-axis that is the horizontal axis in the first plane perpendicular to the X-axis, and a V-axis that is an axis perpendicular to the U-axis in the first plane, the X-axis coinciding with the pointing direction of the main body. The U-axis is a horizontal axis in the first plane, and the V-axis is a vertical axis orthogonal to the U-axis in the first plane. The U-axis and the V-axis are each uniquely defined by specifying the pointing direction (point direction) of the main body, and are not affected by rotation of the input device about the X-axis.
In the present aspect, the coordinate conversion processing unit executes a coordinate conversion (rotation coordinate conversion) from the first orthogonal coordinate system to the second orthogonal coordinate system, and converts the Y-axis angular velocity detected by the Y-axis angular velocity sensor, and the Z-axis angular velocity detected by the Z-axis angular velocity sensor to a U-axis angular velocity and a V-axis angular velocity, respectively. The detected angular velocities (including the measurement error that accompanies rotation when rotation about the X-axis occurs) are thereby corrected to the angular velocities for a state in which there is no rotation of the main body about the X-axis.
The rotation angle between the X-axis (Y-axis) and the U-axis (V-axis) in the first plane orthogonal to the X-axis must be detected in order for coordinate axis conversion (rotation coordinate conversion) to be executed. Therefore, in the present aspect, a Y-axis acceleration sensor is provided in addition to the Y-axis angular velocity sensor as a physical quantity measurement device for the Y-axis as the detection axis, and a Z-axis acceleration sensor is provided in addition to the Z-axis angular velocity sensor as a physical quantity measurement device for the Z-axis as the detection axis. When the main body (housing) of the input device rotates about the X-axis, which is the pointing direction axis, the acceleration detected for the Y-axis and the acceleration detected for the Z-axis each vary according to the rotation angle. Specifically, the Y-axis acceleration and the Z-axis acceleration are expressed by an equation that includes the rotation angle in the first plane as a parameter (variable). Rotation angle information can thus be obtained when the Y-axis acceleration and the Z-axis acceleration can be detected. The Y-axis angular velocity and the Z-axis angular velocity can be converted to a U-axis angular velocity and a V-axis angular velocity by executing rotation coordinate conversion based on the obtained rotation angle information.
Through the present aspect, rotation about the detection axis can be detected with high precision regardless of the manner in which the main body (housing) is held by the user. Consequently, an input device (e.g., three-dimensional pointing device, three-dimensional mouse, or the like) can be provided that has more similar operating properties to a pointing rod or laser pointer, for example.
In the input device according to another aspect of the present invention, the coordinate conversion processing unit is configured to convert the Y-axis angular velocity and the Z-axis angular velocity to the U-axis angular velocity and the V-axis angular velocity, respectively, according to Equations (1) and (2) below.
Equations (1) and (2)
In Equations (1) and (2), ωu represents the U-axis angular velocity, ωv represents the V-axis angular velocity, ωy represents the Y-axis angular velocity, ωz represents the Z-axis angular velocity, γy represents the Y-axis acceleration, and γz represents the Z-axis acceleration.
Coordinate conversion is generally performed by a combination of parallel movement and rotation. In the present aspect, it is sufficient if only rotation about the X-axis is considered. Rotation coordinate conversion can be performed through the use of a matrix operation. When the angle formed by the Y-axis (Z-axis) and the U-axis (V-axis) in the first plane is designated as θ2, the matrix operation according to Equation (3) below may be performed in order to convert the Y-axis angular velocity ωy and the Z-axis angular velocity ωz to the U-axis angular velocity ωu and ωv, respectively, wherein γy is the Y-axis acceleration, γz is the Z-axis acceleration, ωy is the Y-axis angular velocity, and ωz is the Z-axis acceleration. Equation (4) and Equation (5) below are thus established.
Equations (3) to (5)
Gravitational acceleration (in the vertical direction) is designated as G. Specifically, in a weightless state (e.g., in a state in which an object is placed in outer space or the like), the output of an acceleration sensor is zero. In the same manner, since a weightless state occurs inside an object in free fall, the output of an acceleration sensor is zero. On the other hand, an object in free fall on Earth is accelerating downward at 1 G (−1 G upward). The following relationship is also established: (Acceleration sensor output)=(Acceleration state of the object)−(1 G downward). Consequently, when the object is static, the output of the acceleration sensor is equal to 0−(1 G downward)=(1 G upward). When the angle θ1 is formed by the vertical axis (G-axis) and the first plane, the component of the gravitational acceleration (straight upward) G that is in the V-axis (which coincides with the Z-axis in a state in which there is no rotation about the X-axis), which is the perpendicular axis in the first plane, is designated as G1 (=G cos θ1). A case is assumed in which the Z-axis (Y-axis) and V-axis (U-axis) form a rotation angle θ2 in the first plane as a result of the main body being rotated θ2 about the X-axis.
At this time, the component in which the gravitational acceleration G is projected onto the Z-axis in the first plane (i.e., the Z-axis acceleration γz) is G1 cos θ2, and in the same manner, the component in which the gravitational acceleration (straight upward) is projected onto the Y-axis in the first plane (i.e., the Y-axis acceleration γy) is G1 sin θ2. As is apparent, the Y-axis acceleration γy and the Z-axis acceleration γz include the information of the rotation angle θ2 about the X-axis. Consequently, the computations according to Equations (4) and (5) above can be executed by detecting the Z-axis acceleration γz and the Y-axis acceleration γy. Specifically, Equations (4) and (5) can be transformed into Equations (6) and (7), respectively. Moreover, G1 can be indicated as shown in Equation (8) below.
Equations (6) to (8)
By substituting Equation (8) into the denominators of Equations (6) and (7), and setting γy=G1 sin θ2 and γz=G1 cos θ2 in Equations (6) and (7), Equations (1) and (2) above can be obtained. Specifically, the coordinate conversion processing unit can convert the Y-axis angular velocity ωy and the Z-axis angular velocity ωz to the U-axis angular velocity ωu, and ωv, respectively, by executing the computations according to Equations (1) and (2).
The input device according to another aspect of the present invention further includes a physical quantity/displacement amount conversion unit configured to convert an angular velocity signal outputted from the coordinate conversion processing unit to a displacement amount signal for specifying an amount of displacement of a control object so that the input device is used for inputting information for determining a displacement direction and a displacement amount of a control object to a data processing device.
The angular velocity signal detected by the motion sensor unit provided to the input device can be transmitted in an unaltered form as a control signal or the like to a data processing device. However, in this case, the data processing device must compute a displacement amount for a control object (e.g., cursor pointer) in a display unit based on the received angular velocity signal, and the load on the data processing device is correspondingly increased.
Therefore, in the present aspect, a physical quantity/displacement amount conversion unit is provided to the input device, and the angular velocity signal is converted at the input device to a displacement amount for a control object (e.g., cursor pointer) in the display unit. Information (displacement amount signal) relating to the obtained displacement amount is then transmitted to a data processing device. The processing load on the data processing device is thereby reduced.
The input device according to another aspect of the present invention further includes a conversion processing unit configured to disable signal output from the input device when the pointing direction of the main body is substantially straight upward or substantially straight downward.
When the main body (housing) of the input device is oriented substantially straight upward or substantially straight downward, the angle θ1 between the vertical axis (G-axis) and the first plane is substantially 90°. Consequently, the component G1 (=G cos θ1) of the gravitational acceleration (straight upward) G that is in the V-axis, which is the perpendicular axis in the first plane, is cos 90=0, and is therefore substantially 0. The Y-axis acceleration (γy=G1 sin θ2) and the Z-axis acceleration (γz=G1 cos θ2) are thus also substantially 0. The denominators in Equations (1) and (2) above are thus substantially 0, and computation for coordinate conversion is impossible.
In reality, since the pointing direction (point direction) of the main body (housing) is toward the screen page or screen, and is very substantially horizontal, there may be no problem, but because the pointing direction of the main body may be substantially straight upward or straight downward in rare cases, several measures are preferably put in place.
Therefore, when the pointing direction (point direction) of the distal end of the main body (housing) is substantially straight upward or straight downward, a method is employed for keeping the signal output from the input device at zero (i.e., disabling the output of signals corresponding to the movement of the main body). The processing load (load that accompanies response processing) in the data processing device is thereby reduced.
In the input device according to another aspect of the present invention, the coordinate conversion unit is configured to halt the coordinate conversion processing and to output a Y-axis angular velocity signal and a Z-axis angular velocity signal obtained at a timing prior to the coordinate conversion processing when the pointing direction of the main body is substantially straight upward or substantially straight downward.
In the present aspect, when the pointing direction of the main body is substantially straight upward or substantially straight downward, the coordinate conversion processing unit does not execute coordinate conversion processing, and the Y-axis angular velocity signal and Z-axis angular velocity signal prior to coordinate conversion processing are each be outputted in an unaltered form. In the present aspect, the data processing device can control the position of a control object (e.g., a cursor pointer) in the display unit, for example, based on the received Y-axis angular velocity signal and Z-axis angular velocity signal.
The input device according to another aspect of the present invention further includes an operating unit configured and arranged to switch between enabling and disabling signal output from the input device.
In the present aspect, the input device is further provided with an operating unit (e.g., a press-type output enable switch) for switching between enabling and disabling signal output from the input device. Signals are outputted from the input device only when the user is operating the operating unit (e.g., only when the user is pressing the output enable switch). Consequently, during periods in which the operating unit is not being operated (e.g., periods in which the output enable switch is not pressed), even when the main body (housing) is moved, there is no positional displacement of the control object. Through the present aspect, movement of the control object not intended by the user can be reliably prevented, and the convenience of the three-dimensional input device is further enhanced.
The input device according to another aspect of the present invention further includes a communication unit configured and arranged to communicate with an external device.
Providing a communication unit to the input device makes it possible for signals to be transmitted from the input device to a data processing device or the like by wireless communication (including optical communication) or wired communication.
A data processing system according to another aspect of the present invention includes the input device according to any of the aspects described above; and a data processing device configured and arranged to receive a transmission signal of the input device and executing prescribed data processing based on the received signal.
Through the use of at least one of the aspects of the present invention described above, the convenience of a three-dimensional input device is enhanced. The use of three-dimensional space is becoming increasingly common in three-dimensional CAD, games, and the like on computers, and there is thus an increasing need for a highly convenient system that utilizes a three-dimensional input device capable of inputting three-dimensional movement. Through the present aspect, a data processing system can be provided that utilizes a small-sized three-dimensional input device having excellent operating properties.
Referring now to the attached drawings which form a part of this original disclosure:
Embodiments of the present invention will next be described with reference to the drawings. The embodiments described hereinafter do not limit the scope of the present invention described in the claims, and the configurations described in the embodiments are not necessarily essential as means of achieving the objects of the present invention.
Specifically, as shown in
The input device 100 houses a wireless communication unit (or a wired communication unit), for example, and as shown in
As shown in
As shown in
As shown in
Consequently, even though the same movement (in this case, left and right movement QR, QL, respectively) occurs at the distal end of the main body (housing) of the input device 100, a difference occurs between the angular velocity detected in a state in which there is no rotation about the X-axis (the state shown in
Rotation of the main body (housing) about the axis (X-axis) other than the detection axes (Y-axis, Z-axis) preferably does not occur, and in order to prevent such rotation, the user must constantly be aware so as not to rotate the main body of the input device 100. In this case, the operating properties of the input device are adversely affected. Particularly when a button, touch sensor, or the like (not shown in
A configuration is therefore adopted in the present embodiment whereby the detected angular velocities (angular velocities for the Y-axis and Z-axis) are corrected (specifically, coordinate-converted) so as to be unaffected by rotation of the housing about the X-axis, and so that the correct angular velocity can always be detected. The manner in which the user holds the main body (housing) is thereby unrestricted, and the operating properties of the three-dimensional input device are improved. Information relating to the rotation angle about the X-axis must be obtained in order to execute coordinate conversion, and in order to obtain this information, the input device of the present embodiment is provided with acceleration sensors for detecting acceleration about the Y-axis and acceleration about the Z-axis.
The input device 100 has a Y-axis gyroscope 102 for detecting the angular velocity ωy of rotation about the Y-axis, a Z-axis gyroscope 104 for detecting the angular velocity ωz of rotation about the Z-axis, a Y-axis acceleration sensor 106 for detecting acceleration in the Y-axis direction, and a Z-axis acceleration sensor 108 for detecting acceleration in the Z-axis direction. The Y-axis gyroscope 102 and Z-axis gyroscope 104 each output a positive value for the angular velocity in the directions indicated by arrows for each axis (counterclockwise direction in FIGS. 4(A) and 4(B)), and the Y-axis acceleration sensor 106 and Z-axis acceleration sensor 108 each output a positive value for the acceleration in the directions indicated by the arrows for each axis.
In
A measurement error is included in the Y-axis angular velocity and Z-axis angular velocity detected in the state shown in
A second orthogonal coordinate system in three-dimensional space is defined by the X-axis that coincides with the pointing direction of the main body (housing) of the input device 100, a U-axis as the horizontal axis in a Q-plane perpendicular to the X-axis, and a V-axis as an axis perpendicular to the U-axis in the Q-plane. The U-axis is the horizontal axis in the first plane, and the V-axis is the vertical axis orthogonal to the U-axis in the first plane. The U-axis and the V-axis are each uniquely defined by specifying the pointing direction (point direction) of the main body (housing) of the input device 100, and are not affected by rotation of the input device 100 about the X-axis.
In the present embodiment, the coordinate conversion processing unit (indicated by reference numeral 532 in
The input device 100 is provided with the coordinate conversion processing unit (indicated by reference numeral 532 in
In this case, the coordinate conversion processing unit 532 converts the Y-axis angular velocity ωy and the Z-axis angular velocity ωz to a U-axis angular velocity ωu and ωv, respectively, by computation according to Equation (1) and Equation (2) below, wherein γy is the Y-axis acceleration, γz is the Z-axis acceleration, ωy is the Y-axis angular velocity, and ωz is the Z-axis acceleration.
Equations (1) and (2)
The sequence is described below. When the angle formed by the Y-axis (Z-axis) and the U-axis (V-axis) in the Q-plane (see
Equations (3) to (5)
The coordinate conversion processing unit 532 shown in
Gravitational acceleration will be described with reference to
As shown in
Equations (6) to (8)
By substituting Equation (8) into the denominators of Equations (6) and (7), and setting γy=G1 sin θ2 and γz=G1 cos θ2 in Equations (6) and (7), Equations (1) and (2) above can be obtained. Specifically, the coordinate conversion processing unit 532 can convert the Y-axis angular velocity ωy and the Z-axis angular velocity ωz to the U-axis angular velocity ωu and ωv, respectively, by executing the computations according to Equations (1) and (2).
Through the present embodiment, rotation about the detection axis (i.e., the Y-axis or Z-axis) can be detected with high precision regardless of the manner in which the main body (housing) of the input device 100 is held by the user. Consequently, an input device (e.g., three-dimensional pointing device, three-dimensional mouse, or the like) can be provided that has more similar operating properties to a pointing rod or laser pointer, for example.
When the main body (housing) of the input device 100 is oriented substantially straight upward or substantially straight downward, the angle θ1 between the vertical axis (G-axis) and the Q-plane (see
In reality, since the pointing direction (point direction) of the main body (housing) is toward the screen page or screen, and is very substantially horizontal, there may be no problem, but because the pointing direction of the main body of the input device 100 may be substantially straight upward or straight downward in rare cases, several measures are preferably put in place.
Therefore, when the pointing direction (point direction) of the distal end of the main body (housing) is substantially straight upward or straight downward, for example, a method is employed for keeping the signal output from the input device 100 at zero (i.e., disabling the output of signals corresponding to the movement of the main body). The processing load (load that accompanies response processing) in the data processing device (the side that receives signals from the input device 100) is thereby reduced.
When the pointing direction of the main body is substantially straight upward or substantially straight downward, for example, coordinate conversion processing by the coordinate conversion processing unit 532 is stopped, and the Y-axis angular velocity signal and Z-axis angular velocity signal prior to coordinate conversion processing may each be outputted in an unaltered form. In this case, an advantage is gained in that the data processing device (the side that receives signals from the input device 100) can control the position of a control object (e.g., a cursor pointer) in the display unit, for example, based on the received Y-axis angular velocity signal and Z-axis angular velocity signal.
The three-dimensional input device (pointing device) 100 furthermore has amplifiers 512 through 518 for amplifying the output signals of the sensors 102 through 108; A/D converters 520 through 526; a conversion processing unit (e.g., CPU) 530; a wireless transmission unit 536; and an antenna AN1. The conversion processing unit 530 has the coordinate conversion processing unit 532 and a coefficient computation unit (physical quantity/displacement amount conversion unit) 534. The coefficient computation unit (physical quantity/displacement amount conversion unit) 534 may also be omitted. In this case, angular velocity signals (ωu, ωv) after coordinate conversion are outputted.
The data processing device 600 has an antenna AN2, a receiving unit 610, a data processing unit (e.g., CPU) 620, ROM 630, RAM 640, a display control unit 650, and a display unit 660. The display unit 660 may have a display 662. When the display unit 660 is a projection-type display device, an image is displayed on the screen 400, for example.
The three-dimensional input device (pointing device) 100 shown in
The angular velocity signals detected by the motion sensor unit 502 provided to the input device 100 can be transmitted in an unaltered form as control signals or the like to the data processing device. However, in this case, the data processing device 600 must compute the displacement amount of the control object (e.g., cursor pointer CP) in the display unit 660 based on the received angular velocity signals, and the load on the data processing device 600 is correspondingly increased. Therefore, in
When the pointing direction (point direction) of the distal end of the main body (housing) is substantially straight upward or straight downward, the coordinate conversion processing unit 532 disables outputting of signals corresponding to the movement of the main body, or stops coordinate conversion processing and outputs the Y-axis angular velocity ωy and Z-axis angular velocity ωz that were in effect prior to coordinate conversion processing. A substantially straight upward or straight downward orientation of the pointing direction (point direction) of the distal end of the main body (housing) can be detected by comparing the denominators of Equations (1) and (2) above to a predetermined threshold value, for example. Specifically, the point direction can be determined to be substantially straight upward or substantially straight downward when the denominator is smaller than the threshold value.
The data processing unit 620 of the data processing device 600 performs a prescribed data processing based on the signal received by the receiving unit 610, and generates data or a timing control signal for image display, for example. The display control unit 650 controls image display in the display unit 660.
In the data processing system shown in
Through the present embodiment, a data processing system can be provided that utilizes a small-sized three-dimensional input device having excellent operating properties.
Then, γyωy−γyωz gives Su (step S702), γyωy+γzωz gives Sv (step S703), the denominators of Equations (1) and (2) above give k (step S704), and kSu gives ωu and kSv gives ωv (step S705). The angular velocity ωu of rotation about the U-axis, and the angular velocity ωv of rotation about the V-axis are thereby obtained.
The physical quantity/displacement amount conversion unit (coefficient computation unit) 534 then multiplies ωv by the coefficient βyv to compute a horizontal displacement amount MH (step S706), multiplies ωu by the coefficient βzu to compute a vertical displacement amount MV (step S707), and computes Mh, Mv by integer conversion processing (step S708).
When the point direction of the main body (housing) of the input device 100 is substantially straight upward or substantially straight downward, the horizontal displacement amount and the vertical displacement amount are both 0. Thus, when Mh=0 and Mv=0, no signal is outputted from the input device 100, and processing is ended (step S709), and a horizontal displacement amount Mh and vertical displacement amount Mv are transmitted to the data processing device 600 (step S710) only when a determination of “No” has been made in step S709.
In the present embodiment, an enable signal EN is at an active level, and a signal is outputted from the input device 100 only when the operating unit 700 is being operated (e.g., only when the output enable switch is being pressed). Consequently, during periods in which the operating unit 700 is not being operated (e.g., periods in which the output enable switch is not pressed), even when the user moves the main body (housing) of the input device 100, there is no change in the position of the control object (e.g., cursor pointer CP) in the display unit 660 of the data processing device 600.
Through the present embodiment, it is possible to prevent the control object in the display unit from moving against the user's intention, and the convenience of the three-dimensional input device is further enhanced. Buttons or the like having the same function as the left/right click buttons of a mouse may also be added in order to provide functionality equivalent to that of a mouse, for example. In this case, the convenience of the input device 100 can be further enhanced.
The manner in which the user must hold the main body (housing) is limited in the conventional technique, but through the present embodiment, the input device can correctly detect vertical/horizontal movement (rotation) with respect to the point direction and output signals regardless of the manner in which the user holds the main body (housing). It is therefore possible to provide the user with an operating experience that is more similar to that of a more familiar instrument, such as a pointing rod or a laser pointer. The user can also hold the input device in a manner that allows easy operation of the accompanying button or the like.
As described above, through at least one embodiment of the present invention, rotation about a detection axis can be detected with high precision regardless of the manner in which the main body (housing) is held by the user. Consequently, an input device (e.g., three-dimensional pointing device, three-dimensional mouse, or the like) can be provided that has similar operating properties to a pointing rod or laser pointer, for example. A highly precise three-dimensional input device can also be provided.
The use of three-dimensional space is becoming increasingly common in three-dimensional CAD, games, and the like on computers, and there is thus an increasing need for a device capable of inputting three-dimensional movement. Through at least one embodiment of the present invention, a system can be provided that utilizes a small-sized three-dimensional input device having excellent operating properties that is capable of detecting motion with high precision.
The input device of the present embodiment is particularly useful in presentation or other settings in which a pointing rod, laser pointer, or the like has conventionally been used, but the utilization of the input device of the present embodiment is not limited to such settings. When the input device is used as an input device of a computer or the like, i.e., as a user interface, for example, the input device can be used for input in all the applications operated by the input device. The input device of the present embodiment can also be applied in a panning system for a remotely operated camera, a robotic control system, or various other systems.
Embodiments of the present invention are described in detail above, but it will be readily apparent to one skilled in the art that numerous modifications of the present invention are possible in a range that does not depart from the new matter and effects of the present invention. All such modifications are accordingly encompassed by the present invention. The term “input device” is interpreted in the broadest sense, and broadly encompasses input devices that are capable of inputting signals that correspond to spatial displacement. The configuration of the three-dimensional motion sensor is not limited by the embodiments described above, and other configurations may be adopted (for example, a configuration in which a magnetic sensor or the like is included in addition to a gyroscope and an acceleration sensor). The orientation and rotation of the input device, as well as translation of the input device are also included in spatial displacement. Translation (horizontal movement, vertical movement, or other movement) of the input device can be computed by integrating the variation of the output of an acceleration sensor over time.
In understanding the scope of the present invention, the term “comprising” and its derivatives, as used herein, are intended to be open ended terms that specify the presence of the stated features, elements, components, groups, integers, and/or steps, but do not exclude the presence of other unstated features, elements, components, groups, integers and/or steps. The foregoing also applies to words having similar meanings such as the terms, “including”, “having” and their derivatives. Also, the terms “part,” “section,” “portion,” “member” or “element” when used in the singular can have the dual meaning of a single part or a plurality of parts. Finally, terms of degree such as “substantially”, “about” and “approximately” as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed. For example, these terms can be construed as including a deviation of at least ±5% of the modified term if this deviation would not negate the meaning of the word it modifies.
While only selected embodiments have been chosen to illustrate the present invention, it will be apparent to those skilled in the art from this disclosure that various changes and modifications can be made herein without departing from the scope of the invention as defined in the appended claims. Furthermore, the foregoing descriptions of the embodiments according to the present invention are provided for illustration only, and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2008-321908 | Dec 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5453758 | Sato | Sep 1995 | A |
5598187 | Ide et al. | Jan 1997 | A |
6082197 | Mizuno et al. | Jul 2000 | A |
8330716 | Nakaoka | Dec 2012 | B2 |
20040100441 | Rekimoto et al. | May 2004 | A1 |
20050212759 | Marvit et al. | Sep 2005 | A1 |
20070273645 | Bang et al. | Nov 2007 | A1 |
20080015031 | Koizumi et al. | Jan 2008 | A1 |
20080291163 | Liberty | Nov 2008 | A1 |
20090126490 | Sameshima | May 2009 | A1 |
20090299142 | Uchiyama et al. | Dec 2009 | A1 |
20100156788 | Nakaoka | Jun 2010 | A1 |
20100218024 | Yamamoto et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
0625744 | Nov 1994 | EP |
06-311564 | Nov 1994 | JP |
07-028591 | Jan 1995 | JP |
2001-56743 | Feb 2001 | JP |
2002-207567 | Jul 2002 | JP |
2003-240542 | Aug 2003 | JP |
2007-052696 | Mar 2007 | JP |
2007-079673 | Mar 2007 | JP |
2007-296173 | Nov 2007 | JP |
2007-317193 | Dec 2007 | JP |
2007-535776 | Dec 2007 | JP |
2008-123158 | May 2008 | JP |
2005108119 | Nov 2005 | WO |
2008-099851 | Aug 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20100156788 A1 | Jun 2010 | US |