The invention concerns an input device, especially for a vehicle, with a touchscreen.
A touchscreen is known, for example, from DE 201 02 197 U1 (incorporated by reference). A touchscreen for display of electronic signals and a confirming touch input of characters and symbols, consisting of a functional level for display and key input and a higher order, point-deformable protective level corresponding to it, is disclosed in DE 201 02 197 U1. A confirmation signal for the sense of touch (haptic stimulation) of the user, detectable at the position of the contact point in the deformed protective level, is generated during selection of certain points of the functional level by touching the protective level, and the confirmation signal for the sense of touch (haptic stimulation) is generated by oscillation elements eccentrically arranged within and/or beneath the functional level. In addition, transmission of the generated oscillations from the functional level to the protective level occurs in the touchscreen known from DE 201 02 197 U1 by direct contact of the two levels and/or via the edge regions of these levels by rigid or elastic connection elements.
Touchscreens are also known from U.S. Pat. No. 4,885,565 and EP 920 704 B1. Appropriate touchscreens can be obtained, for example, from 3M™ (see www.3M.com). Additional details concerning touchscreens can be taken from EP 1 560 102 A1.
A touch control with haptic feedback for input of signals into a computer and for output of forces to a user of the touch control is known from DE 201 80 024 U1 and the corresponding WO 01/54109A1 (incorporated by reference) for haptic feedback, in which the touch control has a touch input device that has a roughly flat contact surface, operated so that a position signal is entered into a processor of the computer based on a position on the contact surface that a user touches, in which the position signal indicates the position in two dimensions. The touch control according to WO 01/54109 A1 also has at least one actuator connected to the touch input device, in which the actuator sends a force to the touch input device, in order to provide a haptic sensation to the user touching the contact surface, in which the actuator sends the force directly to the touch input device based on force information sent by the processor.
Haptic feedback is also known from U.S. Pat. No. 6,429,846, WO 03/038800 A1 (incorporated by reference), U.S. Pat. No. 5,988,902, WO 922/26230 A1 (incorporated by reference), WO 97/21160 A1 (incorporated by reference), DE 200 22 244 U1 (incorporated by reference) and WO 03/41046 A1 (incorporated by reference).
U.S. Pat. No. 6,118,435 discloses a touch panel.
An operating element for a device with several selectable menus, functions and/or function values is known from DE 197 31 285 A1, which has a surface that can be grasped by the user, and via which selection can be carried out by local movement or touching of the surface. The surface is variable in its configuration corresponding to the selected and/or selectable menu, function and/or function menu.
The task of the invention is to improve an input device with a touchscreen. It is desirable to create an input device particularly suited for vehicles.
The aforementioned task is solved by an input device, especially for a vehicle, in which the input device includes a display for optical display of information, a touchscreen arranged above the display to input commands by touching an operating surface of the touchscreen, an actuator for movement of the touchscreen in at least one direction at least essentially parallel to the operating surface and a control to drive the actuator, so that the touchscreen is moved in a first time interval with a first movement function and with a second time interval connected to the first time interval with a second movement function different from the first movement function. The aforementioned task is also solved by a method of operating of such an input device.
The touchscreen according to the invention is especially a transparent touchscreen. The display according to the invention is especially a display or matrix display for variable display of information. A first display according to the invention can be a TFT, for example.
A means of display of optically displayed information according to the invention can be display of an operating element.
In one embodiment of the invention, the first movement function has a fraction corresponding to a step response of an at least second-order delay element.
In another embodiment of the invention, the second movement function has a fraction corresponding to a step response of a delay element of at least the second order and a periodic fraction, especially a decreasing one.
In another embodiment of the invention, the fraction corresponding to a step response of a delay element of at least the second order and the periodic fraction are linked by addition.
In another embodiment of the invention, the actuator can be driven by means of the control so that or it is prescribed that the touchscreen, in the third time interval connected to the second time interval, is moved with a third movement function different from the first and second movement function.
In another embodiment of the invention, the third movement function has a decreasing periodic fraction.
In another embodiment of the invention, the periodic fraction has a frequency between 30 Hz and 70 Hz.
In another embodiment of the invention, the third movement function has a linearly diminishing fraction linked to the decreasing periodic fraction by addition.
In another embodiment of the invention, the maximum of the movement is at least 0.1 mm and, at most, 1 mm, especially, at most, 0.5 mm. The movement has died out according to another embodiment of the invention after 100 ms, especially after 50 ms.
In another embodiment of the invention, the actuator is controllable by means of the control so that or it is prescribed that the touchscreen is moved around a rest position of a touchscreen, so that the integral of the movement of the touchscreen in a first direction is at least 2.5 times, especially 4 times the integral of the movement of the touchscreen in a second direction opposite the first direction.
The rest position of the touchscreen according to the invention is the (rest) position of the touchscreen before movement of the touchscreen or the (rest) position of the touchscreen after movement of the touchscreen. Generally, the (rest) position of the touchscreen before movement of the touchscreen should be the same as the (rest) position of the touchscreen after movement of the touchscreen.
An integral of the movement of the touchscreen according to the invention should then, in particular, be the integral of the movement of the touchscreen from the beginning of the movement to the time, at which the movement of the touchscreen has essentially died out, or at which the movement of the touchscreen is no longer palpable for an (average) operator. It is advantageously prescribed that only the integral of the movement of the touchscreen for a time interval about 50 ms to 100 ms long is the aforementioned integral of the movement of the touchscreen according to the invention.
In another embodiment of the invention, the actuator is controllable by means of the control so that or it is prescribed that the touchscreen is initially moved essentially in the second direction and then in the first direction.
In another embodiment of the invention, the movement in the first direction is at least twice the movement in the second direction.
In another embodiment of the invention, the actuator is controllable by means of the control so that or it is prescribed that the touchscreen is moved around a rest position, initially essentially in a first direction and then in a second direction opposite the first direction, in which the movement in the first direction is, at most, 0.5 times the movement in the second direction.
In another embodiment of the invention, it is prescribed that the touchscreen, depending on the position of touching of the touch surface, is moved differently by means of the information displayed by the display and/or the type of touching of the touch surface.
The aforementioned task is also solved by an input device, especially for a vehicle, in which the input device includes a display for optical display of information, a touchscreen arranged above the display for input of commands by touching an operating surface of the touchscreen, an actuator to move the touchscreen in at least one direction essentially parallel to the operating surface and a control to drive the actuator, so that the touchscreen is moved with a periodic fraction with a frequency between 10 Hz and 80 Hz, especially between 30 Hz and 70 Hz. The aforementioned task is also solved by a method for operation of such an input device.
In another embodiment of the invention, the actuator is controllable by means of the control so that or it is prescribed that the touchscreen is moved with a periodic fraction with a frequency between 40 Hz and 60 Hz.
In another embodiment of the invention, the maximum movement is at least 0.1 mm and, at most, 1 mm, especially, at most, 0.5 mm. The movement essentially dies out in another embodiment of the invention after 200 ms.
In another embodiment of the invention, it is prescribed that the touchscreen, depending on the position of touching of the touch surface, is moved differently by means of information displayed by the display and/or the type of touching of the touch surface.
The aforementioned task is also solved by an input device, especially for a vehicle, in which the input device includes a display for optical display of information, a touchscreen arranged above the display to input commands by touching an operating surface of the touchscreen, an actuator to move the touchscreen in at least one direction, essentially parallel to the operating surface, and a control to drive the actuator, so that the touchscreen is moved around a rest position of the touchscreen, so that the integral of the movement of the touchscreen in a first direction is at least 2.5 times the integral of the movement of the touchscreen in a second direction opposite the first direction. The aforementioned task is also solved by a method for operation of such an input device.
In one embodiment of the invention, the actuator is controllable by means of the control so that or it is prescribed that the touchscreen is moved around a rest position of the touchscreen, so that the integral of the movement of the touchscreen in the first direction is at least 4 times, especially at least 5 times the integral of the movement of the touchscreen in a second direction opposite the first direction.
In another embodiment of the invention, the actuator is controllable by means of the control so that or its prescribed that the touchscreen is initially moved essentially in the second direction and then in the first direction.
In another embodiment of the invention, the movement in the first direction is at least 2 times the movement in the second direction.
In another embodiment of the invention, the maximum movement is at least 0.1 mm and, at most, 1 mm, especially, at most, 0.5 mm. The movement in another embodiment of the invention has essentially died out after 100 ms, especially after 50 ms.
In another embodiment of the invention, the touchscreen is moved with a periodic fraction with a frequency between 10 Hz and 80 Hz, especially between 30 Hz and 70 Hz, especially between 40 Hz and 60 Hz.
In another embodiment of the invention, it is prescribed that the touchscreen is moved differently, depending on the position of touching of the touch surface of the information displayed by the display and/or the type of touching of the touchscreen.
The aforementioned task is also solved by an input device, especially for a vehicle, in which the input device includes a display for optical display of information, a touchscreen arranged above the display for input of commands by touching an operating surface of the touchscreen, an actuator to move the touchscreen in at least one direction, essentially parallel to the operating surface, and a control to drive the actuator, so that the touchscreen is moved around a rest position of the touchscreen in a first direction by at least 50 μm and then in a second direction opposite the first direction, in which the movement in the second direction is at least twice the movement in the first direction. The aforementioned task is also solved by a method for operation of such an input device.
In another embodiment of the invention, the maximum movement is at least 0.1 mm and, at most 1 mm, especially, at most, 0.5 mm. In another embodiment of the invention, the movement has essentially died out after 100 ms, especially after 50 ms.
In another embodiment of the invention, it is prescribed that the touchscreen is moved differently, depending on the position of touching of the touch surface of the information displayed by the display and/or the type of touching of the touch surface.
The aforementioned task is also solved by an input device, especially for a vehicle, in which the input device includes a display for optical display of information, a touchscreen arranged above the display for input of commands by touching an operating surface of the touchscreen, an actuator to move the touchscreen in at least one direction, essentially parallel to the operating surface, and a control to generate a haptic feedback by driving the actuator, so that the touchscreen is moved alternately according to a first movement mode or at least a second movement mode different from the first movement mode, in which the touchscreen according to the first movement mode is moved with a periodic fraction with a frequency between 10 Hz and 80 Hz, especially between 30 Hz and 70 Hz, and/or by a rest position of the touchscreen, so that the integral of the movement of the touchscreen in a first direction is at least 2.5 times the integral of the movement of the touchscreen in a second direction opposite the first direction. The aforementioned task is also solved by a method for operation of such an input device.
In another embodiment of the invention, the choice between the first movement mode and the second movement mode is dependent on the type of information displayed by the display, the position of touching of the touch surface, the information displayed by the display and/or the type of touching of the touch surface.
Vehicle according to the invention is especially an individual land vehicle, usable in traffic. Vehicles according to the invention are not particularly restricted to land vehicles with internal combustion engines.
Touching of the touchscreen according to the invention can be only pressing on the touchscreen.
A periodic movement according to the invention, in particular, include a movement at least for a period with an amplitude of 20 μm.
Additional advantages and details are apparent from the following description of practical examples.
The touchscreen 11 is also fastened to housing 15. Housing 15 is then transparent, at least in the region beneath touchscreen 11, designated with reference number 17. As an alternative, the touchscreen 11 can also be configured as part of housing 15.
The housing 15, as shown in
The support 74 includes flexible sleeves or seals 78, through which pins 77 for fastening of display 72 to a frame 82 are pushed, in which the pins 77 are fastened to the frame 82 with screws 81. The input device 4C also includes an interface circuit board 78 for data connection of input device 4C to control 10 or a control corresponding to control 10. The input device 4C also includes a fastening element 80 that can be fastened to frame 82 by means of a screw 83 for fastening of a rod 79. The support 74 includes on its back (not apparent in
The input device 4C also includes an actuator 84 corresponding to actuator 13, which includes an eccentric 85, which can correspond to the eccentric of the actuators shown in EP 1 560 102 A1.
The control 10 is not shown in
A flexible element 410 to prevent penetration of dust particles (into the gap) between display 403 and touchscreen 402 is arranged between display 403 and touchscreen 402. For this purpose, the flexible element 410 is arranged continuous on the edge of touchscreen 402. The flexible element 410 has a rigidity adjusted to a weight of the touchscreen 402, so that the touchscreen 402, in conjunction with the flexible element 410, has a mechanical natural frequency between 5 Hz and 150 Hz, especially 30 Hz and 70 Hz, in the movement direction (i.e., in the present practical example, in the x-direction).
The flexible element 410 consists essentially of an elastomer and includes—at least in the movement direction (i.e., in the present practical example, in the x-direction)—essentially linearly extended grooves 411 and 412 that intersect in pairs, so that a common intersection site 413, configured as an arched dome, is present between two grooves 411 and 412. The grooves 411 and 412 are sloped at roughly 45° relative to the operating surface of the touchscreen 402. The transition between a groove 411 or 412 and a flat region 414 has a radius of curvature that is three to five times the thickness of a material, from which the groove 411 or 412 is formed. Appropriate embodiments for a region of a flexible element 410 configured in this way can be derived from U.S. Pat. No. 4,044,186 (incorporated by reference), as well as the corresponding DE 2 349 499 (incorporated by reference).
The flexible element 410 includes a folded or telescoping region 415, perpendicular to the movement direction (i.e., in the present practical example, perpendicular to the x-direction or in the y-direction). Additional practical examples of the folded or telescoping region 415A, 415B and 415C are shown in
Between the display 453 and touchscreen 452, a flexible foamed element 460 to prevent penetration of dust particles between display 453 and display 452 is arranged. For this purpose, the flexible foamed element 460 is arranged continuous on the edge of touchscreen 452. The flexible foamed element 460 has a rigidity adjusted to a weight of the touchscreen 452, so that the touchscreen 452, in conjunction with the flexible foamed element 460 in the movement direction (in the present practical example, in the x-direction), has a mechanical natural frequency between 5 Hz and 150 Hz, especially 30 Hz and 70 Hz. The flexible foamed element 460 consists essentially of polyurethane.
If the touchscreen 402 (or its operating surface) is touched by a user, for example, in the region of the operating element, depicted by means of display 403, or the touchscreen 452 (or its operating surface) is touched by a user in the region of the operating element 470, depicted by means of display 453, or the operating surface 16 of touchscreen 11 is touched by a user, for example, in the region of the operating element 60, depicted by means of display 12, a map is displayed by means of display 403, 453 or 12. In addition, the control generates a control signal S for haptic confirmation of successful operation of operating element 430, 470 or 60. The actuator 401, 451 or 13 is then driven by means of control signal S, so that it moves the touchscreen 402 or 452 or the housing 15 and therefore touchscreen 11 (with negligible feedback by the user) relative to display 403, 453 or 12 in the x-direction, as shown in
in which t is time, and in which:
For the present practical example, the value of the variables according to Table 1 are chosen, so that the touchscreen 402 or 452 or housing 15 and therefore touchscreen 11 (with negligible feedback by the user) is moved in the x-direction, as shown in
The haptic confirmation, described with reference to
It can be prescribed that a slider is displayed by means of display 403, 453 or 12. It can be prescribed that during operating of this slider by touching touchscreen 402 (or its operating surface) or touchscreen 452 (or its operating surface) or the operating surface of touchscreen 11 by a user in the region of the slider, depicted by means of display 12, a control signal S for haptic confirmation of successful operation of the slider is generated. The actuator 401, 451 or 13 is then driven by means of control signal S, so that it moves the touchscreen 402 or 452 or housing 15 and therefore touchscreen 11 (with negligible feedback by the user) relative to display 403, 453 or 12 in the x-direction, as shown in
in which the values of the variables according to Table 2 are chosen.
If touchscreen 402 (or its operating surface) is touched by a user, for example, in the region of the operating element 403 displayed by display 403, the touchscreen 452 (or its operating surface) is touched by the user in the region of the operating element 471, displayed by means of a display 453, or the operating surface 16 of the touchscreen 11 is touched by a user in the region of the operating element 63, displayed by means of display 12, the control generates a control signal S for haptic warning before operation of operating element 431, 471 or 63. The actuator 401, 451 or 13 is then driven by control signal S, so that it moves the touchscreen 402 or 452 or the housing 15 and therefore touchscreen 11 (with negligible feedback by the user) relative to display 403, 453 or 12 in the x-direction, as shown in
in which the values of the variables are chosen according to Table 3.
If the touchscreen 402 (or its operating surface) is touched by a user in the region of the operating element 431, displayed by display 403, the touchscreen 452 (or its operating surface) is touched by a user in the region of the operating element 471, displayed by means of display 453, or the operating surface 16 of touchscreen 11 is touched by a user, again in the region of the operating element 63, displayed by display 12, a higher order menu is displayed by displays 403, 453 or 12. In addition, the control 10 generates a control signal S, corresponding to the already described haptic confirmation of successful operation of operating element 430, 470 or 60.
The warning, described with reference to
The elements and spacings in FIGS. 2 to 15 are not necessarily drawn true to scale, considering simplicity and clarity. For example, the orders of magnitude of some elements and spacings in FIGS. 2 to 15 are exaggerated relative to other elements and spacings in FIGS. 2 to 15, in order to assure understanding of the practical examples of the present invention.
Number | Date | Country | |
---|---|---|---|
60716747 | Sep 2005 | US |