Input device haptics and pressure sensing

Information

  • Patent Grant
  • 10359848
  • Patent Number
    10,359,848
  • Date Filed
    Monday, September 19, 2016
    8 years ago
  • Date Issued
    Tuesday, July 23, 2019
    5 years ago
Abstract
Input device haptics and pressure sensing techniques are described. An input device includes an outer surface, a pressure sensor and haptic feedback mechanism, and a pressure sensing and haptic feedback module. The outer surface is configured to receive an application of pressure by an object. The pressure sensor and haptic feedback mechanism has one or more piezos configured to detect and quantify an amount of the application of the pressure to the outer surface by the object, the one or more piezos configured to output a signal indicating the quantified amount of the pressure. The pressure sensing and haptic feedback module is configured to receive the signal from the one or more piezos indicating the quantified amount of the pressure and control the haptic feedback of the pressure sensor and haptic feedback mechanism.
Description
BACKGROUND

Trackpads may be found on a variety of different devices to support cursor control, such as on a laptop, removable keyboard cover for a tablet, and so on. In some instances, the trackpads also include functionality usable to initiate a selection (e.g., a “click”) and thus movement of a cursor and selections may be made by a user without requiring a user to remove a finger from the trackpad to press a separate button.


Conventional techniques used to implement this functionality typically involved a hinged structure and a dome switch. Since these implementations are typically hinged from the top, the response is not uniform and the upper region of the trackpad is difficult to “click.” These conventional trackpads also struggle to reject inadvertent actuations when a user is typing, thereby causing a cursor to jump around in a random manner and thus interfere with a user's interaction with a computing device, which is both inefficient and frustrating.


SUMMARY

Input device haptics and pressure sensing techniques are described. In one or more examples, an input device includes an outer surface, a pressure sensor and haptic feedback mechanism, and a pressure sensing and haptic feedback module. The outer surface is configured to receive an application of pressure by an object. The pressure sensor and haptic feedback mechanism has one or more piezos configured to detect and quantify an amount of the application of the pressure to the outer surface by the object, the one or more piezos configured to output a signal indicating the quantified amount of the pressure. The pressure sensing and haptic feedback module is configured to receive the signal from the one or more piezos indicating the quantified amount of the pressure and control the haptic feedback of the pressure sensor and haptic feedback mechanism by energizing the one or more piezos based at least in part of the quantified amount of pressure.


In one or more examples, a trackpad system includes an outer surface configured to receive an application of pressure by an object and detect movement of the object in relation to the outer surface, the detected movement usable to control a cursor of a computing device; a pressure sensor and haptic feedback mechanism having a plurality of piezos that suspend the outer surface and are configured to detect and quantify an amount of the application of the pressure to the outer surface by the object, the pressure sensor and haptic feedback mechanism configured to output one or more signals indicating the quantified amount of the pressure; and a pressure sensing module configured to receive the one or more signals from the pressure sensors indicating the quantified amount of the pressure by the one or more piezos and control the haptic feedback of the haptic feedback mechanism by energizing the one or more piezos based at least in part of the quantified amount of pressure.


In one or more examples, an input device includes an outer surface configured to receive an application of pressure by an object, a pressure sensor configured to detect and quantify an amount of the application of the pressure to the outer surface by the object, the pressure sensor configured to output a signal indicating the quantified amount of the pressure, a haptic feedback mechanism configured to provide haptic feedback using at least one piezo, and a pressure sensing module configured to receive the signal from the pressure sensors indicating the quantified amount of the pressure and control the haptic feedback of the haptic feedback mechanism by energizing the at least one piezo based at least in part of the quantified amount of pressure.


This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different instances in the description and the figures may indicate similar or identical items. Entities represented in the figures may be indicative of one or more entities and thus reference may be made interchangeably to single or plural forms of the entities in the discussion.



FIG. 1 is an illustration of an environment in an example implementation that is operable that is operable to employ the input device haptics and pressure sensing techniques described herein.



FIG. 2 depicts an example implementation of an input device of FIG. 1 as showing a flexible hinge and trackpad in greater detail.



FIG. 3 depicts an example of a pressure sensor and haptic feedback mechanism of FIG. 2 as employing piezos to detect pressure and/or provide haptic feedback.



FIG. 4 depicts an example circuit model of a piezo of FIG. 3.



FIG. 5 depicts a cross section view of pressure sensor and haptic feedback mechanisms of FIG. 2.



FIG. 6 depicts a cross section view of pressure sensor and haptic feedback mechanisms of FIG. 2 as involving negative voltages.



FIG. 7 depicts a circuit in an example implementation that is configured to read bipolar voltages.



FIG. 8 depicts an example implementation of a circuit usable to energize piezos using a bridge circuit.



FIG. 9 depicts an example of a waveform used to drive the circuit shown in FIG. 9.



FIG. 10 is a flow diagram depicting a procedure in an example implementation in which piezos are used to detect pressure and provide haptic feedback.



FIG. 11 illustrates an example system including various components of an example device that can be implemented as any type of computing device as described with reference to FIGS. 1-10 to implement embodiments of the techniques described herein.





DETAILED DESCRIPTION
Overview

Conventional techniques used to support tactile feedback when “clicking” a trackpad suffered from inadvertent actuations, lack of uniformity in the response, and so forth. Consequently, these conventional techniques could interfere with a user's experience when interacting with the trackpad to input data using the trackpad itself and even a keyboard associated with the trackpad.


Input device haptics and pressure sensing techniques are described. In one or more implementations, an input device such as a trackpad, key of a keyboard, and so forth is configured to support haptics and/or pressure sensing. For example, piezos may be arranged at the corners of a trackpad and as such suspend the trackpad. When a pressure is detected (e.g., a user pressing a surface of the trackpad with a finger), the piezos are energized to provide haptic feedback that may be felt by the user.


Additionally, the piezos may also be utilized to detect the pressure itself, such as to monitor an output voltage of the piezos generated due to strain caused by the pressure to the piezos. In this way, inadvertent clicks may be avoided with a uniform response over an entirety of a surface of the trackpad. A variety of other examples are also contemplated, such as to address voltage decay, bipolar voltages, and so on as described in the following sections and shown in corresponding figures.


In the following discussion, an example environment is first described that may employ the techniques described herein. Example procedures are then described which may be performed in the example environment as well as other environments. Consequently, performance of the example procedures is not limited to the example environment and the example environment is not limited to performance of the example procedures as further described below.


Example Environment


FIG. 1 is an illustration of an environment 100 in an example implementation that is operable to employ the input device haptics and pressure sensing techniques described herein. The illustrated environment 100 includes an example of a computing device 102 that is physically and communicatively coupled to an input device 104 via a flexible hinge 106. The computing device 102 may be configured in a variety of ways. For example, the computing device 102 may be configured for mobile use, such as a mobile phone, a tablet computer as illustrated, and so on. Thus, the computing device 102 may range from full resource devices with substantial memory and processor resources to a low-resource device with limited memory and/or processing resources. The computing device 102 may also relate to software that causes the computing device 102 to perform one or more operations.


The computing device 102, for instance, is illustrated as including an input/output module 108. The input/output module 108 is representative of functionality relating to processing of inputs and rendering outputs of the computing device 102. A variety of different inputs may be processed by the input/output module 108, such as inputs relating to functions that correspond to keys of the input device 104, keys of a virtual keyboard displayed by the display device 110 to identify gestures and cause operations to be performed that correspond to the gestures that may be recognized through the input device 104 and/or touchscreen functionality of the display device 110, and so forth. Thus, the input/output module 108 may support a variety of different input techniques by recognizing and leveraging a division between types of inputs including key presses, gestures, and so on.


In the illustrated example, the input device 104 is configured as having an input portion that includes a keyboard 112 having a QWERTY arrangement of keys and track pad 114 although other arrangements of keys are also contemplated. Further, other non-conventional configurations are also contemplated, such as a game controller, configuration to mimic a musical instrument, and so forth. Thus, the input device 104 and keys incorporated by the input device 104 may assume a variety of different configurations to support a variety of different functionality.


As previously described, the input device 104 is physically and communicatively coupled to the computing device 102 in this example through use of a flexible hinge 106. The flexible hinge 106 is flexible in that rotational movement supported by the hinge is achieved through flexing (e.g., bending) of the material forming the hinge as opposed to mechanical rotation as supported by a pin, although that embodiment is also contemplated. Further, this flexible rotation may be configured to support movement in one or more directions (e.g., vertically in the figure) yet restrict movement in other directions, such as lateral movement of the input device 104 in relation to the computing device 102. This may be used to support consistent alignment of the input device 104 in relation to the computing device 102, such as to align sensors used to change power states, application states, and so on.


The flexible hinge 106, for instance, may be formed using one or more layers of fabric and include conductors formed as flexible traces to communicatively couple the input device 104 to the computing device 102 and vice versa. This communication, for instance, may be used to communicate a result of a key press to the computing device 102, receive power from the computing device, perform authentication, provide supplemental power to the computing device 102, and so on. The flexible hinge 106 may be configured in a variety of ways, further discussion of which may be found in relation to FIG. 2.


The input device is also illustrated as including a pressure sensing and haptic feedback module 116 that is representative of functionality to detect pressure and supply haptic feedback in response to the detected pressure. A user, for instance, may press the trackpad with a finger and in response receive haptic feedback. This may be performed in a variety of ways, an example of which is described in the following and shown in a corresponding figure.



FIG. 2 depicts an example implementation 200 of the input device 104 of FIG. 1 as showing the flexible hinge 106 and trackpad 114 in greater detail. In this example, a connection portion 202 of the input device is shown that is configured to provide a communicative and physical connection between the input device 104 and the computing device 102. The connection portion 202 as illustrated has a height and cross section configured to be received in a channel in the housing of the computing device 102, although this arrangement may also be reversed without departing from the spirit and scope thereof.


The connection portion 202 is flexibly connected to a portion of the input device 104 that includes the keys through use of the flexible hinge 106. Thus, when the connection portion 202 is physically connected to the computing device the combination of the connection portion 202 and the flexible hinge 106 supports movement of the input device 104 in relation to the computing device 102 that is similar to a hinge of a book. Through this rotational movement, a variety of different orientations of the input device 104 in relation to the computing device 102 may be supported, such as to act to cover the display device 110 of FIG. 1, be disposed behind the housing of the computing device 102, and so forth.


The connection portion 202 is illustrated in this example as including magnetic coupling devices 204, 206, mechanical coupling protrusions 208, 210, and a plurality of communication contacts 212. Although physical contacts 212 are shown in this example, wireless communication techniques are also contemplated, e.g., NFC, Bluetooth®, and so forth. The magnetic coupling devices 204, 206 are configured to magnetically couple to complementary magnetic coupling devices of the computing device 102 through use of one or more magnets. In this way, the input device 104 may be physically secured to the computing device 102 through use of magnetic attraction.


The connection portion 202 also includes mechanical coupling protrusions 208, 210 to form a mechanical physical connection between the input device 104 and the computing device 102. The mechanical coupling protrusions 208, 210 are configured to permit removal of the input device 104 along a plane following a height of the protrusions and restrict removal through mechanical binding along other planes. A mid-spine 214 is also included to support mechanical stiffness and a minimum bend radius of the flexible hinge 106.


The input device 104 also includes a keyboard 112 and trackpad 114 as previously described. Although the pressure sensing and haptic feedback techniques are described in relation to the trackpad 114 in the following, these techniques are equally applicable to keys of the keyboard 112.


The trackpad 114 in the illustrated example is formed as a rectangle having four corners, although other shapes are also contemplated. Pressure sensor and haptic feedback mechanisms 216, 218, 220, 222 are disposed at respective corners to suspend an outer surface 224 of the trackpad 114. The pressure sensor and haptic feedback mechanisms 216-222 are configured to provide haptic feedback based at least in part on sensed amounts of pressure. As such, the pressure sensor and haptic feedback mechanisms 216-222 may be configured in a variety of ways, an example of which is described in the following and shown in a corresponding figure.



FIG. 3 depicts an example 300 of a pressure sensor and haptic feedback mechanism 216 of FIG. 2 as employing piezos to detect pressure and/or provide haptic feedback. This example is illustrated using first, second, and third stages 302, 304, 306. The pressure sensor and haptic feedback mechanism 216 includes an outer surface 308, such as an outer surface 308 of the trackpad, a key of a keyboard, and so forth. The outer surface 308 may be formed from a variety of different materials and combinations thereof, such as a glass, plastic, a laminate structure, include a fabric outer layer, and so forth.


The outer surface 308 is coupled mechanically to a spacer 310 that is coupled mechanically to a backer 312. The spacer 310 is configured to channel pressure applied to the outer surface 310 to a central region of the backer 312 and thus a piezo 314 connected thereto. In this way, an amount of deflection of the backer 312 and corresponding piezo 314 is increased in response to the pressure even on “off center” presses, thereby supporting a greater sensitivity to detection of an amount of pressure and haptic response.


The backer 312 is formed from a rigid material (e.g., steel, plastic, and the like) and physically coupled to the piezo 314. Accordingly, when a pressure is not applied to the outer surface 308 (and thus no pressure is applied to the backer 312) the piezo 314 is not strained and as such does not output a voltage as shown at the first stage 302. At the second stage 304, an object 316 such as a finger of a user's hand (not shown in scale) as part of pressing down on the outer surface 316 applies a pressure that causes deflection of the backer 312 and thus strain on the piezo 314 which results in an output voltage which is detectable by the pressure sensing and haptic feedback module 116.


As the voltage output by the piezo 314 changes with an amount of pressure applied, the piezo 314 is configured to detect not just presence or absence or pressure, but also an amount of pressure, e.g., a respective one of a plurality of levels of pressure. The piezo 314 is configurable in a variety of ways, such as formed at least in part from a piezo ceramic material, PZT, electroactive polymer, or electromechanical polymer. Other techniques to detect pressure are also contemplated, such as FSRs, changing in capacitance, changes in detect contact size, strain gauges, piezo-resistive elements, and so on.


The piezo 314 is also usable to provide a haptic feedback as shown at the third stage 306. Continuing with the previous example in the second stage 304, the piezo 314 detects an amount of pressure applied to the outer surface 308 by the finger of the user's hand. If the detected pressure is over a threshold, the pressure sensing and haptic feedback module 116 energizes the piezo 314. This causes the piezo 314 to pull against the backer 312 and thus deflect outward back toward an object 316 applying the pressure, thereby providing a haptic response.


In this way, the piezo 314 is leveraged to provide both pressure sensing and haptic feedback. Other examples are also contemplated. For instance, pressure may be sensed by a pressure sensor that is not the piezo and then the piezo may be used to provide haptic feedback. In another instance, a first piezo may be used to detect pressure and another piezo may be used to provide haptic feedback.



FIG. 4 depicts an example circuit model 400 of the piezo 314 of FIG. 3. When the piezo 314 deflects as shown in the second stage 304 of FIG. 3, a current is generated, which then charges its intrinsic capacitance as well as any externally applied capacitance. The voltage across the capacitor 402 can then be read by the pressure sensing and haptic feedback module 116 as an indication of deflection, and thus applied pressure.



FIG. 5 depicts a cross section view 500 of pressure sensor and haptic feedback mechanisms 216, 218 of FIG. 2. When there are multiple pressure sensor and haptic feedback mechanisms 216-222 as shown in FIG. 2, measures of signals generated by the mechanisms may be taken in a variety of different ways. For example, each of the mechanisms may be measured individually, which may be used to calculate a location (e.g., centroid) of an object that applies the pressure in relation to the outer surface 308, e.g., through triangulation.


In another example, the signal is derived by summing signals from all of the pressure sensor and haptic feedback mechanisms 216-222, i.e., the piezos of these mechanisms. As shown in FIG. 5, for instance, an object 216 applies pressure that is detected by respective piezos 502, 504 of respective pressure sensor and haptic feedback mechanisms 216, 218. The pressure is applied by the object 316 in this example between spacers 506, 508 of the mechanisms. Arrows are utilized to indicate application of the pressure by the object 316 and respective amounts of the pressure sensed by the piezos 502, 504. As illustrated, the piezo 504 closest to a location at which the pressure is applied receives a larger amount of the pressure than the piezo 502 that is located further away. By summing the responses of the piezos in this example, the amount of pressure applied by the object 316 is detected.



FIG. 6 depicts a cross section view 600 of pressure sensor and haptic feedback mechanisms 216, 218 of FIG. 2 as involving negative voltages. In this example, the object 316 applies pressure to an area of the outer surface 308 that is not positioned between the spacers 506, 508 of the pressure sensor and haptic feedback mechanisms 216, 218. This causes the piezo 502 to “lift up” and exhibit a negative voltage while the piezo 504 measures a positive voltage. In this example, the voltages from the piezos 502, 504 are still summed to detect the amount of pressure applied by the object 316 as the amount of pressure detected by the piezo 504 more than compensates for the negative amount of pressure detected by the piezo 502.


Returning again to FIG. 4, techniques are employed to reduce an effect of charge leakage. Once charged, the capacitor 402 slowly leaks away charge. Accordingly, if a user wants to perform a “push and hold” gesture, the voltage may slowly drain away to the point where the system could believe that a user has lifted their finger away from the outer surface, even though the finger is applying a relatively constant amount of pressure. By periodically discharging the capacitor 402 and storing pressure offsets (e.g., by the pressure sensing and haptic feedback module 116), this issue of decay can be avoided.


For example, when a piezo is unmoving, current does not flow and the voltage is held. At any time, the capacitor 402 of the circuit 400 can be discharged by an external circuit, e.g., by the pressure sensing and haptic feedback module 116. Any additional deflection, whether positive or negative, for the piezo will then charge the capacitor from its discharged state.


One example of such a sequence is for a finger to apply a pressure to a piezo and hold, causing the piezo to generate a signal of “X” volts, which is stored as an off-set. The capacitor 402 is then discharged by an external circuit (e.g., pressure sensing and haptic feedback module 116) such that the piezo voltage is now “0.” Accordingly, the piezo voltage is now zero volts, but the “X” offset is remembered and stored in “Y” such that pressure now equals a currently read voltage plus a value stored in “Y.” Therefore, if the finger ceases application of pressure (i.e., releases the piezo) and the piezo relaxes to a rest deflection, the piezo voltage is now “−X” volts. With the stored away offset, however, the pressure is read as zero by the pressure sensing and haptic feedback module 116. The capacitor 402 is discharged again and zero is stored as the new offset.


In one or more implementations, discharge of the capacitor 402 is managed to occur when above a threshold voltage and when pressure has been relatively constant for a defined amount of time. In this way, risk of injecting noise into the pressure signal is minimized.


In order to provide haptic feedback as previously described, the pressure sensing and haptic feedback module 116 energizes the piezos, e.g., through application of +/− one hundred volts. However, after the piezos are energized the amount of voltage remaining in the piezos is random. Accordingly, in order to continue to use the piezos for pressure sensing after a haptic event, an amount of pressure is detected and stored in an offset that includes a sum of a piezo voltage “X” and accumulated offsets “Y” as described above.


The haptic event is performed by energizing the piezos by the pressure sensing and haptic feedback module 116. The piezos are cleared and a waiting period is undertaken for an amount of time in order to settle voltages of the piezos. The voltage is then read, and the offset “Y” is set such that a read-back pressure matches a pressure before the haptic event. Accordingly, in this example an assumption is made that the pressure going into a haptic event matches the pressure coming out of the haptic event such that after the haptic event the pressure is recalibrated to match the previous pressure before the event.


To keep the system calibrated, the pressure sensing and haptic feedback module 116 may zero the piezos by defining a read-back voltage as zero pressure, which optionally involves clearing the piezos when it is sensed that the pressure is removed, e.g., the object is lifted from the outer surface. This lifting may be detected using sensors (e.g., capacitive sensors) of the trackpad that are used to detect movement and location.



FIG. 7 depicts a circuit 700 in an example implementation that is configured to read bipolar voltages. As described in relation to FIG. 6 above, in some instances positive and negative voltages may be detected by the pressure sensor and haptic feedback mechanisms 216, 218. In order to establish a zero point as actually occurring at a zero voltage, the voltage is measure differentially using diodes as shown in the circuit 700 of FIG. 7. An ADC may be connected to either terminal, which may be represented as capacitors to ground.



FIG. 8 depicts an example implementation of a circuit 800 usable to energize piezos using a bridge circuit. An example of a waveform 900 used to drive the circuit 800 is shown in FIG. 9. The haptic response (i.e., the “click sensation”) occurs at a rapid ramp up 902 portion of the waveform 900 at times “t2” and “t3.” In this way, piezos may be used to detect applied pressure and provide haptic feedback, further discussion of which is included in the following procedure.


Example Procedures

The following discussion describes haptic and pressure sensing techniques that may be implemented utilizing the previously described systems and devices. Aspects of each of the procedures may be implemented in hardware, firmware, or software, or a combination thereof. The procedures are shown as a set of blocks that specify operations performed by one or more devices and are not necessarily limited to the orders shown for performing the operations by the respective blocks. In portions of the following discussion, reference will be made to the figures described above.


Functionality, features, and concepts described in relation to the examples of FIGS. 1-9 may be employed in the context of the procedures described herein. Further, functionality, features, and concepts described in relation to different procedures below may be interchanged among the different procedures and are not limited to implementation in the context of an individual procedure. Moreover, blocks associated with different representative procedures and corresponding figures herein may be applied together and/or combined in different ways. Thus, individual functionality, features, and concepts described in relation to different example environments, devices, components, and procedures herein may be used in any suitable combinations and are not limited to the particular combinations represented by the enumerated examples.



FIG. 10 depicts a procedure 1000 in an example implementation in which piezos are used to detect pressure and provide haptic feedback. An amount of an application of pressure to an outer surface is detected and quantified by one or more piezos (block 1002). The one or more piezos are energized by at least one module to provide haptic feedback based at least in part on the detected and quantified amount of the application of pressure (block 1004). A variety of other examples are also contemplated.


Example System and Device


FIG. 11 illustrates an example system generally at 1100 that includes an example computing device 1102 that is representative of one or more computing systems and/or devices that may implement the various techniques described herein. This is illustrated through inclusion of the pressure sensing and haptic feedback module 116. The computing device 1102 may be, for example, a server of a service provider, a device associated with a client (e.g., a client device), an on-chip system, and/or any other suitable computing device or computing system.


The example computing device 1102 as illustrated includes a processing system 1104, one or more computer-readable media 1106, and one or more I/O interface 1108 that are communicatively coupled, one to another. Although not shown, the computing device 1102 may further include a system bus or other data and command transfer system that couples the various components, one to another. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures. A variety of other examples are also contemplated, such as control and data lines.


The processing system 1104 is representative of functionality to perform one or more operations using hardware. Accordingly, the processing system 1104 is illustrated as including hardware element 1110 that may be configured as processors, functional blocks, and so forth. This may include implementation in hardware as an application specific integrated circuit or other logic device formed using one or more semiconductors. The hardware elements 1110 are not limited by the materials from which they are formed or the processing mechanisms employed therein. For example, processors may be comprised of semiconductor(s) and/or transistors (e.g., electronic integrated circuits (ICs)). In such a context, processor-executable instructions may be electronically-executable instructions.


The computer-readable storage media 1106 is illustrated as including memory/storage 1112. The memory/storage 1112 represents memory/storage capacity associated with one or more computer-readable media. The memory/storage component 1112 may include volatile media (such as random access memory (RAM)) and/or nonvolatile media (such as read only memory (ROM), Flash memory, optical disks, magnetic disks, and so forth). The memory/storage component 1112 may include fixed media (e.g., RAM, ROM, a fixed hard drive, and so on) as well as removable media (e.g., Flash memory, a removable hard drive, an optical disc, and so forth). The computer-readable media 1106 may be configured in a variety of other ways as further described below.


Input/output interface(s) 1108 are representative of functionality to allow a user to enter commands and information to computing device 1102, and also allow information to be presented to the user and/or other components or devices using various input/output devices. Examples of input devices include a keyboard, a cursor control device (e.g., a mouse), a microphone, a scanner, touch functionality (e.g., capacitive or other sensors that are configured to detect physical touch), a camera (e.g., which may employ visible or non-visible wavelengths such as infrared frequencies to recognize movement as gestures that do not involve touch), and so forth. Examples of output devices include a display device (e.g., a monitor or projector), speakers, a printer, a network card, tactile-response device, and so forth. Thus, the computing device 1102 may be configured in a variety of ways as further described below to support user interaction.


Various techniques may be described herein in the general context of software, hardware elements, or program modules. Generally, such modules include routines, programs, objects, elements, components, data structures, and so forth that perform particular tasks or implement particular abstract data types. The terms “module,” “functionality,” and “component” as used herein generally represent software, firmware, hardware, or a combination thereof. The features of the techniques described herein are platform-independent, meaning that the techniques may be implemented on a variety of commercial computing platforms having a variety of processors.


An implementation of the described modules and techniques may be stored on or transmitted across some form of computer-readable media. The computer-readable media may include a variety of media that may be accessed by the computing device 1102. By way of example, and not limitation, computer-readable media may include “computer-readable storage media” and “computer-readable signal media.”


“Computer-readable storage media” may refer to media and/or devices that enable persistent and/or non-transitory storage of information in contrast to mere signal transmission, carrier waves, or signals per se. Thus, computer-readable storage media refers to non-signal bearing media. The computer-readable storage media includes hardware such as volatile and non-volatile, removable and non-removable media and/or storage devices implemented in a method or technology suitable for storage of information such as computer readable instructions, data structures, program modules, logic elements/circuits, or other data. Examples of computer-readable storage media may include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, hard disks, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or other storage device, tangible media, or article of manufacture suitable to store the desired information and which may be accessed by a computer.


“Computer-readable signal media” may refer to a signal-bearing medium that is configured to transmit instructions to the hardware of the computing device 1102, such as via a network. Signal media typically may embody computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as carrier waves, data signals, or other transport mechanism. Signal media also include any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media.


As previously described, hardware elements 1110 and computer-readable media 1106 are representative of modules, programmable device logic and/or fixed device logic implemented in a hardware form that may be employed in some embodiments to implement at least some aspects of the techniques described herein, such as to perform one or more instructions. Hardware may include components of an integrated circuit or on-chip system, an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), a complex programmable logic device (CPLD), and other implementations in silicon or other hardware. In this context, hardware may operate as a processing device that performs program tasks defined by instructions and/or logic embodied by the hardware as well as a hardware utilized to store instructions for execution, e.g., the computer-readable storage media described previously.


Combinations of the foregoing may also be employed to implement various techniques described herein. Accordingly, software, hardware, or executable modules may be implemented as one or more instructions and/or logic embodied on some form of computer-readable storage media and/or by one or more hardware elements 1110. The computing device 1102 may be configured to implement particular instructions and/or functions corresponding to the software and/or hardware modules. Accordingly, implementation of a module that is executable by the computing device 1102 as software may be achieved at least partially in hardware, e.g., through use of computer-readable storage media and/or hardware elements 1110 of the processing system 1104. The instructions and/or functions may be executable/operable by one or more articles of manufacture (for example, one or more computing devices 1102 and/or processing systems 1104) to implement techniques, modules, and examples described herein.


As further illustrated in FIG. 11, the example system 1100 enables ubiquitous environments for a seamless user experience when running applications on a personal computer (PC), a television device, and/or a mobile device. Services and applications run substantially similar in all three environments for a common user experience when transitioning from one device to the next while utilizing an application, playing a video game, watching a video, and so on.


In the example system 1100, multiple devices are interconnected through a central computing device. The central computing device may be local to the multiple devices or may be located remotely from the multiple devices. In one embodiment, the central computing device may be a cloud of one or more server computers that are connected to the multiple devices through a network, the Internet, or other data communication link.


In one embodiment, this interconnection architecture enables functionality to be delivered across multiple devices to provide a common and seamless experience to a user of the multiple devices. Each of the multiple devices may have different physical requirements and capabilities, and the central computing device uses a platform to enable the delivery of an experience to the device that is both tailored to the device and yet common to all devices. In one embodiment, a class of target devices is created and experiences are tailored to the generic class of devices. A class of devices may be defined by physical features, types of usage, or other common characteristics of the devices.


In various implementations, the computing device 1102 may assume a variety of different configurations, such as for computer 1114, mobile 1116, and television 1118 uses. Each of these configurations includes devices that may have generally different constructs and capabilities, and thus the computing device 1102 may be configured according to one or more of the different device classes. For instance, the computing device 1102 may be implemented as the computer 1114 class of a device that includes a personal computer, desktop computer, a multi-screen computer, laptop computer, netbook, and so on.


The computing device 1102 may also be implemented as the mobile 1116 class of device that includes mobile devices, such as a mobile phone, wearables (e.g., wrist bands, pendants, rings, etc.) portable music player, portable gaming device, a tablet computer, a multi-screen computer, and so on. The computing device 1102 may also be implemented as the television 1118 class of device that includes devices having or connected to generally larger screens in casual viewing environments. These devices include televisions, set-top boxes, gaming consoles, and so on. Other devices are also contemplated, such as appliances, thermostats and so on as part of the “Internet of Things.”


The techniques described herein may be supported by these various configurations of the computing device 1102 and are not limited to the specific examples of the techniques described herein. This functionality may also be implemented all or in part through use of a distributed system, such as over a “cloud” 1120 via a platform 1122 as described below.


The cloud 1120 includes and/or is representative of a platform 1122 for resources 1124. The platform 1122 abstracts underlying functionality of hardware (e.g., servers) and software resources of the cloud 1120. The resources 1124 may include applications and/or data that can be utilized while computer processing is executed on servers that are remote from the computing device 1102. Resources 1124 can also include services provided over the Internet and/or through a subscriber network, such as a cellular or Wi-Fi network.


The platform 1122 may abstract resources and functions to connect the computing device 1102 with other computing devices. The platform 1122 may also serve to abstract scaling of resources to provide a corresponding level of scale to encountered demand for the resources 1124 that are implemented via the platform 1122. Accordingly, in an interconnected device embodiment, implementation of functionality described herein may be distributed throughout the system 1100. For example, the functionality may be implemented in part on the computing device 1102 as well as via the platform 1122 that abstracts the functionality of the cloud 1120.


Conclusion and Example Implementations

Example implementations described herein include, but are not limited to, one or any combinations of one or more of the following examples:


In one or more examples, an input device includes an outer surface, a pressure sensor and haptic feedback mechanism, and a pressure sensing and haptic feedback module. The outer surface is configured to receive an application of pressure by an object. The pressure sensor and haptic feedback mechanism has one or more piezos configured to detect and quantify an amount of the application of the pressure to the outer surface by the object, the one or more piezos configured to output a signal indicating the quantified amount of the pressure. The pressure sensing and haptic feedback module is configured to receive the signal from the one or more piezos indicating the quantified amount of the pressure and control the haptic feedback of the pressure sensor and haptic feedback mechanism by energizing the one or more piezos based at least in part of the quantified amount of pressure.


An example as described alone or in combination with any of the other examples described above or below, wherein the pressure sensor and haptic feedback mechanism includes a backer that deflects in response to a pulling motion of the one or more piezos due to the energizing of the one or more piezos.


An example as described alone or in combination with any of the other examples described above or below, further comprising a spacer configured to route the amount of pressure applied to the outer surface for application at a generally central region of the backer.


An example as described alone or in combination with any of the other examples described above or below, wherein the outer surface is formed as part of a trackpad that includes one or more sensors disposed thereon that are configured to detect proximity and movement of the object in relation to the outer surface.


An example as described alone or in combination with any of the other examples described above or below, wherein the one or more piezos are formed at least in part from a piezo ceramic material, PZT, electroactive polymer, or electromechanical polymer.


An example as described alone or in combination with any of the other examples described above or below, wherein the pressure sensing module includes a capacitor that takes as an input the signal from the one or more piezos, the capacitor is configured to be reset to address voltage decay of the signal using a stored voltage offset by the pressure sensing and haptic feedback module.


In one or more examples, a trackpad system includes an outer surface configured to receive an application of pressure by an object and detect movement of the object in relation to the outer surface, the detected movement usable to control a cursor of a computing device; a pressure sensor and haptic feedback mechanism having a plurality of pressure sensors that suspend the outer surface and are configured to detect and quantify an amount of the application of the pressure to the outer surface by the object, the pressure sensor and haptic feedback mechanism configured to output one or more signals indicating the quantified amount of the pressure; and a pressure sensing module configured to receive the one or more signals from the plurality of pressure sensors indicating the quantified amount of the pressure by the one or more piezos and control haptic feedback of the haptic feedback mechanism by energizing one or more piezos based at least in part on the quantified amount of pressure.


An example as described alone or in combination with any of the other examples described above or below, wherein the plurality of pressure sensors utilize the one or more piezos to detect and quantify the amount of the application of pressure.


An example as described alone or in combination with any of the other examples described above or below, wherein the one or more signals are summed from the plurality of pressure sensors.


An example as described alone or in combination with any of the other examples described above or below, wherein the one or more signals are received individually by the pressure sensing module from respective ones of the plurality of pressure sensors.


An example as described alone or in combination with any of the other examples described above or below, wherein the individually received signals are usable to determine a relative location of the object in relation to the outer surface by the pressure sensing module.


An example as described alone or in combination with any of the other examples described above or below, wherein the individually received signals include bipolar voltages that are measured differentially using diodes of the pressure sensing module.


An example as described alone or in combination with any of the other examples described above or below, wherein the pressure sensing module includes a capacitor that takes as an input the signal from the plurality of pressure sensors, the capacitor configured to be reset as part of the pressure sensing module to address voltage decay of the signal using a stored voltage offset.


In one or more examples, a trackpad system includes an outer surface configured to receive an application of pressure by an object and detect movement of the object in relation to the outer surface, the detected movement usable to control a cursor of a computing device; a pressure sensor and haptic feedback mechanism having a plurality of piezos that suspend the outer surface and are configured to detect and quantify an amount of the application of the pressure to the outer surface by the object, the pressure sensor and haptic feedback mechanism configured to output one or more signals indicating the quantified amount of the pressure; and a pressure sensing module configured to receive the one or more signals from the pressure sensors indicating the quantified amount of the pressure by the one or more piezos and control the haptic feedback of the haptic feedback mechanism by energizing the one or more piezos based at least in part of the quantified amount of pressure.


An example as described alone or in combination with any of the other examples described above or below, wherein the outer surface has a plurality of corners and the plurality of piezos are disposed at respective ones of the plurality of corners.


An example as described alone or in combination with any of the other examples described above or below, wherein the one or more signals are summed from the plurality of piezos.


An example as described alone or in combination with any of the other examples described above or below, wherein the one or more signals are received individually by the pressure sensing module from respective ones of the plurality of piezos.


An example as described alone or in combination with any of the other examples described above or below, wherein the individually received signals are usable to determine a relative location of the object in relation to the outer surface by the pressure sensing module.


An example as described alone or in combination with any of the other examples described above or below, wherein the individually received signals include bipolar voltages that are measured differentially using diodes of the pressure sensing module.


An example as described alone or in combination with any of the other examples described above or below, wherein the pressure sensing module includes a capacitor that takes as an input the signal from the pressure sensor, the capacitor is configured to be reset as part of the pressure sensing module to address voltage decay of the signal using a stored voltage offset.


In one or more examples, an input device includes an outer surface configured to receive an application of pressure by an object, a pressure sensor configured to detect and quantify an amount of the application of the pressure to the outer surface by the object, the pressure sensor configured to output a signal indicating the quantified amount of the pressure, a haptic feedback mechanism configured to provide haptic feedback using at least one piezo, and a pressure sensing module configured to receive the signal from the pressure sensors indicating the quantified amount of the pressure and control the haptic feedback of the haptic feedback mechanism by energizing the at least one piezo based at least in part of the quantified amount of pressure.


An example as described alone or in combination with any of the other examples described above or below, wherein the pressure sensor employs the at least one piezo of the haptic feedback mechanism to detect and quantify the amount of the application of the pressure.


An example as described alone or in combination with any of the other examples described above or below, wherein the haptic feedback mechanism includes a backer that deflects in response to a pulling motion of the at least one piezo due to the energizing of the at least one piezo.


An example as described alone or in combination with any of the other examples described above or below, further comprising a spacer configured to route the amount of pressure applied to the outer surface for application at a generally central region of the backer.


An example as described alone or in combination with any of the other examples described above or below, wherein the outer surface is formed as part of a trackpad that includes one or more sensors disposed thereon that are configured to detect proximity and movement of the object in relation to the outer surface.


An example as described alone or in combination with any of the other examples described above or below, wherein the at least one piezo is formed at least in part from a piezo ceramic material, PZT, electroactive polymer, or electromechanical polymer.


An example as described alone or in combination with any of the other examples described above or below, wherein the pressure sensing module includes a capacitor that takes as an input the signal from the pressure sensor, the capacitor is configured to be reset as part of the pressure sensing module to address voltage decay of the signal using a stored voltage offset.


Although the example implementations have been described in language specific to structural features and/or methodological acts, it is to be understood that the implementations defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as example forms of implementing the claimed features.

Claims
  • 1. An input device comprising: an outer surface configured to receive an application of a pressure by an object;one or more pressure sensing and haptic feedback mechanisms comprising a piezo, the piezo configured to: sense an amount of the pressure applied to the outer surface by the object;generate a pressure signal corresponding to the amount of the pressure; andproduce a haptic effect at the outer surface when energized; anda pressure sensing and haptic feedback module configured to: store a voltage value from the piezo, the voltage value based on deflection of the piezo from the pressure by the object on the outer surface;discharge, after storing the voltage value, a capacitance of the piezo based on pressure on the piezo occurring for a defined amount of time; andapply, in association with discharging the capacitance of the piezo, the voltage value as a pressure reading for the piezo.
  • 2. The input device as described in claim 1, further comprising: a spacer coupled to the outer surface; anda backer coupled to the spacer and connected to the piezo such that the backer deflects in response to a pulling motion of the piezo due to energizing of the piezo.
  • 3. The input device as described in claim 1, wherein the one or more pressure sensing and haptic feedback mechanisms include at least one other piezo, and wherein the input device is configured to measure the pressure signal from the piezo and measure a different pressure signal from the at least one other piezo to calculate a location of the object on the outer surface.
  • 4. The input device as described in claim 1, wherein the pressure sensing and haptic feedback module is configured to successively transmit signals to discharge the piezo on a periodic basis.
  • 5. The input device as described in claim 1, wherein a press and hold gesture of the object on the outer surface causes the pressure signal to exceed a pressure threshold.
  • 6. The input device as described in claim 1, wherein a press and hold gesture of the object on the outer surface causes the pressure signal to exceed a pressure threshold, and wherein when the press and hold gesture is released, the pressure signal is applied such that zero pressure is sensed by the piezo.
  • 7. The input device as described in claim 1, wherein a press and hold gesture of the object on the outer surface causes the pressure signal to exceed a pressure threshold, and wherein the pressure sensing and haptic feedback module is configured to transmit the pressure signal to discharge the piezo in response to detecting the pressure signal for the defined amount of time.
  • 8. The input device as described in claim 1, further comprising a keyboard and a trackpad, and wherein the outer surface represents a portion of the trackpad.
  • 9. The input device as described in claim 1, further comprising a magnetic coupling device that is usable to connect the input device to a computing device.
  • 10. A trackpad system comprising: an outer surface configured to receive an application of a pressure by an object and detect movement of the object in relation to the outer surface, the detected movement usable to provide input to a computing device;one or more pressure sensing and haptic feedback mechanisms comprising a piezo, the piezo configured to: sense an amount of the pressure applied to the outer surface by the object;generate a pressure signal corresponding to the amount of the pressure; andproduce a haptic effect at the outer surface when energized; anda pressure sensing and haptic feedback module configured to: store a voltage value from the piezo, the voltage value based on deflection of the piezo from the pressure by the object on the outer surface;discharge, after storing the voltage value, a capacitance of the piezo based on pressure on the piezo occurring for a defined amount of time; andapply, in association with discharging the capacitance of the piezo, the voltage value as a pressure reading for the piezo.
  • 11. The trackpad system as described in claim 10, further comprising: a spacer coupled to the outer surface; anda backer coupled to the spacer and connected to the piezo such that the backer deflects in response to a pulling motion of the piezo due to energizing of the piezo.
  • 12. The trackpad system as described in claim 10, wherein the pressure sensing and haptic feedback module is configured to successively transmit signals to discharge the piezo on a periodic basis.
  • 13. The trackpad system as described in claim 10, wherein a press and hold gesture of the object on the outer surface causes pressure signal to exceed a pressure threshold.
  • 14. The trackpad system as described in claim 10, wherein a press and hold gesture of the object on the outer surface causes the pressure signal to exceed a pressure threshold, and wherein when the press and hold gesture is released, the pressure signal is applied such that zero pressure is sensed by the piezo.
  • 15. The trackpad system as described in claim 10, wherein a press and hold gesture of the object on the outer surface causes the pressure signal to exceed a pressure threshold, and wherein the pressure sensing and haptic feedback module is configured to transmit the pressure signal to discharge the piezo in response to detecting the pressure signal for the defined amount of time.
  • 16. A method comprising: controlling one or more piezos to: sense an amount of a pressure applied by an object to an outer surface of an input device in which the one or more piezos are disposed;generate a pressure signal corresponding to the amount of the pressure;produce a haptic effect at the outer surface responsive to the one or more piezos being energized; andcontrolling a pressure sensing and haptic feedback module to: store a voltage value from the piezo, the voltage value based on deflection of the piezo from the pressure by the object on the outer surface;discharge, after storing the voltage value, a capacitance of the piezo based on pressure on the piezo occurring for a defined amount of time; andapply, in association with discharging the capacitance of the piezo, the voltage value as a pressure reading for the piezo.
  • 17. The method as recited in claim 16, further comprising controlling the pressure sensing and haptic feedback module to successively transmit signals to discharge the piezo on a periodic basis.
  • 18. The method as recited in claim 16, wherein a press and hold gesture of the object on the outer surface causes pressure signal to exceed a pressure threshold, and wherein when the press and hold gesture is released, the method further comprises controlling the pressure sensing and haptic feedback module to apply the pressure signal such that zero pressure is sensed by the piezo.
  • 19. The method as recited in claim 16, further comprising controlling the pressure sensing and haptic feedback module to transmit a signal to discharge the piezo in response to detecting the pressure signal for the defined amount of time.
  • 20. The method as recited in claim 16, further comprising measuring the pressure signal and at least one other pressure signal from the one or more piezos to calculate a location of the object on the outer surface.
Parent Case Info

This application is a continuation of and claims priority to U.S. application Ser. No. 14/698,318 entitled “Input Device Haptic and Pressure Sensing” and filed Apr. 28, 2015, which in turn claims priority as a continuation-in-part to U.S. patent application Ser. No. 14/144,876, filed Dec. 31, 2013, and titled “Haptic Feedback for Thin User Interfaces,” the entire disclosures of which are hereby incorporated by reference herein.

US Referenced Citations (738)
Number Name Date Kind
578325 Fleming Mar 1897 A
4046975 Seeger, Jr. Sep 1977 A
4065649 Carter et al. Dec 1977 A
4243861 Strandwitz Jan 1981 A
4279021 See et al. Jul 1981 A
4302648 Sado et al. Nov 1981 A
4317013 Larson Feb 1982 A
4326193 Markley et al. Apr 1982 A
4365130 Christensen Dec 1982 A
4492829 Rodrique Jan 1985 A
4527021 Morikawa et al. Jul 1985 A
4559426 Van Zeeland et al. Dec 1985 A
4577822 Wilkerson Mar 1986 A
4588187 Dell May 1986 A
4607147 Ono et al. Aug 1986 A
4651133 Ganesan et al. Mar 1987 A
4735394 Facco Apr 1988 A
4890832 Komaki Jan 1990 A
5149923 Demeo Sep 1992 A
5220521 Kikinis Jun 1993 A
5283559 Kalendra et al. Feb 1994 A
5331443 Stanisci Jul 1994 A
5480118 Cross Jan 1996 A
5489900 Cali et al. Feb 1996 A
5510783 Findlater et al. Apr 1996 A
5546271 Gut et al. Aug 1996 A
5548477 Kumar et al. Aug 1996 A
5558577 Kato Sep 1996 A
5576981 Parker et al. Nov 1996 A
5612719 Beernink et al. Mar 1997 A
5617343 Danielson et al. Apr 1997 A
5618232 Martin Apr 1997 A
5681220 Bertram et al. Oct 1997 A
5745376 Barker et al. Apr 1998 A
5748114 Koehn May 1998 A
5781406 Hunte Jul 1998 A
5807175 Davis et al. Sep 1998 A
5818361 Acevedo Oct 1998 A
5828770 Leis et al. Oct 1998 A
5842027 Oprescu et al. Nov 1998 A
5859642 Jones Jan 1999 A
5862381 Advani et al. Jan 1999 A
5874697 Selker et al. Feb 1999 A
5909211 Combs et al. Jun 1999 A
5926170 Oba Jul 1999 A
5942733 Allen et al. Aug 1999 A
5971635 Wise Oct 1999 A
6002389 Kasser Dec 1999 A
6005209 Burleson et al. Dec 1999 A
6012714 Worley et al. Jan 2000 A
6040823 Seffernick et al. Mar 2000 A
6044717 Biegelsen et al. Apr 2000 A
6061644 Leis May 2000 A
6112797 Colson et al. Sep 2000 A
6147859 Abboud Nov 2000 A
6177926 Kunert Jan 2001 B1
6178443 Lin Jan 2001 B1
6239786 Burry et al. May 2001 B1
6254105 Rinde et al. Jul 2001 B1
6279060 Luke et al. Aug 2001 B1
6329617 Burgess Dec 2001 B1
6344791 Armstrong Feb 2002 B1
6380497 Hashimoto et al. Apr 2002 B1
6429846 Rosenberg et al. Aug 2002 B2
6437682 Vance Aug 2002 B1
6477561 Robsman Nov 2002 B1
6506983 Babb et al. Jan 2003 B1
6511378 Bhatt et al. Jan 2003 B1
6532147 Christ, Jr. Mar 2003 B1
6543949 Ritchey et al. Apr 2003 B1
6565439 Shinohara et al. May 2003 B2
6597347 Yasutake Jul 2003 B1
6600121 Olodort et al. Jul 2003 B1
6603408 Gaba Aug 2003 B1
6617536 Kawaguchi Sep 2003 B2
6651943 Cho et al. Nov 2003 B2
6685369 Lien Feb 2004 B2
6695273 Iguchi Feb 2004 B2
6704864 Philyaw Mar 2004 B1
6721019 Kono et al. Apr 2004 B2
6725318 Sherman et al. Apr 2004 B1
6738049 Kiser et al. May 2004 B2
6758615 Monney et al. Jul 2004 B2
6774888 Genduso Aug 2004 B1
6776546 Kraus et al. Aug 2004 B2
6781819 Yang et al. Aug 2004 B2
6784869 Clark et al. Aug 2004 B1
6813143 Makela Nov 2004 B2
6819316 Schulz et al. Nov 2004 B2
6822635 Shahoian Nov 2004 B2
6856506 Doherty et al. Feb 2005 B2
6861961 Sandbach et al. Mar 2005 B2
6864573 Robertson et al. Mar 2005 B2
6898315 Guha May 2005 B2
6914197 Doherty et al. Jul 2005 B2
6950950 Sawyers et al. Sep 2005 B2
6970957 Oshins et al. Nov 2005 B1
6976799 Kim et al. Dec 2005 B2
6977352 Oosawa Dec 2005 B2
7051149 Wang et al. May 2006 B2
7083295 Hanna Aug 2006 B1
7091436 Serban Aug 2006 B2
7091955 Kramer Aug 2006 B2
7095404 Vincent et al. Aug 2006 B2
7106222 Ward et al. Sep 2006 B2
7116309 Kimura et al. Oct 2006 B1
7123292 Seeger et al. Oct 2006 B1
7194662 Do et al. Mar 2007 B2
7202837 Ihara Apr 2007 B2
7213991 Chapman et al. May 2007 B2
7224830 Nefian et al. May 2007 B2
7245292 Custy Jul 2007 B1
7277087 Hill et al. Oct 2007 B2
7280348 Ghosh Oct 2007 B2
7301759 Hsiung Nov 2007 B2
7374312 Feng et al. May 2008 B2
7401992 Lin Jul 2008 B1
7423557 Kang Sep 2008 B2
7446276 Piesko Nov 2008 B2
7447934 Dasari et al. Nov 2008 B2
7469386 Bear et al. Dec 2008 B2
7486165 Ligtenberg et al. Feb 2009 B2
7499037 Lube Mar 2009 B2
7502803 Cutter et al. Mar 2009 B2
7542052 Solomon et al. Jun 2009 B2
7557312 Clark et al. Jul 2009 B2
7558594 Wilson Jul 2009 B2
7559834 York Jul 2009 B1
RE40891 Yasutake Sep 2009 E
7602384 Rosenberg et al. Oct 2009 B2
7616192 Schroeder Nov 2009 B2
7620244 Collier Nov 2009 B1
7622907 Vranish Nov 2009 B2
7636921 Louie Dec 2009 B2
7639876 Clary et al. Dec 2009 B2
7656392 Bolender Feb 2010 B2
7686694 Cole Mar 2010 B2
7728820 Rosenberg et al. Jun 2010 B2
7728923 Kim et al. Jun 2010 B2
7731147 Rha Jun 2010 B2
7733326 Adiseshan Jun 2010 B1
7736042 Park et al. Jun 2010 B2
7773076 Pittel et al. Aug 2010 B2
7773121 Huntsberger et al. Aug 2010 B1
7774155 Sato et al. Aug 2010 B2
7777972 Chen et al. Aug 2010 B1
7782342 Koh Aug 2010 B2
7813715 McKillop et al. Oct 2010 B2
7815358 Inditsky Oct 2010 B2
7817428 Greer, Jr. et al. Oct 2010 B2
7865639 McCoy et al. Jan 2011 B2
7880727 Abanami et al. Feb 2011 B2
7884807 Hovden et al. Feb 2011 B2
7890863 Grant et al. Feb 2011 B2
7907394 Richardson et al. Mar 2011 B2
D636397 Green Apr 2011 S
7928964 Kolmykov-Zotov et al. Apr 2011 B2
7936501 Smith et al. May 2011 B2
7945717 Rivalsi May 2011 B2
7952566 Poupyrev et al. May 2011 B2
7970246 Travis et al. Jun 2011 B2
7973771 Geaghan Jul 2011 B2
7976393 Haga et al. Jul 2011 B2
7978281 Vergith et al. Jul 2011 B2
8016255 Lin Sep 2011 B2
8018386 Qi et al. Sep 2011 B2
8018579 Krah Sep 2011 B1
8022939 Hinata Sep 2011 B2
8026904 Westerman Sep 2011 B2
8053688 Conzola et al. Nov 2011 B2
8063886 Serban et al. Nov 2011 B2
8065624 Morin et al. Nov 2011 B2
8069356 Rathi et al. Nov 2011 B2
8077160 Land et al. Dec 2011 B2
8090885 Callaghan et al. Jan 2012 B2
8094134 Suzuki et al. Jan 2012 B2
8098233 Hotelling et al. Jan 2012 B2
8115499 Osoinach et al. Feb 2012 B2
8117362 Rodriguez et al. Feb 2012 B2
8118274 McClure et al. Feb 2012 B2
8118681 Mattice et al. Feb 2012 B2
8130203 Westerman Mar 2012 B2
8154524 Wilson et al. Apr 2012 B2
8162282 Hu et al. Apr 2012 B2
D659139 Gengler May 2012 S
8169421 Wright et al. May 2012 B2
8189973 Travis et al. May 2012 B2
8216074 Sakuma Jul 2012 B2
8229509 Paek et al. Jul 2012 B2
8229522 Kim et al. Jul 2012 B2
8232963 Orsley et al. Jul 2012 B2
8267368 Torii et al. Sep 2012 B2
8269093 Naik et al. Sep 2012 B2
8274784 Franz et al. Sep 2012 B2
8279589 Kim Oct 2012 B2
8279623 Idzik et al. Oct 2012 B2
8322290 Mignano Dec 2012 B1
8325144 Tierling et al. Dec 2012 B1
8330061 Rothkopf et al. Dec 2012 B2
8330742 Reynolds et al. Dec 2012 B2
8378972 Pance et al. Feb 2013 B2
8395587 Cauwels et al. Mar 2013 B2
8403576 Merz Mar 2013 B2
8416559 Agata et al. Apr 2013 B2
8421757 Suzuki et al. Apr 2013 B2
8441465 Radivojevic et al. May 2013 B2
8487751 Laitinen et al. Jul 2013 B2
8498100 Whitt, III et al. Jul 2013 B1
D696253 Akana et al. Dec 2013 S
8599152 Wurtenberger et al. Dec 2013 B1
8607651 Eventoff Dec 2013 B2
8633916 Bernstein et al. Jan 2014 B2
8638315 Algreatly Jan 2014 B2
8659555 Pihlaja Feb 2014 B2
8661363 Platzer et al. Feb 2014 B2
8674961 Posamentier Mar 2014 B2
D704702 Akana et al. May 2014 S
8757374 Kaiser Jun 2014 B1
8766925 Perlin et al. Jul 2014 B2
8831677 Villa-Real Sep 2014 B2
8836664 Colgate et al. Sep 2014 B2
8847895 Lim et al. Sep 2014 B2
8847897 Sakai et al. Sep 2014 B2
8854331 Heubel et al. Oct 2014 B2
8907871 Orsley Dec 2014 B2
8928581 Braun et al. Jan 2015 B2
8970525 De Los Reyes Mar 2015 B1
9047012 Bringert et al. Jun 2015 B1
9063693 Raken et al. Jun 2015 B2
9073123 Campbell et al. Jul 2015 B2
9098304 Young et al. Aug 2015 B2
9176538 Boulanger Nov 2015 B2
9287916 Wicks et al. Mar 2016 B2
9348605 Drasnin May 2016 B2
9360893 Bathiche et al. Jun 2016 B2
9411436 Shaw et al. Aug 2016 B2
9448631 Winter et al. Sep 2016 B2
9459160 Shaw et al. Oct 2016 B2
20010035697 Rueger et al. Nov 2001 A1
20010035859 Kiser Nov 2001 A1
20020000977 Vranish Jan 2002 A1
20020126445 Minaguchi et al. Sep 2002 A1
20020134828 Sandbach et al. Sep 2002 A1
20020154099 Oh Oct 2002 A1
20020174389 Sato et al. Nov 2002 A1
20020188721 Lemel et al. Dec 2002 A1
20030016282 Koizumi Jan 2003 A1
20030044215 Monney et al. Mar 2003 A1
20030083131 Armstrong May 2003 A1
20030107557 Liebenow Jun 2003 A1
20030132916 Kramer Jul 2003 A1
20030163611 Nagao Aug 2003 A1
20030197687 Shetter Oct 2003 A1
20030201982 Iesaka Oct 2003 A1
20040005184 Kim et al. Jan 2004 A1
20040100457 Mandle May 2004 A1
20040140998 Gravina et al. Jul 2004 A1
20040174670 Huang et al. Sep 2004 A1
20040190239 Weng et al. Sep 2004 A1
20040194075 Molchanov et al. Sep 2004 A1
20040212598 Kraus et al. Oct 2004 A1
20040227721 Moilanen et al. Nov 2004 A1
20040258924 Berger et al. Dec 2004 A1
20040267323 Dupelle Dec 2004 A1
20040268000 Barker et al. Dec 2004 A1
20050030728 Kawashima et al. Feb 2005 A1
20050057515 Bathiche Mar 2005 A1
20050057521 Aull et al. Mar 2005 A1
20050059441 Miyashita Mar 2005 A1
20050059489 Kim Mar 2005 A1
20050146512 Hill et al. Jul 2005 A1
20050190159 Skarine Sep 2005 A1
20050240949 Liu et al. Oct 2005 A1
20050264653 Starkweather et al. Dec 2005 A1
20050264988 Nicolosi Dec 2005 A1
20050285703 Wheeler et al. Dec 2005 A1
20060020903 Wang et al. Jan 2006 A1
20060028095 Maruyama et al. Feb 2006 A1
20060049993 Lin et al. Mar 2006 A1
20060063073 Kawashima et al. Mar 2006 A1
20060082973 Egbert et al. Apr 2006 A1
20060085658 Allen et al. Apr 2006 A1
20060102914 Smits et al. May 2006 A1
20060103633 Gioeli May 2006 A1
20060125799 Hillis et al. Jun 2006 A1
20060132423 Travis Jun 2006 A1
20060154725 Glaser et al. Jul 2006 A1
20060156415 Rubinstein et al. Jul 2006 A1
20060158433 Serban et al. Jul 2006 A1
20060181514 Newman Aug 2006 A1
20060181521 Perreault et al. Aug 2006 A1
20060187216 Trent, Jr. et al. Aug 2006 A1
20060195522 Miyazaki Aug 2006 A1
20060197753 Hotelling Sep 2006 A1
20060197754 Keely Sep 2006 A1
20060197755 Bawany Sep 2006 A1
20060209037 Wang et al. Sep 2006 A1
20060209050 Serban Sep 2006 A1
20060238510 Panotopoulos et al. Oct 2006 A1
20060248597 Keneman Nov 2006 A1
20070018601 Steinbach et al. Jan 2007 A1
20070043725 Hotelling et al. Feb 2007 A1
20070047221 Park Mar 2007 A1
20070051792 Wheeler et al. Mar 2007 A1
20070056385 Lorenz Mar 2007 A1
20070057922 Schultz et al. Mar 2007 A1
20070062089 Homer et al. Mar 2007 A1
20070069153 Pai-Paranjape et al. Mar 2007 A1
20070072474 Beasley et al. Mar 2007 A1
20070145945 McGinley et al. Jun 2007 A1
20070152983 McKillop et al. Jul 2007 A1
20070182663 Biech Aug 2007 A1
20070182722 Hotelling et al. Aug 2007 A1
20070200830 Yamamoto Aug 2007 A1
20070205995 Woolley Sep 2007 A1
20070220708 Lewis Sep 2007 A1
20070234420 Novotney et al. Oct 2007 A1
20070236408 Yamaguchi et al. Oct 2007 A1
20070236472 Bentsen Oct 2007 A1
20070236475 Wherry Oct 2007 A1
20070247338 Marchetto Oct 2007 A1
20070247432 Oakley Oct 2007 A1
20070257821 Son et al. Nov 2007 A1
20070260892 Paul et al. Nov 2007 A1
20070274094 Schultz et al. Nov 2007 A1
20070274095 Destain Nov 2007 A1
20070283179 Burnett et al. Dec 2007 A1
20080005423 Jacobs et al. Jan 2008 A1
20080012835 Rimon et al. Jan 2008 A1
20080013809 Zhu et al. Jan 2008 A1
20080018608 Serban et al. Jan 2008 A1
20080018611 Serban et al. Jan 2008 A1
20080024459 Poupyrev et al. Jan 2008 A1
20080042994 Gillespie et al. Feb 2008 A1
20080094367 Van De Ven et al. Apr 2008 A1
20080104437 Lee May 2008 A1
20080151478 Chern Jun 2008 A1
20080158185 Westerman Jul 2008 A1
20080167832 Soss Jul 2008 A1
20080180411 Solomon et al. Jul 2008 A1
20080196945 Konstas Aug 2008 A1
20080202251 Serban et al. Aug 2008 A1
20080202824 Philipp et al. Aug 2008 A1
20080219025 Spitzer et al. Sep 2008 A1
20080224659 Singh Sep 2008 A1
20080228969 Cheah et al. Sep 2008 A1
20080232061 Wang et al. Sep 2008 A1
20080238884 Harish Oct 2008 A1
20080253822 Matias Oct 2008 A1
20080297878 Brown et al. Dec 2008 A1
20080303646 Elwell et al. Dec 2008 A1
20080309636 Feng et al. Dec 2008 A1
20080316002 Brunet et al. Dec 2008 A1
20080316066 Minato et al. Dec 2008 A1
20080320190 Lydon et al. Dec 2008 A1
20090002218 Rigazio et al. Jan 2009 A1
20090007001 Morin et al. Jan 2009 A1
20090009476 Daley, III Jan 2009 A1
20090046416 Daley, III Feb 2009 A1
20090049979 Naik et al. Feb 2009 A1
20090065267 Sato Mar 2009 A1
20090073060 Shimasaki et al. Mar 2009 A1
20090073957 Newland et al. Mar 2009 A1
20090079639 Hotta et al. Mar 2009 A1
20090083562 Park et al. Mar 2009 A1
20090085878 Heubel et al. Apr 2009 A1
20090090568 Min Apr 2009 A1
20090101417 Suzuki et al. Apr 2009 A1
20090106655 Grant et al. Apr 2009 A1
20090117955 Lo May 2009 A1
20090127005 Zachut et al. May 2009 A1
20090128374 Reynolds May 2009 A1
20090135142 Fu et al. May 2009 A1
20090140985 Liu Jun 2009 A1
20090160529 Lamborghini Jun 2009 A1
20090163147 Steigerwald et al. Jun 2009 A1
20090167704 Terlizzi et al. Jul 2009 A1
20090174679 Westerman Jul 2009 A1
20090182901 Callaghan et al. Jul 2009 A1
20090195497 Fitzgerald et al. Aug 2009 A1
20090200148 Honmatsu et al. Aug 2009 A1
20090219250 Ure Sep 2009 A1
20090231019 Yeh Sep 2009 A1
20090231275 Odgers Sep 2009 A1
20090250267 Heubel et al. Oct 2009 A1
20090251008 Sugaya Oct 2009 A1
20090259865 Sheynblat et al. Oct 2009 A1
20090262492 Whitchurch et al. Oct 2009 A1
20090265670 Kim et al. Oct 2009 A1
20090267892 Faubert Oct 2009 A1
20090284397 Lee et al. Nov 2009 A1
20090295739 Nagara Dec 2009 A1
20090303137 Kusaka et al. Dec 2009 A1
20090303204 Nasiri et al. Dec 2009 A1
20090320244 Lin Dec 2009 A1
20090321490 Groene et al. Dec 2009 A1
20100001963 Doray et al. Jan 2010 A1
20100013319 Kamiyama et al. Jan 2010 A1
20100013613 Weston Jan 2010 A1
20100026656 Hotelling et al. Feb 2010 A1
20100038821 Jenkins et al. Feb 2010 A1
20100039764 Locker et al. Feb 2010 A1
20100045609 Do et al. Feb 2010 A1
20100045633 Gettemy Feb 2010 A1
20100051356 Stern et al. Mar 2010 A1
20100051432 Lin et al. Mar 2010 A1
20100053087 Dai et al. Mar 2010 A1
20100053534 Hsieh et al. Mar 2010 A1
20100075517 Ni et al. Mar 2010 A1
20100077237 Sawyers Mar 2010 A1
20100079398 Shen et al. Apr 2010 A1
20100081377 Chatterjee et al. Apr 2010 A1
20100085321 Pundsack Apr 2010 A1
20100097198 Suzuki Apr 2010 A1
20100102182 Lin Apr 2010 A1
20100103112 Yoo et al. Apr 2010 A1
20100103131 Segal et al. Apr 2010 A1
20100103611 Yang et al. Apr 2010 A1
20100123686 Klinghult et al. May 2010 A1
20100133398 Chiu et al. Jun 2010 A1
20100137033 Lee Jun 2010 A1
20100141588 Kimura et al. Jun 2010 A1
20100142130 Wang et al. Jun 2010 A1
20100148642 Eromaki et al. Jun 2010 A1
20100149111 Olien Jun 2010 A1
20100149134 Westerman et al. Jun 2010 A1
20100156798 Archer Jun 2010 A1
20100161522 Tirpak et al. Jun 2010 A1
20100162109 Chatterjee et al. Jun 2010 A1
20100162179 Porat Jun 2010 A1
20100164857 Liu et al. Jul 2010 A1
20100171708 Chuang Jul 2010 A1
20100171891 Kaji et al. Jul 2010 A1
20100174421 Tsai et al. Jul 2010 A1
20100180063 Ananny et al. Jul 2010 A1
20100182263 Aunio et al. Jul 2010 A1
20100188299 Rinehart et al. Jul 2010 A1
20100188338 Longe Jul 2010 A1
20100206614 Park et al. Aug 2010 A1
20100206644 Yeh Aug 2010 A1
20100214239 Wu Aug 2010 A1
20100214257 Wussler et al. Aug 2010 A1
20100222110 Kim et al. Sep 2010 A1
20100231498 Large et al. Sep 2010 A1
20100231510 Sampsell et al. Sep 2010 A1
20100231556 Mines et al. Sep 2010 A1
20100238075 Pourseyed Sep 2010 A1
20100238119 Dubrovsky et al. Sep 2010 A1
20100238138 Goertz et al. Sep 2010 A1
20100244577 Shimokawa Sep 2010 A1
20100245221 Khan Sep 2010 A1
20100250988 Okuda et al. Sep 2010 A1
20100274932 Kose Oct 2010 A1
20100279768 Huang et al. Nov 2010 A1
20100289457 Onnerud et al. Nov 2010 A1
20100289508 Joguet et al. Nov 2010 A1
20100295812 Burns et al. Nov 2010 A1
20100302378 Marks et al. Dec 2010 A1
20100304793 Kim Dec 2010 A1
20100306538 Thomas et al. Dec 2010 A1
20100308778 Yamazaki et al. Dec 2010 A1
20100308844 Day et al. Dec 2010 A1
20100315267 Chung Dec 2010 A1
20100315348 Jellicoe et al. Dec 2010 A1
20100315373 Steinhauser et al. Dec 2010 A1
20100321299 Shelley et al. Dec 2010 A1
20100321301 Casparian et al. Dec 2010 A1
20100321330 Lim et al. Dec 2010 A1
20100321339 Kimmel Dec 2010 A1
20100325155 Skinner et al. Dec 2010 A1
20100328230 Faubert Dec 2010 A1
20100331059 Apgar et al. Dec 2010 A1
20110007008 Algreatly Jan 2011 A1
20110012873 Prest et al. Jan 2011 A1
20110018556 Le et al. Jan 2011 A1
20110019123 Prest et al. Jan 2011 A1
20110031287 Le Gette et al. Feb 2011 A1
20110036965 Zhang et al. Feb 2011 A1
20110037379 Lecamp et al. Feb 2011 A1
20110037705 Yilmaz Feb 2011 A1
20110037721 Cranfill et al. Feb 2011 A1
20110043454 Modarres et al. Feb 2011 A1
20110043990 Mickey et al. Feb 2011 A1
20110049094 Wu Mar 2011 A1
20110050037 Rinner et al. Mar 2011 A1
20110050587 Natanzon et al. Mar 2011 A1
20110050630 Ikeda Mar 2011 A1
20110055407 Lydon et al. Mar 2011 A1
20110057899 Sleeman et al. Mar 2011 A1
20110059771 Kondo Mar 2011 A1
20110060926 Brooks et al. Mar 2011 A1
20110069148 Jones et al. Mar 2011 A1
20110074688 Hull et al. Mar 2011 A1
20110074702 Pertuit et al. Mar 2011 A1
20110080347 Steeves Apr 2011 A1
20110080367 Marchand et al. Apr 2011 A1
20110084909 Hsieh et al. Apr 2011 A1
20110095994 Birnbaum Apr 2011 A1
20110096513 Kim Apr 2011 A1
20110102326 Casparian et al. May 2011 A1
20110102356 Kemppinen et al. May 2011 A1
20110115712 Han et al. May 2011 A1
20110115747 Powell et al. May 2011 A1
20110118025 Lukas et al. May 2011 A1
20110128227 Theimer Jun 2011 A1
20110134032 Chiu et al. Jun 2011 A1
20110134112 Koh et al. Jun 2011 A1
20110141052 Bernstein et al. Jun 2011 A1
20110147398 Ahee et al. Jun 2011 A1
20110148793 Ciesla et al. Jun 2011 A1
20110157087 Kanehira et al. Jun 2011 A1
20110163955 Nasiri et al. Jul 2011 A1
20110164370 McClure et al. Jul 2011 A1
20110167181 Minoo et al. Jul 2011 A1
20110167287 Walsh et al. Jul 2011 A1
20110167391 Momeyer et al. Jul 2011 A1
20110167992 Eventoff et al. Jul 2011 A1
20110179864 Raasch et al. Jul 2011 A1
20110184646 Wong et al. Jul 2011 A1
20110193787 Morishige et al. Aug 2011 A1
20110193938 Oderwald et al. Aug 2011 A1
20110202878 Park et al. Aug 2011 A1
20110205161 Myers et al. Aug 2011 A1
20110205163 Hinckley et al. Aug 2011 A1
20110205372 Miramontes Aug 2011 A1
20110209093 Hinckley Aug 2011 A1
20110209097 Hinckley Aug 2011 A1
20110209098 Hinckley et al. Aug 2011 A1
20110209099 Hinckley Aug 2011 A1
20110216266 Travis Sep 2011 A1
20110222238 Staats et al. Sep 2011 A1
20110227872 Huska et al. Sep 2011 A1
20110227913 Hyndman Sep 2011 A1
20110231682 Kakish et al. Sep 2011 A1
20110234502 Yun et al. Sep 2011 A1
20110241999 Thier Oct 2011 A1
20110242138 Tribble Oct 2011 A1
20110248152 Svajda et al. Oct 2011 A1
20110248920 Larsen Oct 2011 A1
20110248930 Kwok Oct 2011 A1
20110248941 Abdo et al. Oct 2011 A1
20110261001 Liu Oct 2011 A1
20110261021 Modarres Oct 2011 A1
20110261083 Wilson Oct 2011 A1
20110267294 Kildal Nov 2011 A1
20110267300 Serban et al. Nov 2011 A1
20110267757 Probst et al. Nov 2011 A1
20110290686 Huang Dec 2011 A1
20110291922 Stewart et al. Dec 2011 A1
20110291951 Tong Dec 2011 A1
20110295697 Boston et al. Dec 2011 A1
20110297566 Gallagher et al. Dec 2011 A1
20110304577 Brown et al. Dec 2011 A1
20110304962 Su Dec 2011 A1
20110306424 Kazama et al. Dec 2011 A1
20110316807 Corrion Dec 2011 A1
20120007821 Zaliva Jan 2012 A1
20120011462 Westerman et al. Jan 2012 A1
20120013519 Hakansson et al. Jan 2012 A1
20120023459 Westerman Jan 2012 A1
20120024682 Huang et al. Feb 2012 A1
20120026048 Vazquez et al. Feb 2012 A1
20120044179 Hudson Feb 2012 A1
20120047368 Chinn et al. Feb 2012 A1
20120050975 Garelli et al. Mar 2012 A1
20120055770 Chen Mar 2012 A1
20120062245 Bao et al. Mar 2012 A1
20120068933 Larsen Mar 2012 A1
20120068957 Puskarich et al. Mar 2012 A1
20120072167 Cretella, Jr. et al. Mar 2012 A1
20120075198 Sulem et al. Mar 2012 A1
20120075221 Yasuda Mar 2012 A1
20120075249 Hoch Mar 2012 A1
20120081316 Sirpal et al. Apr 2012 A1
20120087078 Medica et al. Apr 2012 A1
20120092279 Martin Apr 2012 A1
20120092350 Ganapathi et al. Apr 2012 A1
20120094257 Pillischer et al. Apr 2012 A1
20120098751 Liu Apr 2012 A1
20120099263 Lin Apr 2012 A1
20120099749 Rubin et al. Apr 2012 A1
20120105481 Baek et al. May 2012 A1
20120106078 Probst et al. May 2012 A1
20120106082 Wu et al. May 2012 A1
20120113579 Agata et al. May 2012 A1
20120115553 Mahe et al. May 2012 A1
20120117409 Lee et al. May 2012 A1
20120127071 Jitkoff et al. May 2012 A1
20120127118 Nolting et al. May 2012 A1
20120127646 Moscovitch May 2012 A1
20120139844 Ramstein et al. Jun 2012 A1
20120140396 Zeliff et al. Jun 2012 A1
20120145525 Ishikawa Jun 2012 A1
20120155015 Govindasamy et al. Jun 2012 A1
20120162693 Ito Jun 2012 A1
20120175487 Goto Jul 2012 A1
20120182242 Lindahl et al. Jul 2012 A1
20120188180 Yang et al. Jul 2012 A1
20120194393 Uttermann et al. Aug 2012 A1
20120194448 Rothkopf Aug 2012 A1
20120200532 Powell et al. Aug 2012 A1
20120200802 Large Aug 2012 A1
20120206401 Lin et al. Aug 2012 A1
20120206937 Travis et al. Aug 2012 A1
20120223866 Ayala Vazquez et al. Sep 2012 A1
20120224073 Miyahara Sep 2012 A1
20120229401 Birnbaum et al. Sep 2012 A1
20120235635 Sato Sep 2012 A1
20120235921 Laubach Sep 2012 A1
20120235942 Shahoian et al. Sep 2012 A1
20120242588 Myers et al. Sep 2012 A1
20120246377 Bhesania et al. Sep 2012 A1
20120249459 Sashida et al. Oct 2012 A1
20120249474 Pratt et al. Oct 2012 A1
20120256848 Madabusi Srinivasan Oct 2012 A1
20120256959 Ye et al. Oct 2012 A1
20120268412 Cruz-Hernandez et al. Oct 2012 A1
20120268911 Lin Oct 2012 A1
20120274578 Snow et al. Nov 2012 A1
20120274811 Bakin Nov 2012 A1
20120287562 Wu et al. Nov 2012 A1
20120297339 Ito Nov 2012 A1
20120299866 Pao et al. Nov 2012 A1
20120300275 Vilardell et al. Nov 2012 A1
20120304199 Homma et al. Nov 2012 A1
20120312955 Randolph Dec 2012 A1
20120327025 Huska et al. Dec 2012 A1
20120328349 Isaac et al. Dec 2012 A1
20130009892 Salmela et al. Jan 2013 A1
20130016059 Lowles et al. Jan 2013 A1
20130016060 Pereverzev et al. Jan 2013 A1
20130044059 Fu Feb 2013 A1
20130047747 Joung Feb 2013 A1
20130063364 Moore Mar 2013 A1
20130063389 Moore Mar 2013 A1
20130063873 Wodrich et al. Mar 2013 A1
20130076646 Krah et al. Mar 2013 A1
20130076652 Leung Mar 2013 A1
20130088431 Ballagas et al. Apr 2013 A1
20130088442 Lee Apr 2013 A1
20130094131 O'Donnell et al. Apr 2013 A1
20130097534 Lewin et al. Apr 2013 A1
20130100052 Yilmaz Apr 2013 A1
20130106766 Yilmaz et al. May 2013 A1
20130107144 Marhefka et al. May 2013 A1
20130118933 Wang et al. May 2013 A1
20130127735 Motoyama May 2013 A1
20130141370 Wang et al. Jun 2013 A1
20130167663 Eventoff Jul 2013 A1
20130194235 Zanone et al. Aug 2013 A1
20130201115 Heubel Aug 2013 A1
20130207917 Cruz-Hernandez et al. Aug 2013 A1
20130222286 Kang et al. Aug 2013 A1
20130227836 Whitt, III et al. Sep 2013 A1
20130228433 Shaw Sep 2013 A1
20130229273 Nodar Cortizo et al. Sep 2013 A1
20130229356 Marwah et al. Sep 2013 A1
20130229386 Bathiche Sep 2013 A1
20130249802 Yasutake Sep 2013 A1
20130275058 Awad Oct 2013 A1
20130278542 Stephanou et al. Oct 2013 A1
20130278552 Kamin-Lyndgaard Oct 2013 A1
20130300683 Birnbaum Nov 2013 A1
20130304941 Drasnin Nov 2013 A1
20130304944 Young Nov 2013 A1
20130311881 Binbaum et al. Nov 2013 A1
20130314341 Lee et al. Nov 2013 A1
20130321291 Sim Dec 2013 A1
20130335209 Cruz-Hernandez et al. Dec 2013 A1
20130335330 Lane Dec 2013 A1
20130335902 Campbell Dec 2013 A1
20130335903 Raken Dec 2013 A1
20130342464 Bathiche et al. Dec 2013 A1
20130342465 Bathiche Dec 2013 A1
20130346636 Bathiche Dec 2013 A1
20140008203 Nathan et al. Jan 2014 A1
20140009429 Verweg et al. Jan 2014 A1
20140020484 Shaw et al. Jan 2014 A1
20140022177 Shaw Jan 2014 A1
20140028624 Marsden et al. Jan 2014 A1
20140055375 Kim et al. Feb 2014 A1
20140062933 Coulson et al. Mar 2014 A1
20140062934 Coulson et al. Mar 2014 A1
20140083207 Eventoff Mar 2014 A1
20140085247 Leung et al. Mar 2014 A1
20140092003 Liu Apr 2014 A1
20140092055 Radivojevic et al. Apr 2014 A1
20140098058 Baharav et al. Apr 2014 A1
20140104189 Marshall et al. Apr 2014 A1
20140139436 Ramstein et al. May 2014 A1
20140139452 Levesque et al. May 2014 A1
20140139472 Takenaka May 2014 A1
20140197058 Huet et al. Jul 2014 A1
20140198072 Schuele Jul 2014 A1
20140204059 Geaghan Jul 2014 A1
20140210742 Delattre et al. Jul 2014 A1
20140221098 Boulanger Aug 2014 A1
20140225821 Kim et al. Aug 2014 A1
20140225857 Ma Aug 2014 A1
20140230575 Picciotto et al. Aug 2014 A1
20140232657 Aviles et al. Aug 2014 A1
20140232679 Whitman et al. Aug 2014 A1
20140253305 Rosenberg et al. Sep 2014 A1
20140306914 Kagayama Oct 2014 A1
20140320393 Modarres et al. Oct 2014 A1
20140332417 Wicks et al. Nov 2014 A1
20140354587 Mohindra et al. Dec 2014 A1
20140370937 Park et al. Dec 2014 A1
20150084865 Shaw et al. Mar 2015 A1
20150084909 Worfolk et al. Mar 2015 A1
20150097786 Behles et al. Apr 2015 A1
20150103427 Beck Apr 2015 A1
20150116205 Westerman et al. Apr 2015 A1
20150160778 Kim et al. Jun 2015 A1
20150185842 Picciotto et al. Jul 2015 A1
20150185950 Watanabe et al. Jul 2015 A1
20150193034 Jeong et al. Jul 2015 A1
20150227207 Winter et al. Aug 2015 A1
20150241929 Raken et al. Aug 2015 A1
20150242012 Petcavich et al. Aug 2015 A1
20150253872 Reyes Sep 2015 A1
20150293592 Cheong et al. Oct 2015 A1
20150301642 Hanauer et al. Oct 2015 A1
20150331150 Furholz et al. Nov 2015 A1
20150370376 Harley Dec 2015 A1
20160018894 Yliaho Jan 2016 A1
20160063828 Moussette et al. Mar 2016 A1
20160070398 Worfolk Mar 2016 A1
20160085268 Aurongzeb et al. Mar 2016 A1
20160135742 Cobbett et al. May 2016 A1
20160147310 Pate May 2016 A1
20160170935 Drasnin Jun 2016 A1
20160195955 Picciotto et al. Jul 2016 A1
20160357296 Picciotto et al. Dec 2016 A1
20170023418 Shaw et al. Jan 2017 A1
20170102770 Winter et al. Apr 2017 A1
20170212591 Churikov et al. Jul 2017 A1
20170255276 Shaw et al. Sep 2017 A1
Foreign Referenced Citations (27)
Number Date Country
1722073 Jan 2006 CN
101334741 Dec 2008 CN
101763166 Jun 2010 CN
101825967 Sep 2010 CN
101938396 Jan 2011 CN
102117121 Jul 2011 CN
102292687 Dec 2011 CN
102356624 Feb 2012 CN
202404524 Aug 2012 CN
102906673 Jan 2013 CN
103440102 Dec 2013 CN
1223722 Jul 2002 EP
1591891 Nov 2005 EP
2353978 Aug 2011 EP
2381340 Oct 2011 EP
2584432 Apr 2013 EP
2178570 Feb 1987 GB
10326124 Dec 1998 JP
1173239 Mar 1999 JP
11345041 Dec 1999 JP
1020110087178 Aug 2011 KR
1038411 May 2012 NL
WO-2010011983 Jan 2010 WO
WO-2012036717 Mar 2012 WO
WO-2012173305 Dec 2012 WO
WO-2013169299 Nov 2013 WO
WO-2014098946 Jun 2014 WO
Non-Patent Literature Citations (291)
Entry
“International Preliminary Report on Patentability”, Application No. PCT/US2015/067754, dated Jan. 10, 2017, 10 pages.
“International Preliminary Report on Patentability”, Application No. PCT/US2016/031699, dated Feb. 22, 2017, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/591,704, dated Mar. 10, 2017, 26 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/283,913, dated Feb. 10, 2017, 20 pages.
“Accessing Device Sensors”, retrieved from <https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html> on May 25, 2012, 2011, 4 pages.
“ACPI Docking for Windows Operating Systems”, Retrieved from: <http://www.scritube.com/limba/engleza/software/ACPI-Docking-for-Windows-Opera331824193.php> on Jul. 6, 2012, 2012, 10 pages.
“Advanced Configuration and Power Management Specification”, Intel Corporation, Microsoft Corporation, Toshiba Corp. Revision 1, Dec. 22, 1996, 364 pages.
“Advisory Action”, U.S. Appl. No. 13/975,087, dated Nov. 16, 2015, 3 pages.
“Capacitive Touch Sensors—Application Fields, Technology Overview and Implementation Example”, Fujitsu Microelectronics Europe GmbH; retrieved from http://www.fujitsu.com/downloads/MICRO/fme/articles/fujitsu-whitepaper-capacitive-touch-sensors.pdf on Jul. 20, 2011, Jan. 12, 2010, 12 pages.
“Cholesteric Liquid Crystal”, Retrieved from: <http://en.wikipedia.org/wiki/Cholesteric_liquid_crystal> on Aug. 6, 2012, Jun. 10, 2012, 2 pages.
“Cirago Slim Case®—Protective case with built-in kickstand for your iPhone 5”, Retrieved from <http://cirago.com/wordpress/wp-content/uploads/2012/10/ipc1500brochure1.pdf> on Jan. 29, 2013, Jan. 2013, 1 page.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/470,633, dated Apr. 9, 2013, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/470,633, dated Jul. 2, 2013, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/527,263, dated Jan. 4, 2016, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/527,263, dated Jan. 11, 2016, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/527,263, dated Mar. 7, 2016, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/527,263, dated Apr. 12, 2016, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/527,263, dated Apr. 25, 2016, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/603,918, dated May 8, 2015, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 13/645,405, dated Jul. 7, 2015, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/033,290, dated Jul. 13, 2016, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/033,508, dated Jun. 16, 2016, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/033,508, dated Sep. 9, 2016, 2 pages.
“Corrected Notice of Allowance”, U.S. Appl. No. 14/698,318, dated Jun. 9, 2016, 2 pages.
“Developing Next-Generation Human Interfaces using Capacitive and Infrared Proximity Sensing”, Silicon Laboratories, Inc., Available at <http://www.silabs.com/pages/DownloadDoc.aspx?FILEURL=support%20documents/technicaldocs/capacitive%20and%20proximity%20sensing_wp.pdf&src=SearchResults>, Aug. 30, 2010, pp. 1-10.
“Directional Backlighting for Display Panels”, U.S. Appl. No. 13/021,448, filed Feb. 4, 2011, 38 pages.
“DR2PA”, retrieved from <http://www.architainment.co.uk/wp-content/uploads/2012/08/DR2PA-AU-US-size-Data-Sheet-Rev-H_LOGO.pdf> on Sep. 17, 2012, Jan. 2012, 4 pages.
“Enhancing Your Device Design Through Tactile Feedback”, Immersion, Available at <http://www.immersion.com/docs/Enhancing-Device-Design-Through-Tactile-Feedback.pdf>, Apr. 2011, pp. 1-7.
“Ex Parte Quayle Action”, U.S. Appl. No. 13/599,763, Nov. 14, 2014, 6 pages.
“Examiner'Answer to Appeal Brief”, U.S. Appl. No. 13/974,994, May 18, 2016, 40 pages.
“Final Office Action”, U.S. Appl. No. 13/471,001, dated Jul. 25, 2013, 20 pages.
“Final Office Action”, U.S. Appl. No. 13/527,263, dated Jan. 27, 2015, 7 pages.
“Final Office Action”, U.S. Appl. No. 13/603,918, dated Mar. 21, 2014, 14 pages.
“Final Office Action”, U.S. Appl. No. 13/647,479, dated Sep. 17, 2015, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/647,479, dated Dec. 12, 2014, 12 pages.
“Final Office Action”, U.S. Appl. No. 13/651,195, dated Apr. 18, 2013, 13 pages.
“Final Office Action”, U.S. Appl. No. 13/651,232, dated May 21, 2013, 21 pages.
“Final Office Action”, U.S. Appl. No. 13/651,287, dated May 3, 2013, 16 pages.
“Final Office Action”, U.S. Appl. No. 13/651,976, dated Jul. 25, 2013, 21 pages.
“Final Office Action”, U.S. Appl. No. 13/653,321, dated Aug. 2, 2013, 17 pages.
“Final Office Action”, U.S. Appl. No. 13/655,065, dated Apr. 2, 2015, 23 pages.
“Final Office Action”, U.S. Appl. No. 13/655,065, dated Aug. 8, 2014, 20 pages.
“Final Office Action”, U.S. Appl. No. 13/769,356, dated Mar. 23, 2016, 15 pages.
“Final Office Action”, U.S. Appl. No. 13/769,356, dated Apr. 10, 2015, 9 pages.
“Final Office Action”, U.S. Appl. No. 13/782,137, dated Feb. 10, 2016, 21 pages.
“Final Office Action”, U.S. Appl. No. 13/782,137, dated May 8, 2015, 19 pages.
“Final Office Action”, U.S. Appl. No. 13/974,749, dated Mar. 23, 2016, 22 pages.
“Final Office Action”, U.S. Appl. No. 13/974,749, dated May 21, 2015, 19 pages.
“Final Office Action”, U.S. Appl. No. 13/974,749, dated Sep. 5, 2014, 18 pages.
“Final Office Action”, U.S. Appl. No. 13/974,994, dated Jun. 10, 2015, 28 pages.
“Final Office Action”, U.S. Appl. No. 13/974,994, dated Oct. 6, 2014, 26 pages.
“Final Office Action”, U.S. Appl. No. 13/975,087, dated Aug. 7, 2015, 16 pages.
“Final Office Action”, U.S. Appl. No. 13/975,087, dated Sep. 10, 2014, 19 pages.
“Final Office Action”, U.S. Appl. No. 14/033,510, dated Jun. 5, 2015, 24 pages.
“Final Office Action”, U.S. Appl. No. 14/033,510, dated Aug. 21, 2014, 18 pages.
“Final Office Action”, U.S. Appl. No. 14/144,876, dated Feb. 3, 2016, 27 pages.
“Final Office Action”, U.S. Appl. No. 14/697,501, dated Apr. 18, 2016, 14 pages.
“First One Handed Fabric Keyboard with Bluetooth Wireless Technology”, Retrieved from: <http://press.xtvworld.com/article3817.html> on May 8, 2012, Jan. 6, 2005, 2 pages.
“Force and Position Sensing Resistors: An Emerging Technology”, Interlink Electronics, Available at <http://staff.science.uva.n1/˜vlaander/docu/FSR/An_Exploring_Technology.pdf>, Feb. 1990, pp. 1-6.
“Foreign Office Action”, CN Application No. 201310316114.2, dated Apr. 18, 2016, 11 pages.
“Foreign Office Action”, CN Application No. 201310316114.2, dated Sep. 29, 2015, 13 pages.
“Frogpad Introduces Weareable Fabric Keyboard with Bluetooth Technology”, Retrieved from: <http://www.geekzone.co.nz/content.asp?contentid=3898> on May 7, 2012, Jan. 7, 2005, 3 pages.
“How to Use the iPad's Onscreen Keyboard”, Retrieved from <http://www.dummies.com/how-to/content/how-to-use-the-ipads-onscreen-keyboard.html> on Aug. 28, 2012, 2012, 3 pages.
“iControlPad 2—The open source controller”, Retrieved from <http://www.kickstarter.com/projects/1703567677/icontrolpad-2-the-open-source-controller> on Nov. 20, 2012, 2012, 15 pages.
“i-Interactor electronic pen”, Retrieved from: <http://www.alibaba.com/product-gs/331004878/i_Interactor_electronic_pen.html> on Jun. 19, 2012, 2012, 5 pages.
“Incipio LG G-Slate Premium Kickstand Case—Black Nylon”, Retrieved from: <http://www.amazon.com/Incipio-G-Slate-Premium-Kickstand-Case/dp/B004ZKP916> on May 8, 2012, 2012, 4 pages.
“International Preliminary Report on Patentability”, Application No. PCT/US2014/068687, dated Mar. 11, 2016, 7 pages.
“International Preliminary Report on Patentability”, Application No. PCT/US2014/056185, dated Dec. 23, 2015, 7 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/068687, dated Mar. 18, 2015, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/016151, dated May 16, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/016743, dated Jul. 24, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/056185, dated Dec. 4, 2014, 10 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/028948, dated Jun. 21, 2013, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/029461, dated Jun. 21, 2013, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/040968, dated Sep. 5, 2013, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/044871, dated Aug. 14, 2013, 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2015/067754, dated Apr. 7, 2016, 13 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/014522, dated Jun. 6, 2014, 13 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2016/025966, dated Jun. 15, 2016, 15 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/045283, dated Mar. 12, 2014, 19 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/044873, dated Nov. 22, 2013, 9 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/045049, dated Sep. 16, 2013, 9 pages.
“Membrane Keyboards & Membrane Keypads”, Retrieved from: <http://www.pannam.com/> on May 9, 2012, Mar. 4, 2009, 2 pages.
“Microsoft Tablet PC”, Retrieved from < http://web.archive.org/web/20120622064335/https://en.wikipedia.org/wiki/Microsoft_Tablet_PC> on Jun. 4, 2014, Jun. 21, 2012, 9 pages.
“Motion Sensors”, Android Developers—retrieved from <http://developer.android.com/guide/topics/sensors/sensors_motion.html> on May 25, 2012, 2012, 7 pages.
“MPC Fly Music Production Controller”, AKAI Professional, Retrieved from: <http://www.akaiprompc.com/mpc-fly> on Jul. 9, 2012, 4 pages.
“NI Releases New Maschine & Maschine Mikro”, Retrieved from <http://www.djbooth.net/index/dj-equipment/entry/ni-releases-new-maschine-mikro/> on Sep. 17, 2012, 19 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/021,448, dated Dec. 13, 2012, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,001, dated Feb. 19, 2013, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,139, dated Mar. 21, 2013, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,202, dated Feb. 11, 2013, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/471,336, dated Jan. 18, 2013, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/527,263, dated Apr. 3, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/527,263, dated Jul. 19, 2013, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/563,435, dated Jun. 14, 2013, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, dated Jun. 19, 2013, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/565,124, dated Jun. 17, 2013, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/599,763, dated May 28, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/603,918, dated Sep. 2, 2014, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/603,918, dated Dec. 19, 2013, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/645,405, dated Jan. 31, 2014, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/645,405, dated Aug. 11, 2014, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/647,479, dated Apr. 28, 2015, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/647,479, dated Jul. 3, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,195, dated Jan. 2, 2013, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,232, dated Jan. 17, 2013, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,272, dated Feb. 12, 2013, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,287, dated Jan. 29, 2013, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,304, dated Mar. 22, 2013, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,327, dated Mar. 22, 2013, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,726, dated Apr. 15, 2013, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,871, dated Mar. 18, 2013, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,871, dated Jul. 1, 2013, 5 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/651,976, dated Feb. 22, 2013, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,321, dated Feb. 1, 2013, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, dated Feb. 7, 2013, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, dated Jun. 3, 2013, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/655,065, dated Apr. 24, 2014, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/655,065, dated Aug. 19, 2015, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/655,065, dated Dec. 19, 2014, 24 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/656,055, dated Apr. 23, 2013, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/656,520, dated Feb. 1, 2013, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/656,520, dated Jun. 5, 2013, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/759,875, dated Aug. 1, 2014, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/769,356, dated Jun. 30, 2016, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/769,356, dated Oct. 19, 2015, 23 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/769,356, dated Nov. 20, 2014, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/782,137, dated Jan. 30, 2015, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/782,137, dated Jun. 8, 2016, 22 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/782,137, dated Oct. 6, 2015, 20 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/974,749, dated Feb. 12, 2015, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/974,749, dated May 8, 2014, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/974,749, dated Dec. 3, 2015, 20 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/974,994, dated Jan. 23, 2015, 26 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/974,994, dated Jun. 4, 2014, 24 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/975,087, dated Feb. 27, 2015, 20 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/975,087, dated May 8, 2014, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/033,290, dated Dec. 3, 2015, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/033,508, dated Dec. 3, 2015, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/033,510, dated Feb. 12, 2015, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/033,510, dated Jun. 5, 2014, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/144,876, dated Jun. 10, 2015, 23 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/144,876, dated Jul. 6, 2016, 33 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/591,704, dated Jun. 7, 2016, 32 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/697,501, dated Sep. 29, 2015, 11 pages.
“Notice of Allowance”, U.S. Appl. No. 13/470,633, dated Mar. 22, 2013, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/471,202, dated May 28, 2013, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/527,263, dated Dec. 9, 2015, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/599,763, dated Feb. 18, 2015, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/603,918, dated Jan. 22, 2015, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 13/645,405, dated Mar. 26, 2015, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/647,479, dated Jan. 14, 2016, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,195, dated Jul. 8, 2013, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,272, dated May 2, 2013, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,304, dated Jul. 1, 2013, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,327, dated Jun. 11, 2013, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/651,726, dated May 31, 2013, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 13/759,875, dated Jul. 31, 2015, 9 pages.
“Notice of Allowance”, U.S. Appl. No. 14/033,290, dated Mar. 30, 2016, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 14/033,508, dated May 6, 2016, 9 pages.
“On-Screen Keyboard for Windows 7, Vista, XP with Touchscreen”, Retrieved from <www.comfort-software.com/on-screen-keyboard.html> on Aug. 28, 2012, Feb. 2, 2011, 3 pages.
“Optical Sensors in Smart Mobile Devices”, ON Semiconductor, TND415/D, Available at <http://www.onsemi.jp/pub_link/Collateral/TND415-D.PDF>, Nov. 2010, pp. 1-13.
“Optics for Displays: Waveguide-based Wedge Creates Collimated Display Backlight”, OptoIQ, retrieved from <http://www.optoiq.com/index/photonics-technologies-applications/lfw-display/lfw-article-display.articles.laser-focus-world.volume-46.issue-1.world-news.optics-for_displays.html> on Nov. 2, 2010, Jan. 1, 2010, 3 pages.
“Position Sensors”, Android Developers—retrieved from <http://developer.android.com/guide/topics/sensors/sensors_position.html> on May 25, 2012, 5 pages.
“Reflex LCD Writing Tablets”, retrieved from <http://www.kentdisplays.com/products/lcdwritingtablets.html> on Jun. 27, 2012, 3 pages.
“Restriction Requirement”, U.S. Appl. No. 13/603,918, dated Nov. 27, 2013, 8 pages.
“Restriction Requirement”, U.S. Appl. No. 13/471,139, dated Jan. 17, 2013, 7 pages.
“Restriction Requirement”, U.S. Appl. No. 13/651,304, dated Jan. 18, 2013, 7 pages.
“Restriction Requirement”, U.S. Appl. No. 13/651,726, dated Feb. 22, 2013, 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/651,871, dated Feb. 7, 2013, 6 pages.
“Restriction Requirement”, U.S. Appl. No. 13/715,229, dated Aug. 13, 2013, 7 pages.
“Second Written Opinion”, Application No. PCT/US2014/056185, dated Sep. 15, 2015, 5 pages.
“Second Written Opinion”, Application No. PCT/US2014/068687, dated Nov. 12, 2015, 6 pages.
“Smart Board™ Interactive Display Frame Pencil Pack”, Available at <http://downloads01.smarttech.com/media/sitecore/en/support/product/sbfpd/400series(in teractivedisplayframes)/guides/smartboardinteractivedisplayframepencilpackv12mar09.pd f>, 2009, 2 pages.
“Snugg iPad 3 Keyboard Case—Cover Ultra Slim Bluetooth Keyboard Case for the iPad 3 & iPad 2”, Retrieved from < https://web.archive.org/web/20120810202056/http://www.amazon. com/Snugg-iPad-Keyboard-Case-Bluetooth/dp/B008CCHXJE> on Jan. 23, 2015, Aug. 10, 2012, 4 pages.
“SolRxTM E-Series Multidirectional Phototherapy ExpandableTM 2-Bulb Full Body Panel System”, Retrieved from: <http://www.solarcsystems.com/us_multidirectional_uv_light_therapy_1_intro.html > on Jul. 25, 2012, 2011, 4 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/603,918, dated Apr. 20, 2015, 8 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 14/698,318, dated Aug. 15, 2016, 2 pages.
“Tactile Feedback Solutions Using Piezoelectric Actuators”, Available at: http://www.eetimes.com/document.asp?doc_id=1278418, Nov. 17, 2010, 6 pages.
“The Microsoft Surface Tablets Comes With Impressive Design and Specs”, Retrieved from <http://microsofttabletreview.com/the-microsoft-surface-tablets-comes-with-impressive-design-and-specs> on Jan. 30, 2013, Jun. 2012, 2 pages.
“Tilt Shift Lenses: Perspective Control”, retrieved from http://www.cambridgeincolour.com/tutorials/tilt-shift-lenses1.htm, Mar. 28, 2008, 11 Pages.
“Using a Force Touch trackpad”, Retrieved on: Nov. 17, 2015 Available at: https://support.apple.com/en-in/HT204352, 3 pages.
“Virtualization Getting Started Guide”, Red Hat Enterprise Linux 6, Edition 0.2—retrieved from <http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Virtualization_Getting_Started_Guide/index.html> on Jun. 13, 2012, 24 pages.
“Visus Photonics—Visionary Technologies New Generation of Production Ready Keyboard-Keypad Illumination Systems”, Available at: <http://www.visusphotonics.com/pdf/appl_keypad_keyboard_backlights.pdf>, May 2006, pp. 1-22.
“What is Active Alignment?”, http://www.kasalis.com/active_alignment.html, retrieved on Nov. 22, 2012, Nov. 22, 2012, 2 Pages.
“Write & Learn Spellboard Advanced”, Available at <http://somemanuals.com/VTECH,WRITE%2526LEARN--SPELLBOARD--ADV--71000,JIDFHE.PDF>, 2006, 22 pages.
“Writer 1 for iPad 1 keyboard + Case (Aluminum Bluetooth Keyboard, Quick Eject and Easy Angle Function!)”, Retrieved from <https://web.archive.org/web/20120817053825/http://www.amazon.com/keyboard-Aluminum-Bluetooth-Keyboard-Function/dp/B004OQLSLG> on Jan. 23, 2015, Aug. 17, 2012, 5 pages.
Akamatsu,“Movement Characteristics Using a Mouse with Tactile and Force Feedback”, In Proceedings of International Journal of Human-Computer Studies 45, No. 4, Oct. 1996, 11 pages.
Bathiche,“Input Device with Interchangeable Surface”, U.S. Appl. No. 13/974,749, filed Aug. 23, 2013, 51 pages.
Betters,“What is Force Touch? Apple's Haptic Feedback Technology Explained”, Available at: http://www.pocket-lint.com/news/133176-what-is-force-touch-apple-s-haptic-feedback-technology-explained, Mar. 11, 2015, 8 pages.
Block,“DeviceOrientation Event Specification”, W3C, Editor's Draft, retrieved from <https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html> on May 25, 2012, Jul. 12, 2011, 14 pages.
Boulanger,“Method and System for Controlling of an Ambient Multiple Zones Haptic Feedback on Mobile Devices (W231)”, U.S. Appl. No. 14/298,658, filed Jun. 6, 2014, 34 pages.
Brown,“Microsoft Shows Off Pressure-Sensitive Keyboard”, retrieved from <http://news.cnet.com/8301-17938_105-10304792-1.html> on May 7, 2012, Aug. 6, 2009, 2 pages.
Butler,“SideSight: Multi-“touch” Interaction around Small Devices”, In the proceedings of the 21st annual ACM symposium on User interface software and technology., retrieved from <http://research.microsoft.com/pubs/132534/sidesight_crv3.pdf> on May 29, 2012, Oct. 19, 2008, 4 pages.
Chu,“Design and Analysis of a Piezoelectric Material Based Touch Screen With Additional Pressure and Its Acceleration Measurement Functions”, In Proceedings of Smart Materials and Structures, vol. 22, Issue 12, Nov. 1, 2013, 2 pages.
Crider,“Sony Slate Concept Tablet “Grows” a Kickstand”, Retrieved from: <http://androidcommunity.com/sony-slate-concept-tablet-grows-a-kickstand-20120116/> on May 4, 2012, Jan. 16, 2012, 9 pages.
Das,“Study of Heat Transfer through Multilayer Clothing Assemblies: A Theoretical Prediction”, Retrieved from <http://www.autexrj.com/cms/zalaczone_pliki/5_013_11.pdf>, Jun. 2011, 7 pages.
De“HTML5: Vibration API”, Available at: http://code.tutsplus.com/tutorials/htm15-vibration-api--mobile-22585, Mar. 10, 2014, 11 pages.
Dietz,“A Practical Pressure Sensitive Computer Keyboard”, In Proceedings of UIST 2009, Oct. 2009, 4 pages.
Gaver,“A Virtual Window on Media Space”, retrieved from <http://www.gold.ac.uk/media/15gaver-smets-overbeeke.MediaSpaceWindow.chi95.pdf> on Jun. 1, 2012, retrieved from <http://www.gold.ac.uk/media/15gaver-smets-overbeeke.MediaSpaceWindow.chi95.pdf> on Jun. 1, 2012, May 7, 1995, 9 pages.
Glatt,“Channel and Key Pressure (Aftertouch).”, Retrieved from: <http://home.roadrunner.com/˜jgglatt/tutr/touch.htm> on Jun. 11, 2012, 2012, 2 pages.
Gong,“PrintSense: A Versatile Sensing Technique to Support Multimodal Flexible Surface Interaction”, In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; retrieved from: http://dl.acm.org/citation.cfm?id=2556288.2557173&coll=DL&dl=ACM&CFID=571580473&CFTOKEN=89752233 on Sep. 19, 2014, Apr. 26, 2014, 4 pages.
Hanlon,“ElekTex Smart Fabric Keyboard Goes Wireless”, Retrieved from: <http://www.gizmag.com/go/5048/ > on May 7, 2012, Jan. 15, 2006, 5 pages.
Harada,“VoiceDraw: A Hands-Free Voice-Driven Drawing Application for People with Motor Impairments”, In Proceedings of Ninth International ACM SIGACCESS Conference on Computers and Accessibility, retrieved from <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.7211&rep=rep1&type=pdf > on Jun. 1, 2012, Oct. 15, 2007, 8 pages.
Hinckley,“Touch-Sensing Input Devices”, In Proceedings of ACM SIGCHI 1999, May 15, 1999, 8 pages.
Hughes,“Apple's haptic touch feedback concept uses actuators, senses force on iPhone, iPad”, Retrieved from: http://appleinsider.com/articles/12/03/22/apples_haptic_touch_feedback_concept_uses_actuators_senses_force_on_iphone_ipad, Mar. 22, 2012, 5 pages.
Iwase,“Multistep Sequential Batch Assembly of Three-Dimensional Ferromagnetic Microstructures with Elastic Hinges”, Retrieved at <<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1549861>> Proceedings: Journal of Microelectromechanical Systems, Dec. 2005, 7 pages.
Kadlecek,“Overview of Current Developments in Haptic APIs”, In Proceedings of 15th Central European Seminar on Computer Graphics, May 2, 2011, 8 pages.
Kaufmann,“Hand Posture Recognition Using Real-time Artificial Evolution”, EvoApplications'09, retrieved from <http://evelyne.lutton.free.fr/Papers/KaufmannEvolASP2010.pdf> on Jan. 5, 2012, Apr. 3, 2010, 10 pages.
Kaur,“Vincent Liew's redesigned laptop satisfies ergonomic needs”, Retrieved from: <http://www.designbuzz.com/entry/vincent-liew-s-redesigned-laptop-satisfies-ergonomic-needs/> on Jul. 27, 2012, Jun. 21, 2010, 4 pages.
Khuntontong,“Fabrication of Molded Interconnection Devices by Ultrasonic Hot Embossing on Thin Polymer Films”, IEEE Transactions on Electronics Packaging Manufacturing, vol. 32, No. 3, Jul. 2009, pp. 152-156.
Kyung,“TAXEL: Initial Progress Toward Self-Morphing Visio-Haptic Interface”, Proceedings: In IEEE World Haptics Conference, Jun. 21, 2011, 6 pages.
Lane,“Media Processing Input Device”, U.S. Appl. No. 13/655,065, filed Oct. 18, 2012, 43 pages.
Li,“Characteristic Mode Based Tradeoff Analysis of Antenna-Chassis Interactions for Multiple Antenna Terminals”, In IEEE Transactions on Antennas and Propagation, Retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6060882>, Feb. 2012, 13 pages.
Linderholm,“Logitech Shows Cloth Keyboard for PDAs”, Retrieved from: <http://www.pcworld.com/article/89084/logitech_shows_cloth_keyboard_for_pdas.html> on May 7, 2012, Mar. 15, 2002, 5 pages.
Mackenzie,“The Tactile Touchpad”, In Proceedings of the ACM CHI Human Factors in Computing Systems Conference Available at: <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.4780&rep=rep1&type=pdf >, Mar. 22, 1997, 2 pages.
Manresa-Yee,“Experiences Using a Hands-Free Interface”, In Proceedings of the 10th International ACM SIGACCESS Conference on Computers and Accessibility, retrieved from <http://dmi.uib.es/˜cmanresay/Research/%5BMan08%5DAssets08.pdf> on Jun. 1, 2012, Oct. 13, 2008, pp. 261-262.
McLellan,“Eleksen Wireless Fabric Keyboard: a first look”, Retrieved from: <http://www.zdnetasia.com/eleksen-wireless-fabric-keyboard-a-first-look-40278954.htm> on May 7, 2012, Jul. 17, 2006, 9 pages.
McPherson,“TouchKeys: Capacitive Multi-Touch Sensing on a Physical Keyboard”, In Proceedings of NIME 2012, May 2012, 4 pages.
Miller,“MOGA gaming controller enhances the Android gaming experience”, Retrieved from <http://www.zdnet.com/moga-gaming-controller-enhances-the-android-gaming-experience-7000007550/> on Nov. 20, 2012, Nov. 18, 2012, 9 pages.
Nakanishi,“Movable Cameras Enhance Social Telepresence in Media Spaces”, In Proceedings of the 27th International Conference on Human Factors in Computing Systems, retrieved from <http://smg.ams.eng.osaka-u.ac.jp/˜nakanishi/hnp_2009_chi.pdf> on Jun. 1, 2012, Apr. 6, 2009, 10 pages.
Odegard,“My iPad MagPad concept”, Retrieved from <http://www.pocketables.com/2011/02/my-ipad-magpad-concept.html> on Oct. 1, 2015, Feb. 26, 2011, 8 pages.
Picciotto,“Piezo-Actuated Virtual Buttons for Touch Surfaces”, U.S. Appl. No. 13/769,356, filed Feb. 17, 2013, 31 pages.
Piltch,“ASUS Eee Pad Slider SL101 Review”, Retrieved from <http://www.laptopmag.com/review/tablets/asus-eee-pad-slider-sl101.aspx>, Sep. 22, 2011, 5 pages.
Post,“E-Broidery: Design and Fabrication of Textile-Based Computing”, IBM Systems Journal, vol. 39, Issue 3 & 4, Jul. 2000, pp. 840-860.
Poupyrev,“Ambient Touch: Designing Tactile Interfaces for Handheld Devices”, In Proceedings of the 15th Annual ACM Symposium on User Interface Software and Technology Available at: <http://www.ivanpoupyrev.com/e-library/2002/uist2002_ambientouch.pdf>, Oct. 27, 2002, 10 pages.
Poupyrev,“Tactile Interfaces for Small Touch Screens”, In Proceedings of the 16th Annual ACM Symposium on User Interface Softward and Technology, Nov. 2, 2003, 4 pages.
Purcher,“Apple is Paving the Way for a New 3D GUI for IOS Devices”, Retrieved from: <http://www.patentlyapple.com/patently-apple/2012/01/apple-is-paving-the-way-for-a-new-3d-gui-for-ios-devices.html> on Jun. 4, 2012, Retrieved from: <http://www.patentlyapple.com/patently-apple/2012/01/apple-is-paving-the-way-for-a-new-3d-gui-for-ios-devices.html> on Jun. 4, 2012, Jan. 12, 2012, 15 pages.
Qin,“pPen: Enabling Authenticated Pen and Touch Interaction on Tabletop Surfaces”, In Proceedings of ITS 2010—Available at <http://www.dfki.de/its2010/papers/pdf/po172.pdf>, Nov. 2010, pp. 283-284.
Reilink,“Endoscopic Camera Control by Head Movements for Thoracic Surgery”, In Proceedings of 3rd IEEE RAS & EMBS International Conference of Biomedical Robotics and Biomechatronics, retrieved from <http://doc.utwente.n1/74929/1/biorob_online.pdf> on Jun. 1, 2012, Sep. 26, 2010, pp. 510-515.
Rendl,“Presstures: Exploring Pressure-Sensitive Multi-Touch Gestures on Trackpads”, In Proceedings of SIGCHI Conference on Human Factors in Computing Systems, Apr. 26, 2014, pp. 431-434.
Rendl,“PyzoFlex: Printed Piezoelectric Pressure Sensing Foil”, In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, Oct. 7, 2012, 10 pages.
Rubin,“Switched On: The Bedeviled Bezel”, Retrieved from: http://www.engadget.com/2011/07/17/switched-on-the-bedeviled-bezel/—on Nov. 19, 2015, Jul. 17, 2011, 4 pages.
Shaw,“Input Device Configuration having Capacitive and Pressure Sensors”, U.S. Appl. No. 14/033,510, filed Sep. 22, 2013, 55 pages.
Staff,“Gametel Android controller turns tablets, phones into portable gaming devices”, Retrieved from <http://www.mobiletor.com/2011/11/18/gametel-android-controller-turns-tablets-phones-into-portable-gaming-devices/#> on Nov. 20, 2012, Nov. 18, 2011, 5 pages.
Sumimoto,“Touch & Write: Surface Computing With Touch and Pen Input”, Retrieved from: <http://www.gottabemobile.com/2009/08/07/touch-write-surface-computing-with-touch-and-pen-input/> on Jun. 19, 2012, Aug. 7, 2009, 4 pages.
Sundstedt,“Gazing at Games: Using Eye Tracking to Control Virtual Characters”, In ACM SIGGRAPH 2010 Courses, retrieved from <http://www.tobii.com/Global/Analysis/Training/EyeTrackAwards/veronica_sundstedt.pdf> on Jun. 1, 2012, Jul. 28, 2010, 85 pages.
Takamatsu,“Flexible Fabric Keyboard with Conductive Polymer-Coated Fibers”, In Proceedings of Sensors 2011, Oct. 28, 2011, 4 pages.
Titus,“Give Sensors a Gentle Touch”, http://www.ecnmag.com/articles/2010/01/give-sensors-gentle-touch, Jan. 13, 2010, 6 pages.
Travis,“Collimated Light from a Waveguide for a Display Backlight”, Optics Express, 19714, vol. 17, No. 22, retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/OpticsExpressbacklightpaper.pdf> on Oct. 15, 2009, Oct. 15, 2009, 6 pages.
Travis,“The Design of Backlights for View-Sequential 3D”, retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/Backlightforviewsequentialautostereo.docx> on Nov. 1, 2010, 4 pages.
Tuite,“Haptic Feedback Chips Make Virtual-Button Applications on Handheld Devices a Snap”, Retrieved at: http://electronicdesign.com/analog/haptic-feedback-chips-make-virtual-button-applications-handheld-devices-snap, Sep. 10, 2009, 7 pages.
Valli,“Notes on Natural Interaction”, retrieved from <http://www.idemployee.id.tue.nl/g.w.m.rauterberg/lecturenotes/valli-2004.pdf> on Jan. 5, 2012, Sep. 2005, 80 pages.
Valliath,“Design of Hologram for Brightness Enhancement in Color LCDs”, Retrieved from <http://www.loreti.it/Download/PDF/LCD/44_05.pdf> on Sep. 17, 2012, May 1998, 5 pages.
Vaucelle,“Scopemate, A Robotic Microscope!”, Architectradure, retrieved from <http://architectradure.blogspot.com/2011/10/at-uist-this-monday-scopemate-robotic.html> on Jun. 6, 2012, Oct. 17, 2011, 2 pages.
Williams,“A Fourth Generation of LCD Backlight Technology”, Retrieved from <http://cds.linear.com/docs/Application%20Note/an65f.pdf>, Nov. 1995, 124 pages.
Xu,“Hand Gesture Recognition and Virtual Game Control Based on 3D Accelerometer and EMG Sensors”, IUI'09, Feb. 8-11, 2009, retrieved from <http://sclab.yonsei.ac.kr/courses/10TPR/10TPR.files/Hand%20Gesture%20Recognition%20and%20Virtual%20Game%20Control%20based%20on%203d%20accelerometer%20and%20EMG%20sensors.pdf> on Jan. 5, 2012, Feb. 8, 2009, 5 pages.
Xu,“Vision-based Detection of Dynamic Gesture”, ICTM'09, Dec. 5-6, 2009, retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5412956> on Jan. 5, 2012, Dec. 5, 2009, pp. 223-226.
Zhang,“Model-Based Development of Dynamically Adaptive Software”, In Proceedings of ICSE 2006, Available at <http://www.irisa.fr/lande/lande/icse-proceedings/icse/p371.pdf>, May 20, 2006, pp. 371-380.
Zhu,“Keyboard before Head Tracking Depresses User Success in Remote Camera Control”, In Proceedings of 12th IFIP TC 13 International Conference on Human-Computer Interaction, Part II, retrieved from <http://csiro.academia.edu/Departments/CSIRO_ICT_Centre/Papers?page=5> on Jun. 1, 2012, Aug. 24, 2009, 14 pages.
“Foreign Office Action”, CN Application No. 201480009165.3, dated Apr. 12, 2017, 16 pages.
“International Preliminary Report on Patentability”, Application No. PCT/US2014/016743, dated Sep. 7, 2015, 7 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2017/013583, dated Apr. 19, 2017, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/782,137, dated May 19, 2017, 27 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/729,793, dated Mar. 31, 2017, 14 pages.
“Second Written Opinion”, Application No. PCT/US2014/016151, dated Jan. 29, 2015, 6 pages.
“Second Written Opinion”, Application No. PCT/US2016/025966, dated Mar. 14, 2017, 7 pages.
“Advisory Action”, U.S. Appl. No. 13/769,356, dated Dec. 16, 2016, 3 pages.
“Examiner's Answer to Appeal Brief”, U.S. Appl. No. 13/974,994, dated May 18, 2016.
“Final Office Action”, U.S. Appl. No. 13/655,065, dated Nov. 17, 2015, 25 pages.
“Final Office Action”, U.S. Appl. No. 13/759,875, dated Mar. 27, 2015, 18 pages.
“Final Office Action”, U.S. Appl. No. 13/769,356, dated Sep. 30, 2016, 15 pages.
“Final Office Action”, U.S. Appl. No. 13/782,137, dated Dec. 29, 2016, 24 pages.
“Final Office Action”, U.S. Appl. No. 14/033,510, dated Feb. 8, 2016, 27 pages.
“Final Office Action”, U.S. Appl. No. 14/591,704, dated Nov. 25, 2016, 33 pages.
“Final Office Action”, U.S. Appl. No. 14/729,793, dated Dec. 1, 2017, 17 pages.
“International Preliminary Report on Patentability”, Application No. PCT/US2016/025966, dated May 22, 2017, 8 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2016/028191, dated Jun. 29, 2016, 14 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2016/031699, dated Nov. 11, 2016, 23 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/975,087, dated May 10, 2016, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/033,510, dated Oct. 7, 2015, 23 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/004,423, dated Jun. 29, 2017, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 15/269,594, dated Jun. 7, 2017, 27 pages.
“Notice of Allowance”, U.S. Appl. No. 14/591,704, dated Aug. 21, 2017, 15 pages.
“Notice of Allowance”, U.S. Appl. No. 14/698,318, dated May 6, 2016, 13 pages.
“Notice of Allowance”, U.S. Appl. No. 15/283,913, dated Sep. 6, 2017, 9 pages.
“Second Written Opinion”, Application No. PCT/US2015/067754, dated Nov. 25, 2016, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 15/283,913, dated Mar. 19, 2018, 10 pages.
“Notice of Allowance”, U.S. Appl. No. 15/004,423, dated Jan. 9, 2018, 15 pages.
“Advisory Action”, U.S. Appl. No. 14/729,793, dated Feb. 13, 2018, 2 pages.
“Advisory Action”, U.S. Appl. No. 13/769,356, dated May 30, 2017, 2 pages.
“Non Final Office Action Issued in U.S. Appl. No. 13/769,356”, dated May 19, 2017, 27 Pages.
“Non Final Office Action Issued in U.S. Appl. No. 13/974,749”, dated Jan. 20, 2017, 23 Pages.
“Final Office Action Issued in U.S. Appl. No. 13/975,087”, dated Nov. 4, 2016, 23 Pages.
“Office Action Issued in European Patent Application No. 14819214.9”, dated Mar. 2, 2018, 5 Pages.
“Third Office Action Issued in Chinese Patent Application No. 2014800091653”, dated Jun. 4, 2018, 19 Pages.
“Office Action Issued in Chinese Patent Application No. 201480071909.4”, dated Feb. 27, 2018, 13 Pages.
“Final Office Action Issued in U.S. Appl. No. 14/033,510”, dated Sep. 22, 2016, 22 Pages.
“First Office Action Issued in Chinese Patent Application No. 201210085821.0”, dated May 5, 2016, 18 Pages.
“Office Action Issued in Chinese Patent Application No. 201480009165.3”, dated Nov. 2, 2018, 12 Pages.
“Written Opinion Issued in PCT Application No. PCT/US2017/013583”, dated Aug. 2, 2018, 7 Pages.
Related Publications (1)
Number Date Country
20170102770 A1 Apr 2017 US
Continuations (1)
Number Date Country
Parent 14698318 Apr 2015 US
Child 15269594 US
Continuation in Parts (1)
Number Date Country
Parent 14144876 Dec 2013 US
Child 14698318 US