The present invention relates to an input device including a light-transmissive panel, a light-transmissive electrode layer, and a decorative layer such that the electrode layer and the decorative layer are arranged on an inner surface of the panel.
Japanese Unexamined Patent Application Publication No. 2011-197709 discloses an invention relating to a touch panel.
The touch panel disclosed in Japanese Unexamined Patent Application Publication No. 2011-197709 includes a cover glass plate having a first surface, serving as an input operation surface, and a second surface opposite the first surface. The touch panel further includes input detection electrodes and peripheral wiring lines arranged on the second surface.
The touch panel disclosed in Japanese Unexamined Patent Application Publication No. 2011-197709 includes a black light-shielding printed layer disposed in part of the second surface of the cover glass plate as illustrated in FIG. 4 of Japanese Unexamined Patent Application Publication No. 2011-197709. The input detection electrodes and the peripheral wiring lines formed of an indium tin oxide (ITO) film are arranged on the second surface. End portions of the peripheral wiring lines extend on the light-shielding printed layer, thus providing mounting terminals.
As illustrated in FIG. 5 of Japanese Unexamined Patent Application Publication No. 2011-197709, a flexible printed circuit board overlaps an arrangement area of the mounting terminals. The mounting terminals arranged on the light-shielding printed layer are joined to a conductive layer of the flexible printed circuit board.
A junction region of the mounting terminals and the flexible printed circuit board is covered with a colored printed layer.
Japanese Unexamined Patent Application Publication No. 2012-208621 discloses an input device including a transparent panel, a decorative layer, transparent electrodes, and a wiring layer such that the decorative layer is disposed on ends of an inner surface of the transparent panel, the transparent electrodes overlap a surface of the decorative layer, and the wiring layer is disposed on the transparent electrodes. In this input device, parts of the wiring layer disposed on the decorative layer form external connecting portions. A flexible printed circuit board overlaps and is joined to the external connecting portions.
In the touch panel disclosed in Japanese Unexamined Patent Application Publication No. 2011-197709, the flexible printed circuit board overlaps the mounting terminals on the light-shielding printed layer disposed on the second surface of the cover glass plate. The flexible printed circuit board is joined to the mounting terminals by soldering or with an anisotropic conductive film or conductive paste. In this joining process, the flexible printed circuit board in a heated state is pressed against the cover glass plate, so that heat and pressure act on the light-shielding printed layer and the light-shielding printed layer tends to be partially distorted. Such distortion is visible from a front side of the cover glass plate. The junction region of the flexible printed circuit board is accordingly noticeable, resulting in a deterioration in appearance of such a product.
In the input device disclosed in Japanese Unexamined Patent Application Publication No. 2012-208621, since the flexible printed circuit board is joined to the external connecting portions arranged on the decorative layer, the decorative layer tends to be distorted at a junction to the flexible printed circuit board as in Japanese Unexamined Patent Application Publication No. 2011-197709. Japanese Unexamined Patent Application Publication No. 2012-208621 describes that the transparent panel may be made of transparent plastic. In this case, not only the decorative layer but also the transparent plastic panel tend to suffer damage, such as distortion, when the flexible printed circuit board is joined to the external connecting portions. Unfortunately, a region of the junction to the flexible printed circuit board is noticeable when the completed input device is viewed from a front side of the transparent panel.
To reduce damage to the light-shielding printed layer or the decorative layer and further reduce damage to the transparent plastic panel, a way or means of joining the flexible printed circuit board has to be adjusted so that the flexible printed circuit board can be joined at low temperature with low pressure. However, this adjustment results in a reduction in bonding strength of the flexible printed circuit board.
The present invention is intended to overcome the above-described known problems and provides an input device including a light-transmissive panel, a flexible printed circuit board, and a decorative layer disposed on an inner surface of the light-transmissive panel and suffered little damage when connected to the flexible printed circuit board.
An aspect of the present invention provides an input device including a light-transmissive panel having a light-transmissive area and a light-shielding area, a light-transmissive electrode layer disposed in the light-transmissive area on an inner surface of the panel, a non-light-transmissive decorative layer disposed in the light-shielding area on the inner surface of the panel, an inner resin layer disposed on a surface of the decorative layer and having thereon a conductive connection pattern in electrical communication with the electrode layer, and a flexible printed circuit board overlapping the inner resin layer and having thereon a wiring pattern. The wiring pattern on the flexible printed circuit board is joined to the connection pattern.
The flexible printed circuit board may be joined to the inner resin layer by thermocompression bonding.
In one aspect, preferably, the inner resin layer is made of a resin material having a higher modulus of elasticity than a resin material that the decorative layer is made of.
It is also preferable that the inner resin layer is made of a resin material having a higher softening temperature than a resin material that the decorative layer is made of.
In one aspect, for example, the decorative layer may be made of acrylic resin and the inner resin layer may be made of epoxy resin.
In one aspect, it is preferable that the input device further includes an auxiliary resin layer disposed in a step defined by the surface of the decorative layer and an end of the inner resin layer.
In one aspect, it is preferable that the inner resin layer includes a plurality of sublayers stacked such that an end of an upper sublayer of the inner resin layer is misaligned with an end of a lower sublayer of the inner resin layer. Preferably, the panel may be made of synthetic resin.
In the input device according to one aspect of the present invention, the inner resin layer is disposed on the decorative layer disposed on the light-transmissive panel, and the wiring pattern of the flexible printed circuit board is joined to the connection pattern on the inner resin layer. This arrangement allows the inner resin layer to relieve heat and pressure applied when the flexible printed circuit board is joined by thermocompression bonding, thus reducing damage to the decorative layer. When the panel is made of synthetic resin, damage to the panel can be reduced.
The electronic apparatus 1 includes a light-transmissive panel 2. As used herein, light-transmissivity means, for example, a total light transmittance of 60% or more, preferably a total light transmittance of 80% or more.
The panel 2 serves as a front panel or an operation panel. As illustrated in
An input device 10 according to an embodiment of the present invention mainly includes the panel 2, electrode layer segments 12 and 13, wiring line layer segments 14 and 16, a decorative layer 21, an inner resin layer 22, and the flexible printed circuit board 7 such that the electrode layer segments, the wiring line layer segments, the decorative layer, and the inner resin layer are arranged on the panel 2.
The panel 2 illustrated in
As illustrated in
Referring to
Examples of the conductive nanomaterial include metal nanowire made of at least one selected from the group consisting of Ag, Au, Ni, Cu, Pd, Pt, Rh, Ir, Ru, Os, Fe, Co, and Sn and carbon fiber, such as carbon nanotube. Such a conductive nanomaterial dispersed by a dispersant is applied to the inner surface 2b of the panel 2 and is fixed to the inner surface 2b by using a transparent resin material.
The meshed metal layer is formed by printing a net of metal, such as Au, Ag, or Cu on the inner surface 2b of the panel 2 or by forming a layer of the metal having a uniform thickness on the inner surface 2b of the panel 2 and etching the layer.
The light-transmissive conductive layer formed on the inner surface 2b of the panel 2 is patterned by etching, thus forming the individual electrode layer segments 12, the common electrode layer segments 13, the individual wiring line layer segments 14 extending integrally from the individual electrode layer segments 12, and the common wiring line layer segments 16 extending integrally from the common electrode layer segments 13.
The individual electrode layer segments 12 and the common electrode layer segments 13 are regularly arranged. Referring to
Referring to
Referring to
Openings for installation of a loudspeaker, a microphone, and a camera lens, which are not illustrated in
Referring to
The inner resin layer 22 has a higher modulus of elasticity (Young's modulus) than the decorative layer 21. The inner resin layer 22 has a higher softening temperature than the decorative layer 21. The inner resin layer 22 is preferably 0.5 or more times as thick as the decorative layer 21, more preferably 1 or more times as thick as the decorative layer 21.
Referring to
The connection pattern segments 18 may be formed by continuously extending the light-transmissive conductive layer, which is made of, for example, ITO, and serves as the electrode layer segments 12 and 13 and the wiring line layer segments 14 and 16, on the surface 21a of the decorative layer 21 and the surface 22b of the inner resin layer 22. Alternatively, the connection pattern segments 18 may be formed by continuously extending the light-transmissive conductive layer, serving as the electrode layer segments 12 and 13 and the wiring line layer segments 14 and 16, disposed on the surface 21a of the decorative layer 21 and the surface 22b of the inner resin layer 22, and covering the light-transmissive conductive layer, disposed on the surface 21a of the decorative layer 21 and the surface 22b of the inner resin layer 22, with a low-resistance metal layer of, for example, Ag paste. Alternatively, the terminal portions 14a and 16a formed of the light-transmissive conductive layer may be formed so as to extend up to the boundary between the light-transmissive area 10a and the light-shielding area 10b, and the connection pattern segments 18 may be formed by forming a low-resistance metal layer of, for example, Ag paste, on the surface 21a of the decorative layer 21 and the surface 22b of the inner resin layer 22 such that the low-resistance metal layer is in electrical communication with the terminal portions 14a and 16a.
As illustrated in
The inner resin layer 22 is disposed on the surface 21a of the decorative layer 21. The modulus of elasticity and the softening temperature of the inner resin layer 22 are higher than those of the decorative layer 21. Therefore, the inner resin layer 22 absorbs heat and pressure applied when the flexible printed circuit board 7 is joined to the inner resin layer 22 by thermocompression bonding, thus reducing damage to the decorative layer 21, for example, heat and pressure induced distortion of the decorative layer 21. Although the panel 2 is made of synthetic resin, damage, such as distortion, to the panel 2 is also reduced as the damage to the decorative layer 21 is little.
This reduction lowers the possibility that deformation marks or distortion marks of the decorative layer 21 may be caused by connecting the flexible printed circuit board 7 to the decorative layer 21 and the marks may be visually identified when the panel 2 is viewed from the front, thus allowing the main body case 4 to have a good appearance.
A second end portion of the flexible printed circuit board 7 is connected to a conductor pattern on the printed circuit board 6.
In the embodiment illustrated in
An operation of the input device 10 with the above-described structure will now be described.
In this input device 10, the wiring pattern segments 7b of the flexible printed circuit board 7 are sequentially connected to a driving circuit by a multiplexer. A pulsed driving voltage is sequentially applied to the individual electrode layer segments 12. The multiplexer allows the common electrode layer segments 13 to serve as detection electrodes. Capacitance is formed between each individual electrode layer segment 12 and the corresponding common electrode layer segment 13. When the pulsed driving voltage is applied to any of the individual electrode layer segments 12, a potential based on a mutual coupling capacitance appears at the corresponding common electrode layer segment 13 in response to rising and falling edges of the pulse.
The light-transmissive area 10a of the panel 2 allows an image on the display panel 5 to be visible through the panel 2. When a finger or a hand, serving as a conductor, approaches the outer surface 2a of the panel 2 in the light-transmissive area 10a, the finger or hand absorbs an electric field from any of the individual electrode layer segments 12, thus changing a potential appearing at the corresponding common electrode layer segment 13 as the mutual coupling capacitance between the electrode layer segments is reduced. The position of the approaching finger or hand can be determined based on information about a change in potential appearing at the common electrode layer segment 13 and information about which individual electrode layer segment 12 the driving voltage is applied to.
Conversely, the pulsed driving voltage may be applied to the common electrode layer segments 13 and the individual electrode layer segments 12 may be sequentially switched and connected to a detection circuit. The position of an approaching finger or hand can also be determined in this case.
Number | Date | Country | Kind |
---|---|---|---|
2015-136492 | Jul 2015 | JP | national |
This application is a Continuation of International Application No. PCT/JP2016/063207 filed on Apr. 27, 2016, which claims benefit of Japanese Patent Application No. 2015-136492 filed on Jul. 7, 2015. The entire contents of each application noted above are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
20040130500 | Takei | Jul 2004 | A1 |
20050062153 | Saito | Mar 2005 | A1 |
20070013856 | Watanabe | Jan 2007 | A1 |
20100033443 | Hashimoto | Feb 2010 | A1 |
20110227846 | Imazeki | Sep 2011 | A1 |
20120249453 | Tsukamoto | Oct 2012 | A1 |
20130299789 | Yamazaki | Nov 2013 | A1 |
20130322032 | Shigetaka et al. | Dec 2013 | A1 |
20160209959 | Lee | Jul 2016 | A1 |
20160239121 | Murakami et al. | Aug 2016 | A1 |
20160293682 | Park | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
2010-39621 | Feb 2010 | JP |
2011-197709 | Oct 2011 | JP |
2012-208621 | Oct 2012 | JP |
2013-251343 | Dec 2013 | JP |
2015-069267 | Apr 2015 | JP |
Entry |
---|
International Search Report dated May 31, 2016 from International Application No. PCT/JP2016/063207. |
Number | Date | Country | |
---|---|---|---|
20180074631 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2016/063207 | Apr 2016 | US |
Child | 15809168 | US |