The ways in which a user may interact with a computing device continues to expand. For example, users were initially provided solely with a keyboard to interact with a text-based user interface. Techniques were then subsequently developed in which a user could interact with a graphical user interface (GUI) using a cursor control device, such as a mouse or track pad. In this way, a user was provided with increased efficiency in the ways in which the user could view and interact with the computing device.
However, even though these conventional techniques provided increased efficiency with respect to previous techniques, these techniques could still seem artificial and unnatural to the user. Therefore, a user was oftentimes still confronted with a learning process to utilize the techniques, could be hindered by the unnaturalness of the interaction that was supported, and so on.
Input device writing surface techniques are described. In one or more implementations, an input device includes a connection portion configured to form a communicative and physical coupling to a computing device sufficient to secure the input device to the computing device. The input device also includes an input portion having a writing surface configured to perform a change in optical states that is viewable by the user, the change in the optical states performable without use of electronic computation.
In one or more implementations, a system includes a computing device having a display device that supports touch functionality sufficient to detect one or more gestures. The system also includes an input device removably coupled both physically and communicatively to the computing device, the input device having a writing surface configured to perform a change in optical states that is viewable by the user, the change in the optical states performable without consuming electricity.
In one or more implementations, an apparatus includes a connection portion configured to form a communicative and magnetic coupling to a computing device, the magnetic coupling sufficient to secure the input device to the computing device. The apparatus also includes an input portion having a writing surface configured to perform a change in optical states that is viewable by the user, the change in the optical states performable by a display state change material responsive to application of mechanical pressure by a stylus. The writing surface is also configured to communicate data describing the application of the mechanical pressure via the connection portion to the computing device, the data output by one or more sensors disposed on an opposing side of the display state change material with respect to a side that received the application of the mechanical pressure.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different instances in the description and the figures may indicate similar or identical items. Entities represented in the figures may be indicative of one or more entities and thus reference may be made interchangeably to single or plural forms of the entities in the discussion.
Overview
Even though functionality supported by conventional input devices has expanded, this functionality may still feel unnatural to a user. This unnatural feel may therefore hinder a user's experience with the input device, both in the user's opinion of that interaction as well as efficiency with which that interaction may occur.
Input device writing surface techniques are described. In one or more implementations, an input device is configured to include a writing surface via which a user may interact to write inputs, e.g., using a stylus. The writing surface may be configured to include a display state change material that is configured to change optical states without electronic computation and/or without use of electricity. For example, the display state change material may be configured to provide a display similar to ink responsive to a pressure applied to the writing surface. Further, this material may be disposed beneath a protective surface that has reduced thickness in comparison with conventional protective surfaces and touchscreens. In this way, the change in optical states may be performed with minimal lag, parallax, and so forth. A variety of other examples are also contemplated, further discussion of which may be found in relation to the following sections.
In the following discussion, an example environment is first described that may employ the techniques described herein. Example procedures are then described which may be performed in the example environment as well as other environments. Consequently, performance of the example procedures is not limited to the example environment and the example environment is not limited to performance of the example procedures.
Example Environment
The computing device 102 may be configured in a variety of ways. For example, the computing device 102 may be configured for mobile use (e.g., handheld), such as a mobile phone, a tablet computer as illustrated, and so on. Thus, the computing device 102 may range from full resource devices with substantial memory and processor resources to a low-resource device with limited memory and/or processing resources.
The computing device 102 is illustrated as including an input/output module 108. The input/output module 108 is representative of functionality relating to processing of inputs and rendering outputs of the computing device 102. A variety of different inputs may be processed by the input/output module 108, such as inputs relating to functions that correspond to keys of the input device 104, keys of a virtual keyboard displayed by the display device 110 to identify gestures and cause operations to be performed that correspond to the gestures that may be recognized through the input device 104 and/or touchscreen functionality of the display device 110, and so forth. Thus, the input/output module 108 may support a variety of different input techniques by recognizing and leveraging a division between types of inputs including key presses, gestures, and so on.
In the illustrated example, the input device 104 is configured as having an input portion 112 that includes a writing surface 114. The writing surface 114 may be configured to provide an output responsive to an input, such as a stylus 116, one or more fingers of a user's hand, and so on. The writing surface 114 of the input device 104, for instance, may be configured to act an electronic writing surface that provides an improved user experience with near instantaneous display of “ink” on the writing surface 114 responsive to an input.
In one or more implementations, by moving the writing surface 114 off the display device 110, the writing surface 114 may be reserved for stylus tasks alone, removing a need for a user to choose among stylus, touch or mouse to perform an action. For example, a user may make drawing motions using the stylus 116 on the writing surface 114 yet still have access to touchscreen functionality of the display device 110. Thus, coupling of the writing surface 114 to the computing device 102 and touchscreen functionality of the display device 110 may be used to support a number of unique interactive affordances. Of course, other examples are also contemplated in which matching functionality is supported by both the display device 110 and the writing surface 114.
In the illustrated system, the writing surface 114 of the input device 104 is physically coupled to the computing device 104. This allows the writing 114 surface to be in close proximity to the display device 110 and the system as a whole to be manipulated as one by a user, e.g., carried using one or more hands of the user. This proximity may be used to support a variety of different interactions between the devices which may increase a “naturalness” of the interaction perceived by a user.
For example, as illustrated the writing surface 114 of the input portion 112 is configured to support writing operations. This may include drawing operations and so on through use of a stylus 116 such that a display of ink is shown. The ink may be displayed by the writing surface 114 in a variety of ways, such as to mimic ink from a pen, lead from a pencil, charcoal, paint, a highlighter, and so on. For instance, pixels of the writing surface 114 may be configured to undergo a change in display state that is viewable by a user. In this way, a user may visualize a difference between material (e.g., pixels) with which interaction has occurred (e.g., a user has drawn one or more lines) and material with which interaction has not occurred. Further explanation of this functionality may be found in relation to the discussion of
An input that caused the change in display state may also be detected by the writing surface 114, such as through leveraging one or more sensors. An output of these sensors may be received by a writing input module 118 and communicated via the flexible hinge 106 to an application 120 or other software that is executed by the computing device 102.
The application 120 may then cause an operation to be performed, such as a change to a user interface displayed by the display device 110. Further, a user may interact with this change in the user interface using touchscreen functionality of the display device 110, such as functionality used to recognize gestures, selection of objects, or other inputs. Thus, a user may interact with both the writing surface 114 and touchscreen functionality of the display device 110 to support a wide range of different interactions. The writing surface 114 may be configured in a variety of ways to support these interactions, further discussion of which may be found in relation to the following description and corresponding figure.
The writing surface 114 includes a display state change material 204 disposed beneath the protective surface 202 and one or more sensors 206. The sensors 206 are disposed on a side of the display state change material 204 that is opposite to a side at which the input is initiated.
In a conventional display device, such as an LCD display module, the image plane is located at about one millimeter behind a protective surface of the device. A cover glass and sensors (e.g., a digitizer) usually adds another one to two millimeters of thickness to the LCD display module. Thus, this combination typically creates a gap between a source of an input (e.g., a stylus) and a display that corresponds to the input. Consequently, the location of the display of the ink relative to the stylus may thus depend on an angle of the viewer, making precise drawing difficult due to a condition often referred to as parallax in conventional display devices. For example, a conventional display device using touchscreen functionality may make a determination of the x, y coordinates of a tip of the stylus 116 as opposed to determining a projection of the tip along the axis of the stylus, down to the image plane. Therefore, this gap could be disconcerting to a user as well as result in the unnatural feel previously described.
By keeping this gap small, however, calibration may be reduced that depends on both the position of the user and the angle of the stylus, for instance. In the illustrated embodiment, for example, sensors 206 such as a pressure sensing digitizing pad is utilized as part of the writing surface 114. The pressure sensing digitizing pad, for instance, may be configured from a plurality of membrane switches that employ a force sensitive ink such that an event of less than one millisecond may be detected. This may allow the sensors 206 to capture brief strokes made by the stylus 116, initial impact force, and so on.
Additionally, these sensors 206 may then be located behind the display state change material 204 as opposed to conventional touchscreen devices in which a digitizer was located between an LCD display module and a protective surface. Further, the display state change material 204 may be configured such that a degree of protection required by conventional LCD display modules is not needed. Because of this, the protective surface 202 of the writing surface 114 may be made thinner than cover glass typically utilized by LCD display modules. Accordingly, the distance from the display of the ink by the display state change material 204 to the tip of the stylus 116 may be smaller in comparison with convention LCD display modules, thereby reducing and even eliminating parallax that is viewable by a user.
Further, different materials may be used for the protective surface 202 as opposed to those used for conventional display devices. The protective surface 202, for instance, may be coated to provide a feel and sound when contacted by the stylus 116 that is similar to paper. In this way, a natural feel of the writing surface 114 may be further promoted by avoiding a slippery feel of conventional glass surfaced display devices.
The writing surface 114 may be configured in a variety of ways to provide an output that is viewable by a user. For example, in one or more implementations the writing surface 114 may include a display state change material 204 that is able to change display states directly. The direct change of display state may be performed without electronic computation and/or without use of electricity, e.g., power from the input device 104 and/or the computing device 102. Thus, the change in display states may be performed without power and even if the input device 104 and/or the computing device 102 is “off.” This may be performed in a variety of ways, such as to leverage mechanical to optical, magnetic to optical, optical to optical, temperature to optical, electrical to optical, and other display state change techniques.
In a first such example, the display state change material 204 may be configured to perform the change in display states in response to a mechanical input. For example, a pressure applied by the stylus 116 through the protective surface 202 to the display state change material 204 may cause the display state change material 204 to change optical states. A cholesteric liquid crystal, for instance, may be employed as part of the display state change material 204. A pressure applied to this material may cause a change in the local liquid crystal alignment responsive to the pressure applied to that location that is viewable by a user, e.g., as ink.
Further, this change may be performed without electronic computation or consumption of electricity which may reduce lag in display of the ink by directly outputting a result of the pressure applied by the object. It should also be noted that in such a system special configuration of the object is not involved but rather any object capable of applying a pressure may be used. Further, separation of the display state change material 204 into predefined pixels may be avoided, thereby simplifying production of the writing surface 114. Other examples of display state change materials 204 that respond to mechanical pressure are also contemplated.
In a second such example, the change in optical states of the display state change material 204 may be performed responsive to a temperature change. For example, localized heating of the display state change material 204 may be used to change the display state of the material. This may be performed by an application of heat by the stylus 116 (e.g., a heated tip), use of a finger of a user's hand, and so on. Thus, in this example the change may again be performed without electronic computation or consumption of electricity, thereby reducing lag and power consumption.
In a third such example, the change in optical states of the display sate change material 204 may be performed responsive to a magnetic field. A tip of the stylus 116, for instance, may be configured to output a magnetic field that causes a display state change of the display state change material 204. This may be performed to align magnetically responsive material included as part of the display state change material 204.
In a fourth such example, the change in optical states of the display states change material 204 may be performed responsive to encountering light. The stylus 116, for instance, may be configured to output light at one or more wavelengths that causes the display state change material 204 to change display states. For instance, light emitted from the stylus may cause a phosphor of the display state change material to “light up.” In another instance, the light may cause a reflective pixel to flip display states using an electro-optic effect. In one or more implementations, electronics associated with a pixel may sense the transition and continue refreshing with an electrical effect until an erase is involved and thus the change is maintained through consumption of electricity and/or electronic computation.
Thus, each of these techniques may support the ability to reduce latency by directing affecting the display state change material 204 (e.g., which may be formed into one or more pixels) rather than going through a system (e.g., writing input module 118 an input device 104 and/or the input/output module 108 of the computing device 102) of sense, process, and excite hardware. A wide variety of other techniques are also contemplated in which to support a change in display state directly. It should be readily apparent, however, that techniques are also contemplated in which the input device 104 supports a display that does involve electronic computation and/or consumption of electricity, such as to support an AMOLED display.
As previously described, since the display state change material 204 may be affected directly, sensors 206 may be disposed underneath the display state change material 204 to communicate inputs to the computing device 102. Because the display state change material 204 is the first layer under the protective surface 202 in this example, parallax between the stylus tip and the output of the material may be relatively small, e.g., less than 0.2 millimeters. Additionally, the display state change material may also be configured to be relatively thin in comparison with conventional display modules. Thus, a distance between the stylus 116 and the sensors 206 is also minimized. Further, configuration of the sensors 206 to support pressure sensitivity may allow the pressure to be supplied using any object, e.g., an ordinary stick may be utilized, and thus special configuration of the stylus 116 may be avoided in such an instance.
The output of the writing surface 114 may also be erased. For example, the writing input module 118 may use electricity to change the display state change material 204 back to a previous optical state (e.g., reset or erase) using a series of pulses. Techniques may also be supported to perform a localized erase of a defined region of the writing surface 114. Other examples are also contemplated.
Returning again to a discussion of
To support this proximity, the input device 104 is removably physically and communicatively coupled to the computing device 102 using a flexible hinge 106. The flexible hinge 106 may be formed using one or more layers of fabric and include conductors formed as flexible traces to communicatively couple the input device 104 to the computing device 102 and vice versa. This communication, for instance, may be used to communicate a result of a key press to the computing device 102, receive power from the computing device, perform authentication, provide supplemental power to the computing device 102, and so on. The flexible hinge 106 may be configured in a variety of ways, further discussion of which may be found in relation to the following figure.
The connection portion 302 is flexibly connected to a portion of the input device 104 that includes the keys through use of the flexible hinge 106. Thus, when the connection portion 302 is physically connected to the computing device the combination of the connection portion 302 and the flexible hinge 106 supports movement of the input device 104 in relation to the computing device 102 that is similar to a hinge of a book.
Through this rotational movement, a variety of different orientations of the input device 104 in relation to the computing device 102 may be supported. For example, rotational movement may be supported by the flexible hinge 106 such that the input device 104 may be placed against the display device 110 of the computing device 102 and thereby act as a cover as shown in the example orientation 400 of
As shown in the example orientation 500 of
In the example orientation 600 of
In the example orientation 700 of
The example orientation 700 of
The portions 302, 702 may also be used to cover both the front (e.g., display device 110) and back (e.g., opposing side of the housing from the display device) of the computing device 102. In one or more implementations, electrical and other connectors may also be disposed along the sides of the computing device 102 and/or the input device 104, e.g., to provide auxiliary power when closed.
Naturally, a variety of other orientations are also supported. For instance, the computing device 102 and input device 104 may assume an arrangement such that both are laid flat against a surface as shown in
Returning again to
The connection portion 302 also includes mechanical coupling protrusions 308, 310 to form a mechanical physical connection between the input device 104 and the computing device 102. The mechanical coupling protrusions 308, 310 are shown in greater detail in relation to
The mechanical coupling protrusions 308, 310 are configured to be received within complimentary cavities within the channel of the computing device 102. When so received, the mechanical coupling protrusions 308, 310 promote a mechanical binding between the devices when forces are applied that are not aligned with an axis that is defined as correspond to the height of the protrusions and the depth of the cavity, further discussion of which may be found in relation to
The connection portion 302 is also illustrated as including a plurality of communication contacts 312. The plurality of communication contacts 312 is configured to contact corresponding communication contacts of the computing device 102 to form a communicative coupling between the devices as shown and discussed in greater detail in relation to the following figure.
The communication contacts 312 may be configured in a variety of ways. In the illustrated example, the communication contact 312 of the connection portion 302 is formed as a spring loaded pin 906 that is captured within a barrel 908 of the connection portion 302. The spring loaded pin 906 is biased outward from the barrel 908 to provide a consistent communication contact between the input device 104 and the computing device 102, such as to a contact 910 of the computing device 102. Therefore, contact and therefore communication may be maintained during movement or jostling of the devices. A variety of other examples are also contemplated, including placement of the pins on the computing device 102 and contacts on the input device 104.
The flexible hinge 106 is also shown in greater detail in the example of
Accordingly, the flexible hinge 106 may be configured to support a minimum bend radius based on the operational flexibility of the conductor 912 such that the flexible hinge 106 resists flexing below that radius. A variety of different techniques may be employed. The flexible hinge 106, for instance, may be configured to include first and second outer layers 916, 918, which may be formed from a fabric, microfiber cloth, and so on. Flexibility of material used to form the first and/or second outer layers 916, 918 may be configured to support flexibility as described above such that the conductor 912 is not broken or otherwise rendered inoperable during movement of the input portion 914 in relation to the connection portion 302.
In another instance, the flexible hinge 106 may include a mid-spine 920 located between the connection portion 302 and the input portion 914. The mid-spine 920, for example, includes a first flexible portion 922 that flexible connects the input portion 904 to the mid-spine 920 and a second flexible portion 924 that flexible connects the mid-spine 920 to the connection portion 920.
In the illustrated example, the first and second outer layers 916, 918 extend from the input portion 914 (and act as a cover thereof) through the first and second flexible portions 922, 924 of the flexible hinge 106 and are secured to the connection portion 302, e.g., via clamping, adhesive, and so on. The conductor 912 is disposed between the first and second outer layers 916, 918. The mid-spine 920 may be configured to provide mechanical stiffness to a particular location of the flexible hinge 106 to support a desired minimum bend radius, further discussion of which may be found in relation to the following figure.
The mid-spine 920 may also be used to support a variety of other functionality. For example, the mid-spine 920 may support movement along a longitudinal axis as shown in
Additionally, the input device 104 and the computing device 102 may support techniques to determination an orientation of the devices in relation to each other, such as through the use of accelerometers, inertial sensors, or other orientation sensors. This may be used to change a state or other functionality of the input device 104, such as when positioned behind the computing device, when in a writing implementation, and so on.
Other techniques may also be leveraged to provide desired flexibility at particular points along the flexible hinge 106. For example, embossing may be used in which an embossed area, e.g., an area that mimics a size and orientation of the mid-spine 920, is configured to increase flexibility of a material, such as one or more of the first and second outer layers 916, 918, at locations that are embossed. An example of an embossed line 214 that increases flexibility of a material along a particular axis is shown in
Movement of the connection portion 302 and the channel 904 together may cause the magnet 1102 to be attracted to a magnet 1104 of a magnetic coupling device 1106 of the computing device 102, which in this example is disposed within the channel 904 of a housing of the computing device 102. In one or more implementations, flexibility of the flexible hinge 106 may cause the connection portion 302 to “snap into” the channel 904. Further, this may also cause the connection portion 302 to “line up” with the channel 904, such that the mechanical coupling protrusion 208 is aligned for insertion into the cavity 1002 and the communication contacts 208 are aligned with respective contacts 910 in the channel.
The magnetic coupling devices 204, 1106 may be configured in a variety of ways. For example, the magnetic coupling device 204 may employ a backing 1108 (e.g., such as steel) to cause a magnetic field generated by the magnet 1102 to extend outward away from the backing 1108. Thus, a range of the magnetic field generated by the magnet 1102 may be extended. A variety of other configurations may also be employed by the magnetic coupling device 204, 1106, examples of which are described and shown in relation to the following referenced figure.
A first magnet 1202 is disposed in the magnetic coupling device having a magnetic field aligned along an axis. Second and third magnets 1204, 1206 are disposed on opposing sides of the first magnet 1202. The alignment of the respective magnetic fields of the second and third magnets 1204, 1206 is substantially perpendicular to the axis of the first magnet 1202 and generally opposed each other.
In this case, the magnetic fields of the second and third magnets are aimed towards the first magnet 1202. This causes the magnetic field of the first magnet 1202 to extend further along the indicated axis, thereby increasing a range of the magnetic field of the first magnet 1202.
The effect may be further extended using fourth and fifth magnets 1208, 1210. In this example, the fourth and fifth magnets 1208, 1210 have magnetic fields that are aligned as substantially opposite to the magnetic field of the first magnet 1202. Further, the second magnet 1204 is disposed between the fourth magnet 1208 and the first magnet 1202. The third magnet 1206 is disposed between the first magnet 1202 and the fifth magnet 1210. Thus, the magnetic fields of the fourth and fifth magnets 1208, 1210 may also be caused to extend further along their respective axes which may further increase the strength of these magnets as well as other magnets in the collection. This arrangement of five magnets is suitable to form a flux fountain. Although five magnets were described, any odd number of magnets of five and greater may repeat this relationship to form flux fountains of even greater strength.
To magnetically attach to another magnetic coupling device, a similar arrangement of magnets may be disposed “on top” or “below” of the illustrated arrangement, e.g., so the magnetic fields of the first, fourth and fifth magnets 1202, 1208, 1210 are aligned with corresponding magnets above or below those magnets. Further, in the illustrated example, the strength of the first, fourth, and fifth magnets 1202, 1208, 1210 is stronger than the second and third magnets 1204, 1206, although other implementations are also contemplated. Another example of a flux fountain is described in relation to the following discussion of the figure.
Like the example 1200 of
In this case, the magnetic fields of the second and third magnets are aimed towards the first magnet 1302. This causes the magnetic field of the first magnet 1302 to extend further along the indicated axis, thereby increasing a range of the magnetic field of the first magnet 1302.
This effect may be further extended using fourth and fifth magnets 1308, 1310. In this example, the fourth magnet 1308 has a magnetic field that is aligned as substantially opposite to the magnetic field of the first magnet 1302. The fifth magnet 1310 has a magnetic field that is aligned as substantially corresponding to the magnet field of the second magnet 1304 and is substantially opposite to the magnetic field of the third magnet 1306. The fourth magnet 1308 is disposed between the third and fifth magnets 1306, 1310 in the magnetic coupling device.
This arrangement of five magnets is suitable to form a flux fountain. Although five magnets are described, any odd number of magnets of five and greater may repeat this relationship to form flux fountains of even greater strength. Thus, the magnetic fields of the first 1302 and fourth magnet 1308 may also be caused to extend further along its axis which may further increase the strength of this magnet.
To magnetically attach to another magnetic coupling device, a similar arrangement of magnets may be disposed “on top” or “below” of the illustrated arrangement, e.g., so the magnetic fields of the first and fourth magnets 1302, 1308 are aligned with corresponding magnets above or below those magnets. Further, in the illustrated example, the strength of the first and fourth magnets 1302, 1308 (individually) is stronger than a strength of the second, third and fifth magnets 1304, 1306, 1310, although other implementations are also contemplated.
Further, the example 1200 of
Accordingly, though, the example 1300 of
Regardless of the technique employed, it should be readily apparent that the “steering” or “aiming” of the magnetic fields described may be used to increase an effective range of the magnets, e.g., in comparison with the use of the magnets having similar strengths by themselves in a conventional aligned state. In one or more implementations, this causes an increase from a few millimeters using an amount of magnetic material to a few centimeters using the same amount of magnetic material.
Example System and Device
The example computing device 1502 as illustrated includes a processing system 1504, one or more computer-readable media 1506, and one or more I/O interface 1508 that are communicatively coupled, one to another. Although not shown, the computing device 1502 may further include a system bus or other data and command transfer system that couples the various components, one to another. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures. A variety of other examples are also contemplated, such as control and data lines.
The processing system 1504 is representative of functionality to perform one or more operations using hardware. Accordingly, the processing system 1504 is illustrated as including hardware element 1510 that may be configured as processors, functional blocks, and so forth. This may include implementation in hardware as an application specific integrated circuit or other logic device formed using one or more semiconductors. The hardware elements 1510 are not limited by the materials from which they are formed or the processing mechanisms employed therein. For example, processors may be comprised of semiconductor(s) and/or transistors (e.g., electronic integrated circuits (ICs)). In such a context, processor-executable instructions may be electronically-executable instructions.
The computer-readable storage media 1506 is illustrated as including memory/storage 1512. The memory/storage 1512 represents memory/storage capacity associated with one or more computer-readable media. The memory/storage component 1512 may include volatile media (such as random access memory (RAM)) and/or nonvolatile media (such as read only memory (ROM), Flash memory, optical disks, magnetic disks, and so forth). The memory/storage component 1512 may include fixed media (e.g., RAM, ROM, a fixed hard drive, and so on) as well as removable media (e.g., Flash memory, a removable hard drive, an optical disc, and so forth). The computer-readable media 1506 may be configured in a variety of other ways as further described below.
Input/output interface(s) 1508 are representative of functionality to allow a user to enter commands and information to computing device 1502, and also allow information to be presented to the user and/or other components or devices using various input/output devices. Examples of input devices include a keyboard, a cursor control device (e.g., a mouse), a microphone, a scanner, touch functionality (e.g., capacitive or other sensors that are configured to detect physical touch), a camera (e.g., which may employ visible or non-visible wavelengths such as infrared frequencies to recognize movement as gestures that do not involve touch), and so forth. Examples of output devices include a display device (e.g., a monitor or projector), speakers, a printer, a network card, tactile-response device, and so forth. Thus, the computing device 1502 may be configured in a variety of ways to support user interaction.
The computing device 1502 is further illustrated as being communicatively and physically coupled to an input device 1514 that is physically and communicatively removable from the computing device 1502. In this way, a variety of different input devices may be coupled to the computing device 1502 having a wide variety of configurations to support a wide variety of functionality. In this example, the input device 1514 includes one or more keys 1516, which may be configured as pressure sensitive keys, mechanically switched keys, and so forth.
The input device 1514 is further illustrated as include one or more modules 1518 that may be configured to support a variety of functionality. The one or more modules 1518, for instance, may be configured to process analog and/or digital signals received from the keys 1516 to determine whether a keystroke was intended, determine whether an input is indicative of resting pressure, support authentication of the input device 1514 for operation with the computing device 1502, and so on.
Various techniques may be described herein in the general context of software, hardware elements, or program modules. Generally, such modules include routines, programs, objects, elements, components, data structures, and so forth that perform particular tasks or implement particular abstract data types. The terms “module,” “functionality,” and “component” as used herein generally represent software, firmware, hardware, or a combination thereof. The features of the techniques described herein are platform-independent, meaning that the techniques may be implemented on a variety of commercial computing platforms having a variety of processors.
An implementation of the described modules and techniques may be stored on or transmitted across some form of computer-readable media. The computer-readable media may include a variety of media that may be accessed by the computing device 1502. By way of example, and not limitation, computer-readable media may include “computer-readable storage media” and “computer-readable signal media.”
“Computer-readable storage media” may refer to media and/or devices that enable persistent and/or non-transitory storage of information in contrast to mere signal transmission, carrier waves, or signals per se. Thus, computer-readable storage media refers to non-signal bearing media. The computer-readable storage media includes hardware such as volatile and non-volatile, removable and non-removable media and/or storage devices implemented in a method or technology suitable for storage of information such as computer readable instructions, data structures, program modules, logic elements/circuits, or other data. Examples of computer-readable storage media may include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, hard disks, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or other storage device, tangible media, or article of manufacture suitable to store the desired information and which may be accessed by a computer.
“Computer-readable signal media” may refer to a signal-bearing medium that is configured to transmit instructions to the hardware of the computing device 1502, such as via a network. Signal media typically may embody computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as carrier waves, data signals, or other transport mechanism. Signal media also include any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media.
As previously described, hardware elements 1510 and computer-readable media 1506 are representative of modules, programmable device logic and/or fixed device logic implemented in a hardware form that may be employed in some embodiments to implement at least some aspects of the techniques described herein, such as to perform one or more instructions. Hardware may include components of an integrated circuit or on-chip system, an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), a complex programmable logic device (CPLD), and other implementations in silicon or other hardware. In this context, hardware may operate as a processing device that performs program tasks defined by instructions and/or logic embodied by the hardware as well as a hardware utilized to store instructions for execution, e.g., the computer-readable storage media described previously.
Combinations of the foregoing may also be employed to implement various techniques described herein. Accordingly, software, hardware, or executable modules may be implemented as one or more instructions and/or logic embodied on some form of computer-readable storage media and/or by one or more hardware elements 1510. The computing device 1502 may be configured to implement particular instructions and/or functions corresponding to the software and/or hardware modules. Accordingly, implementation of a module that is executable by the computing device 1502 as software may be achieved at least partially in hardware, e.g., through use of computer-readable storage media and/or hardware elements 1510 of the processing system 1504. The instructions and/or functions may be executable/operable by one or more articles of manufacture (for example, one or more computing devices 1502 and/or processing systems 1504) to implement techniques, modules, and examples described herein.
Although the example implementations have been described in language specific to structural features and/or methodological acts, it is to be understood that the implementations defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as example forms of implementing the claimed features.
This application claims priority under 35 U.S.C. §119(e) to the following U.S. Provisional patent applications, the entire disclosures of each of these applications being incorporated by reference in their entirety: U.S. Provisional Patent Application No. 61/659,353, filed Jun. 13, 2012, and titled “Stylus Blade;” U.S. Provisional Patent Application No. 61/606,321, filed Mar. 2, 2012, and titled “Screen Edge;” U.S. Provisional Patent Application No. 61/606,301, filed Mar. 2, 2012, and titled “Input Device Functionality;” U.S. Provisional Patent Application No. 61/606,313, filed Mar. 2, 2012, and titled “Functional Hinge;” U.S. Provisional Patent Application No. 61/606,333, filed Mar. 2, 2012, and titled “Usage and Authentication;” U.S. Provisional Patent Application No. 61/613,745, filed Mar. 21, 2012, and titled “Usage and Authentication;” U.S. Provisional Patent Application No. 61/606,336, filed Mar. 2, 2012, and titled “Kickstand and Camera;” and U.S. Provisional Patent Application No. 61/607,451, filed Mar. 6, 2012, and titled “Spanaway Provisional;” and further this application claims priority to and incorporates the following application by reference in its entirety, U.S. patent application Ser. No. 13/470,633, filed May 14, 2012, and titled “Flexible Hinge and Removable Attachment.”
Number | Name | Date | Kind |
---|---|---|---|
578325 | Fleming | Mar 1897 | A |
3600528 | Leposavic | Aug 1971 | A |
3777082 | Hatley | Dec 1973 | A |
3879586 | DuRocher et al. | Apr 1975 | A |
3968336 | Johnson | Jul 1976 | A |
4046975 | Seeger, Jr. | Sep 1977 | A |
4065649 | Carter et al. | Dec 1977 | A |
4086451 | Boulanger | Apr 1978 | A |
4243861 | Strandwitz | Jan 1981 | A |
4279021 | See et al. | Jul 1981 | A |
4302648 | Sado et al. | Nov 1981 | A |
4317013 | Larson | Feb 1982 | A |
4323740 | Balash | Apr 1982 | A |
4326193 | Markley et al. | Apr 1982 | A |
4365130 | Christensen | Dec 1982 | A |
4492829 | Rodrique | Jan 1985 | A |
4503294 | Matsumaru | Mar 1985 | A |
4527021 | Morikawa et al. | Jul 1985 | A |
4559426 | Van Zeeland et al. | Dec 1985 | A |
4577822 | Wilkerson | Mar 1986 | A |
4588187 | Dell | May 1986 | A |
4607147 | Ono et al. | Aug 1986 | A |
4651133 | Ganesan et al. | Mar 1987 | A |
4652704 | Franklin | Mar 1987 | A |
4724605 | Fiorella | Feb 1988 | A |
4735394 | Facco | Apr 1988 | A |
4801771 | Mizuguchi et al. | Jan 1989 | A |
4824268 | Diernisse | Apr 1989 | A |
4864084 | Cardinale | Sep 1989 | A |
4990900 | Kikuchi | Feb 1991 | A |
5008497 | Asher | Apr 1991 | A |
5021638 | Nopper et al. | Jun 1991 | A |
5107401 | Youn | Apr 1992 | A |
5128829 | Loew | Jul 1992 | A |
5149923 | Demeo | Sep 1992 | A |
5220318 | Staley | Jun 1993 | A |
5220521 | Kikinis | Jun 1993 | A |
5235495 | Blair et al. | Aug 1993 | A |
5253362 | Nolan et al. | Oct 1993 | A |
5283559 | Kalendra et al. | Feb 1994 | A |
5331443 | Stanisci | Jul 1994 | A |
5340528 | Machida et al. | Aug 1994 | A |
5363075 | Fanucchi | Nov 1994 | A |
5375076 | Goodrich et al. | Dec 1994 | A |
5480118 | Cross | Jan 1996 | A |
5491313 | Bartley et al. | Feb 1996 | A |
5510783 | Findlater et al. | Apr 1996 | A |
5546271 | Gut et al. | Aug 1996 | A |
5548477 | Kumar et al. | Aug 1996 | A |
5558577 | Kato | Sep 1996 | A |
5576981 | Parker et al. | Nov 1996 | A |
5581682 | Anderson et al. | Dec 1996 | A |
5596700 | Darnell et al. | Jan 1997 | A |
5618232 | Martin | Apr 1997 | A |
5661279 | Kenmochi | Aug 1997 | A |
5666112 | Crowley et al. | Sep 1997 | A |
5681220 | Bertram et al. | Oct 1997 | A |
5737183 | Kobayashi et al. | Apr 1998 | A |
5745376 | Barker et al. | Apr 1998 | A |
5748114 | Koehn | May 1998 | A |
5781406 | Hunte | Jul 1998 | A |
5803748 | Maddrell et al. | Sep 1998 | A |
5807175 | Davis et al. | Sep 1998 | A |
5818361 | Acevedo | Oct 1998 | A |
5828770 | Leis et al. | Oct 1998 | A |
5842027 | Oprescu et al. | Nov 1998 | A |
5861990 | Tedesco | Jan 1999 | A |
5874697 | Selker et al. | Feb 1999 | A |
5905485 | Podoloff | May 1999 | A |
5909211 | Combs et al. | Jun 1999 | A |
5920317 | McDonald | Jul 1999 | A |
5924555 | Sadamori et al. | Jul 1999 | A |
5926170 | Oba | Jul 1999 | A |
5957191 | Okada et al. | Sep 1999 | A |
5971635 | Wise | Oct 1999 | A |
5973677 | Gibbons | Oct 1999 | A |
6002389 | Kasser | Dec 1999 | A |
6002581 | Lindsey | Dec 1999 | A |
6005209 | Burleson et al. | Dec 1999 | A |
6012714 | Worley et al. | Jan 2000 | A |
6040823 | Seffernick et al. | Mar 2000 | A |
6042075 | Burch, Jr. | Mar 2000 | A |
6044717 | Biegelsen et al. | Apr 2000 | A |
6061644 | Leis | May 2000 | A |
6108200 | Fullerton | Aug 2000 | A |
6112797 | Colson et al. | Sep 2000 | A |
6128007 | Seybold | Oct 2000 | A |
6141388 | Servais et al. | Oct 2000 | A |
6147859 | Abboud | Nov 2000 | A |
6178085 | Leung | Jan 2001 | B1 |
6178443 | Lin | Jan 2001 | B1 |
6188391 | Seely et al. | Feb 2001 | B1 |
6254105 | Rinde et al. | Jul 2001 | B1 |
6266685 | Danielson et al. | Jul 2001 | B1 |
6279060 | Luke et al. | Aug 2001 | B1 |
6305073 | Badders | Oct 2001 | B1 |
6329617 | Burgess | Dec 2001 | B1 |
6344791 | Armstrong | Feb 2002 | B1 |
6366440 | Kung | Apr 2002 | B1 |
6380497 | Hashimoto et al. | Apr 2002 | B1 |
6437682 | Vance | Aug 2002 | B1 |
6442764 | Badillo et al. | Sep 2002 | B1 |
6450046 | Maeda | Sep 2002 | B1 |
6469755 | Adachi et al. | Oct 2002 | B1 |
6506983 | Babb et al. | Jan 2003 | B1 |
6511378 | Bhatt et al. | Jan 2003 | B1 |
6532147 | Christ, Jr. | Mar 2003 | B1 |
6543949 | Ritchey et al. | Apr 2003 | B1 |
6565439 | Shinohara et al. | May 2003 | B2 |
6585435 | Fang | Jul 2003 | B2 |
6597347 | Yasutake | Jul 2003 | B1 |
6600121 | Olodort et al. | Jul 2003 | B1 |
6603408 | Gaba | Aug 2003 | B1 |
6603461 | Smith, Jr. et al. | Aug 2003 | B2 |
6608664 | Hasegawa | Aug 2003 | B1 |
6617536 | Kawaguchi | Sep 2003 | B2 |
6651943 | Cho et al. | Nov 2003 | B2 |
6675865 | Yoshida | Jan 2004 | B1 |
6684166 | Bellwood et al. | Jan 2004 | B2 |
6685369 | Lien | Feb 2004 | B2 |
6687614 | Ihara et al. | Feb 2004 | B2 |
6695273 | Iguchi | Feb 2004 | B2 |
6704864 | Philyaw | Mar 2004 | B1 |
6721019 | Kono et al. | Apr 2004 | B2 |
6725318 | Sherman et al. | Apr 2004 | B1 |
6738049 | Kiser et al. | May 2004 | B2 |
6774888 | Genduso | Aug 2004 | B1 |
6776546 | Kraus et al. | Aug 2004 | B2 |
6780019 | Ghosh et al. | Aug 2004 | B1 |
6781819 | Yang et al. | Aug 2004 | B2 |
6784869 | Clark et al. | Aug 2004 | B1 |
6798887 | Andre | Sep 2004 | B1 |
6813143 | Makela | Nov 2004 | B2 |
6819316 | Schulz et al. | Nov 2004 | B2 |
6819547 | Minaguchi et al. | Nov 2004 | B2 |
6856506 | Doherty et al. | Feb 2005 | B2 |
6856789 | Pattabiraman et al. | Feb 2005 | B2 |
6861961 | Sandbach et al. | Mar 2005 | B2 |
6864573 | Robertson et al. | Mar 2005 | B2 |
6898315 | Guha | May 2005 | B2 |
6909354 | Baker et al. | Jun 2005 | B2 |
6914197 | Doherty et al. | Jul 2005 | B2 |
6950950 | Sawyers et al. | Sep 2005 | B2 |
6962454 | Costello | Nov 2005 | B1 |
6970957 | Oshins et al. | Nov 2005 | B1 |
6976799 | Kim et al. | Dec 2005 | B2 |
7007238 | Glaser | Feb 2006 | B2 |
7051149 | Wang et al. | May 2006 | B2 |
7066634 | Kitamura et al. | Jun 2006 | B2 |
7068496 | Wong et al. | Jun 2006 | B2 |
7083295 | Hanna | Aug 2006 | B1 |
7091436 | Serban | Aug 2006 | B2 |
7091955 | Kramer | Aug 2006 | B2 |
7095404 | Vincent et al. | Aug 2006 | B2 |
7099149 | Krieger et al. | Aug 2006 | B2 |
7106222 | Ward et al. | Sep 2006 | B2 |
7116309 | Kimura et al. | Oct 2006 | B1 |
7123292 | Seeger et al. | Oct 2006 | B1 |
7136282 | Rebeske | Nov 2006 | B1 |
7152985 | Benitez et al. | Dec 2006 | B2 |
D535292 | Shi et al. | Jan 2007 | S |
7194662 | Do et al. | Mar 2007 | B2 |
7202837 | Ihara | Apr 2007 | B2 |
7213323 | Baker et al. | May 2007 | B2 |
7213991 | Chapman et al. | May 2007 | B2 |
7218830 | Iimura | May 2007 | B2 |
7224830 | Nefian et al. | May 2007 | B2 |
7239505 | Keely et al. | Jul 2007 | B2 |
7252512 | Tai et al. | Aug 2007 | B2 |
7260221 | Atsmon | Aug 2007 | B1 |
7277087 | Hill et al. | Oct 2007 | B2 |
7280348 | Ghosh | Oct 2007 | B2 |
7301759 | Hsiung | Nov 2007 | B2 |
7365967 | Zheng | Apr 2008 | B2 |
7374312 | Feng et al. | May 2008 | B2 |
7400805 | Abu-Ageel | Jul 2008 | B2 |
7401992 | Lin | Jul 2008 | B1 |
7415676 | Fujita | Aug 2008 | B2 |
7423557 | Kang | Sep 2008 | B2 |
7437193 | Parramon et al. | Oct 2008 | B2 |
7447934 | Dasari et al. | Nov 2008 | B2 |
7457108 | Ghosh | Nov 2008 | B2 |
7469386 | Bear et al. | Dec 2008 | B2 |
7486165 | Ligtenberg et al. | Feb 2009 | B2 |
7499037 | Lube | Mar 2009 | B2 |
7502803 | Culter et al. | Mar 2009 | B2 |
7542052 | Solomon et al. | Jun 2009 | B2 |
7558594 | Wilson | Jul 2009 | B2 |
7559834 | York | Jul 2009 | B1 |
RE40891 | Yasutake | Sep 2009 | E |
7594638 | Chan et al. | Sep 2009 | B2 |
7620244 | Collier | Nov 2009 | B1 |
7622907 | Vranish | Nov 2009 | B2 |
7623121 | Dodge | Nov 2009 | B2 |
7626358 | Lam et al. | Dec 2009 | B2 |
7636921 | Louie | Dec 2009 | B2 |
7639329 | Takeda et al. | Dec 2009 | B2 |
7639876 | Clary et al. | Dec 2009 | B2 |
7656392 | Bolender | Feb 2010 | B2 |
7686066 | Hirao | Mar 2010 | B2 |
7722358 | Chatterjee et al. | May 2010 | B2 |
7722792 | Uezaki et al. | May 2010 | B2 |
7728923 | Kim et al. | Jun 2010 | B2 |
7729493 | Krieger et al. | Jun 2010 | B2 |
7731147 | Rha | Jun 2010 | B2 |
7733326 | Adiseshan | Jun 2010 | B1 |
7761119 | Patel | Jul 2010 | B2 |
7773076 | Pittel et al. | Aug 2010 | B2 |
7773121 | Huntsberger et al. | Aug 2010 | B1 |
7774155 | Sato et al. | Aug 2010 | B2 |
7777972 | Chen et al. | Aug 2010 | B1 |
7782342 | Koh | Aug 2010 | B2 |
7813715 | McKillop et al. | Oct 2010 | B2 |
7815358 | Inditsky | Oct 2010 | B2 |
7817428 | Greer, Jr. et al. | Oct 2010 | B2 |
7822338 | Wernersson | Oct 2010 | B2 |
7865639 | McCoy et al. | Jan 2011 | B2 |
7884807 | Hovden et al. | Feb 2011 | B2 |
7893921 | Sato | Feb 2011 | B2 |
7907394 | Richardson et al. | Mar 2011 | B2 |
D636397 | Green | Apr 2011 | S |
7928964 | Kolmykov-Zotov et al. | Apr 2011 | B2 |
7932890 | Onikiri et al. | Apr 2011 | B2 |
7936501 | Smith et al. | May 2011 | B2 |
7944520 | Ichioka et al. | May 2011 | B2 |
7945717 | Rivalsi | May 2011 | B2 |
7967462 | Ogiro et al. | Jun 2011 | B2 |
7970246 | Travis et al. | Jun 2011 | B2 |
7973771 | Geaghan | Jul 2011 | B2 |
7978281 | Vergith et al. | Jul 2011 | B2 |
8016255 | Lin | Sep 2011 | B2 |
8018386 | Qi et al. | Sep 2011 | B2 |
8018579 | Krah | Sep 2011 | B1 |
8026904 | Westerman | Sep 2011 | B2 |
8053688 | Conzola et al. | Nov 2011 | B2 |
8059384 | Park et al. | Nov 2011 | B2 |
8065624 | Morin et al. | Nov 2011 | B2 |
8069356 | Rathi et al. | Nov 2011 | B2 |
8077160 | Land et al. | Dec 2011 | B2 |
8090885 | Callaghan et al. | Jan 2012 | B2 |
8098233 | Hotelling et al. | Jan 2012 | B2 |
8115499 | Osoinach et al. | Feb 2012 | B2 |
8117362 | Rodriguez et al. | Feb 2012 | B2 |
8118274 | McClure et al. | Feb 2012 | B2 |
8120166 | Koizumi et al. | Feb 2012 | B2 |
8130203 | Westerman | Mar 2012 | B2 |
8149219 | Lii et al. | Apr 2012 | B2 |
8154524 | Wilson et al. | Apr 2012 | B2 |
8159372 | Sherman | Apr 2012 | B2 |
8162282 | Hu et al. | Apr 2012 | B2 |
D659139 | Gengler | May 2012 | S |
8169421 | Wright et al. | May 2012 | B2 |
8189973 | Travis et al. | May 2012 | B2 |
8229509 | Paek et al. | Jul 2012 | B2 |
8229522 | Kim et al. | Jul 2012 | B2 |
8231099 | Chen | Jul 2012 | B2 |
8243432 | Duan et al. | Aug 2012 | B2 |
8248791 | Wang et al. | Aug 2012 | B2 |
8255708 | Zhang | Aug 2012 | B1 |
8264310 | Lauder et al. | Sep 2012 | B2 |
8267368 | Torii et al. | Sep 2012 | B2 |
8269093 | Naik et al. | Sep 2012 | B2 |
8269731 | Molne | Sep 2012 | B2 |
8274784 | Franz et al. | Sep 2012 | B2 |
8279589 | Kim | Oct 2012 | B2 |
8322290 | Mignano | Dec 2012 | B1 |
8346206 | Andrus et al. | Jan 2013 | B1 |
8363036 | Liang | Jan 2013 | B2 |
8373664 | Wright | Feb 2013 | B2 |
8384566 | Bocirnea | Feb 2013 | B2 |
8387078 | Memmott | Feb 2013 | B2 |
8387938 | Lin | Mar 2013 | B2 |
8403576 | Merz | Mar 2013 | B2 |
8416559 | Agata et al. | Apr 2013 | B2 |
8424160 | Chen | Apr 2013 | B2 |
8498100 | Whitt, III et al. | Jul 2013 | B1 |
8514568 | Qiao et al. | Aug 2013 | B2 |
8520371 | Peng et al. | Aug 2013 | B2 |
8543227 | Perek et al. | Sep 2013 | B1 |
8548608 | Perek et al. | Oct 2013 | B2 |
8564944 | Whitt, III et al. | Oct 2013 | B2 |
8569640 | Yamada et al. | Oct 2013 | B2 |
8570725 | Whitt, III et al. | Oct 2013 | B2 |
8576031 | Lauder et al. | Nov 2013 | B2 |
8587701 | Tatsuzawa | Nov 2013 | B2 |
8599542 | Healey et al. | Dec 2013 | B1 |
8610015 | Whitt et al. | Dec 2013 | B2 |
8614666 | Whitman et al. | Dec 2013 | B2 |
8646999 | Shaw et al. | Feb 2014 | B2 |
8654030 | Mercer | Feb 2014 | B1 |
8674941 | Casparian et al. | Mar 2014 | B2 |
8699215 | Whitt, III et al. | Apr 2014 | B2 |
8719603 | Belesiu | May 2014 | B2 |
8724302 | Whitt et al. | May 2014 | B2 |
8744070 | Zhang et al. | Jun 2014 | B2 |
8744391 | Tenbrook et al. | Jun 2014 | B2 |
8762746 | Lachwani et al. | Jun 2014 | B1 |
8767388 | Ahn et al. | Jul 2014 | B2 |
8780540 | Whitt, III et al. | Jul 2014 | B2 |
8780541 | Whitt et al. | Jul 2014 | B2 |
8791382 | Whitt, III et al. | Jul 2014 | B2 |
8797765 | Lin et al. | Aug 2014 | B2 |
8823652 | Linegar et al. | Sep 2014 | B2 |
8825187 | Hamrick et al. | Sep 2014 | B1 |
8830668 | Whitt, III et al. | Sep 2014 | B2 |
8850241 | Oler et al. | Sep 2014 | B2 |
8854799 | Whitt, III et al. | Oct 2014 | B2 |
8873227 | Whitt et al. | Oct 2014 | B2 |
8891232 | Wang | Nov 2014 | B2 |
8896993 | Belesiu et al. | Nov 2014 | B2 |
8903517 | Perek et al. | Dec 2014 | B2 |
8908858 | Chiu et al. | Dec 2014 | B2 |
8934221 | Guo | Jan 2015 | B2 |
8935774 | Belesiu et al. | Jan 2015 | B2 |
8939422 | Liu et al. | Jan 2015 | B2 |
8947864 | Whitt, III et al. | Feb 2015 | B2 |
8949477 | Drasnin | Feb 2015 | B2 |
8952892 | Chai | Feb 2015 | B2 |
8964376 | Chen | Feb 2015 | B2 |
9047207 | Belesiu et al. | Jun 2015 | B2 |
9063693 | Raken et al. | Jun 2015 | B2 |
9073123 | Campbell et al. | Jul 2015 | B2 |
9075566 | Whitt, III et al. | Jul 2015 | B2 |
9098117 | Lutz, III et al. | Aug 2015 | B2 |
9116550 | Siddiqui et al. | Aug 2015 | B2 |
9134807 | Shaw et al. | Sep 2015 | B2 |
9134808 | Siddiqui et al. | Sep 2015 | B2 |
9158383 | Shaw et al. | Oct 2015 | B2 |
9176900 | Whitt, III et al. | Nov 2015 | B2 |
9176901 | Whitt, III et al. | Nov 2015 | B2 |
9268373 | Whitt et al. | Feb 2016 | B2 |
20010023818 | Masaru et al. | Sep 2001 | A1 |
20010035859 | Kiser | Nov 2001 | A1 |
20020000977 | Vranish | Jan 2002 | A1 |
20020005108 | Ludwig | Jan 2002 | A1 |
20020044216 | Cha | Apr 2002 | A1 |
20020070883 | Dosch | Jun 2002 | A1 |
20020126445 | Minaguchi et al. | Sep 2002 | A1 |
20020126446 | Miyako et al. | Sep 2002 | A1 |
20020134828 | Sandbach et al. | Sep 2002 | A1 |
20020135457 | Sandbach et al. | Sep 2002 | A1 |
20020154099 | Oh | Oct 2002 | A1 |
20020163510 | Williams et al. | Nov 2002 | A1 |
20020188721 | Lemel et al. | Dec 2002 | A1 |
20030000821 | Takahashi et al. | Jan 2003 | A1 |
20030007648 | Currell | Jan 2003 | A1 |
20030011576 | Sandbach et al. | Jan 2003 | A1 |
20030016282 | Koizumi | Jan 2003 | A1 |
20030044215 | Monney et al. | Mar 2003 | A1 |
20030051983 | Lahr | Mar 2003 | A1 |
20030067450 | Thursfield et al. | Apr 2003 | A1 |
20030108720 | Kashino | Jun 2003 | A1 |
20030132916 | Kramer | Jul 2003 | A1 |
20030163611 | Nagao | Aug 2003 | A1 |
20030197687 | Shetter | Oct 2003 | A1 |
20030198008 | Leapman et al. | Oct 2003 | A1 |
20030231243 | Shibutani | Dec 2003 | A1 |
20040005184 | Kim et al. | Jan 2004 | A1 |
20040046796 | Fujita | Mar 2004 | A1 |
20040056843 | Lin et al. | Mar 2004 | A1 |
20040085716 | Uke | May 2004 | A1 |
20040095333 | Morag et al. | May 2004 | A1 |
20040100457 | Mandle | May 2004 | A1 |
20040113956 | Bellwood et al. | Jun 2004 | A1 |
20040156168 | LeVasseur et al. | Aug 2004 | A1 |
20040160734 | Yim | Aug 2004 | A1 |
20040169641 | Bean et al. | Sep 2004 | A1 |
20040174670 | Huang et al. | Sep 2004 | A1 |
20040174709 | Buelow, II et al. | Sep 2004 | A1 |
20040190239 | Weng et al. | Sep 2004 | A1 |
20040212598 | Kraus et al. | Oct 2004 | A1 |
20040212601 | Cake et al. | Oct 2004 | A1 |
20040258924 | Berger et al. | Dec 2004 | A1 |
20040268000 | Barker et al. | Dec 2004 | A1 |
20050030728 | Kawashima et al. | Feb 2005 | A1 |
20050047773 | Satake et al. | Mar 2005 | A1 |
20050052831 | Chen | Mar 2005 | A1 |
20050055498 | Beckert et al. | Mar 2005 | A1 |
20050057515 | Bathiche | Mar 2005 | A1 |
20050057521 | Aull et al. | Mar 2005 | A1 |
20050059489 | Kim | Mar 2005 | A1 |
20050062715 | Tsuji et al. | Mar 2005 | A1 |
20050099400 | Lee | May 2005 | A1 |
20050134717 | Misawa | Jun 2005 | A1 |
20050146512 | Hill et al. | Jul 2005 | A1 |
20050157459 | Yin et al. | Jul 2005 | A1 |
20050190159 | Skarine | Sep 2005 | A1 |
20050236848 | Kim et al. | Oct 2005 | A1 |
20050240949 | Liu et al. | Oct 2005 | A1 |
20050264653 | Starkweather et al. | Dec 2005 | A1 |
20050264988 | Nicolosi | Dec 2005 | A1 |
20050283731 | Saint-Hilaire et al. | Dec 2005 | A1 |
20050285703 | Wheeler et al. | Dec 2005 | A1 |
20060002101 | Wheatley et al. | Jan 2006 | A1 |
20060049920 | Sadler et al. | Mar 2006 | A1 |
20060049993 | Lin et al. | Mar 2006 | A1 |
20060082973 | Egbert et al. | Apr 2006 | A1 |
20060085658 | Allen et al. | Apr 2006 | A1 |
20060092139 | Sharma | May 2006 | A1 |
20060096392 | Inkster et al. | May 2006 | A1 |
20060102914 | Smits et al. | May 2006 | A1 |
20060103633 | Gioeli | May 2006 | A1 |
20060125799 | Hillis et al. | Jun 2006 | A1 |
20060132423 | Travis | Jun 2006 | A1 |
20060152499 | Roberts | Jul 2006 | A1 |
20060154725 | Glaser et al. | Jul 2006 | A1 |
20060155391 | Pistemaa et al. | Jul 2006 | A1 |
20060156415 | Rubinstein et al. | Jul 2006 | A1 |
20060174143 | Sawyers et al. | Aug 2006 | A1 |
20060176377 | Miyasaka | Aug 2006 | A1 |
20060181514 | Newman | Aug 2006 | A1 |
20060181521 | Perreault et al. | Aug 2006 | A1 |
20060187216 | Trent, Jr. et al. | Aug 2006 | A1 |
20060192763 | Ziemkowski | Aug 2006 | A1 |
20060195522 | Miyazaki | Aug 2006 | A1 |
20060197755 | Bawany | Sep 2006 | A1 |
20060227393 | Herloski | Oct 2006 | A1 |
20060238510 | Panotopoulos et al. | Oct 2006 | A1 |
20060239006 | Chaves et al. | Oct 2006 | A1 |
20060254042 | Chou et al. | Nov 2006 | A1 |
20060265617 | Priborsky | Nov 2006 | A1 |
20060267931 | Vainio et al. | Nov 2006 | A1 |
20060272429 | Ganapathi et al. | Dec 2006 | A1 |
20070003267 | Shibutani | Jan 2007 | A1 |
20070047221 | Park | Mar 2007 | A1 |
20070047260 | Lee et al. | Mar 2007 | A1 |
20070051766 | Spencer | Mar 2007 | A1 |
20070051792 | Wheeler et al. | Mar 2007 | A1 |
20070056385 | Lorenz | Mar 2007 | A1 |
20070062089 | Homer et al. | Mar 2007 | A1 |
20070069153 | Pai-Paranjape et al. | Mar 2007 | A1 |
20070072474 | Beasley et al. | Mar 2007 | A1 |
20070117600 | Robertson et al. | May 2007 | A1 |
20070121956 | Bai et al. | May 2007 | A1 |
20070145945 | McGinley et al. | Jun 2007 | A1 |
20070172229 | Wernersson | Jul 2007 | A1 |
20070176902 | Newman et al. | Aug 2007 | A1 |
20070178891 | Louch et al. | Aug 2007 | A1 |
20070182663 | Biech | Aug 2007 | A1 |
20070182722 | Hotelling et al. | Aug 2007 | A1 |
20070185590 | Reindel et al. | Aug 2007 | A1 |
20070188478 | Silverstein et al. | Aug 2007 | A1 |
20070200830 | Yamamoto | Aug 2007 | A1 |
20070220708 | Lewis | Sep 2007 | A1 |
20070230227 | Palmer | Oct 2007 | A1 |
20070234420 | Novotney et al. | Oct 2007 | A1 |
20070236408 | Yamaguchi et al. | Oct 2007 | A1 |
20070236475 | Wherry | Oct 2007 | A1 |
20070236873 | Yukawa et al. | Oct 2007 | A1 |
20070247338 | Marchetto | Oct 2007 | A1 |
20070247432 | Oakley | Oct 2007 | A1 |
20070252674 | Nelson et al. | Nov 2007 | A1 |
20070257821 | Son et al. | Nov 2007 | A1 |
20070260892 | Paul et al. | Nov 2007 | A1 |
20070274094 | Schultz et al. | Nov 2007 | A1 |
20070274095 | Destain | Nov 2007 | A1 |
20070283179 | Burnett et al. | Dec 2007 | A1 |
20070296709 | Guanghai | Dec 2007 | A1 |
20070297625 | Hjort et al. | Dec 2007 | A1 |
20080005423 | Jacobs et al. | Jan 2008 | A1 |
20080013809 | Zhu et al. | Jan 2008 | A1 |
20080018611 | Serban et al. | Jan 2008 | A1 |
20080042978 | Perez-Noguera | Feb 2008 | A1 |
20080053222 | Ehrensvard et al. | Mar 2008 | A1 |
20080059888 | Dunko | Mar 2008 | A1 |
20080074398 | Wright | Mar 2008 | A1 |
20080080166 | Duong et al. | Apr 2008 | A1 |
20080104437 | Lee | May 2008 | A1 |
20080129520 | Lee | Jun 2008 | A1 |
20080151478 | Chern | Jun 2008 | A1 |
20080158185 | Westerman | Jul 2008 | A1 |
20080167832 | Soss | Jul 2008 | A1 |
20080174570 | Jobs et al. | Jul 2008 | A1 |
20080180411 | Solomon et al. | Jul 2008 | A1 |
20080186660 | Yang | Aug 2008 | A1 |
20080219025 | Spitzer et al. | Sep 2008 | A1 |
20080228969 | Cheah et al. | Sep 2008 | A1 |
20080232061 | Wang et al. | Sep 2008 | A1 |
20080238884 | Harish | Oct 2008 | A1 |
20080253822 | Matias | Oct 2008 | A1 |
20080273297 | Kumar | Nov 2008 | A1 |
20080297878 | Brown et al. | Dec 2008 | A1 |
20080307242 | Qu | Dec 2008 | A1 |
20080309636 | Feng et al. | Dec 2008 | A1 |
20080316002 | Brunet et al. | Dec 2008 | A1 |
20080316183 | Westerman et al. | Dec 2008 | A1 |
20080320190 | Lydon et al. | Dec 2008 | A1 |
20090002218 | Rigazio et al. | Jan 2009 | A1 |
20090007001 | Morin et al. | Jan 2009 | A1 |
20090009476 | Daley, III | Jan 2009 | A1 |
20090046416 | Daley, III | Feb 2009 | A1 |
20090049979 | Naik et al. | Feb 2009 | A1 |
20090065267 | Sato | Mar 2009 | A1 |
20090067156 | Bonnett et al. | Mar 2009 | A1 |
20090073060 | Shimasaki et al. | Mar 2009 | A1 |
20090073957 | Newland et al. | Mar 2009 | A1 |
20090079639 | Hotta et al. | Mar 2009 | A1 |
20090083562 | Park et al. | Mar 2009 | A1 |
20090089600 | Nousiainen | Apr 2009 | A1 |
20090096756 | Lube | Apr 2009 | A1 |
20090102794 | Lapstun et al. | Apr 2009 | A1 |
20090102805 | Meijer et al. | Apr 2009 | A1 |
20090127005 | Zachut et al. | May 2009 | A1 |
20090131134 | Baerlocher et al. | May 2009 | A1 |
20090135142 | Fu et al. | May 2009 | A1 |
20090140985 | Liu | Jun 2009 | A1 |
20090158221 | Nielsen et al. | Jun 2009 | A1 |
20090163147 | Steigerwald et al. | Jun 2009 | A1 |
20090167728 | Geaghan et al. | Jul 2009 | A1 |
20090174759 | Yeh et al. | Jul 2009 | A1 |
20090182901 | Callaghan et al. | Jul 2009 | A1 |
20090189873 | Peterson | Jul 2009 | A1 |
20090195497 | Fitzgerald et al. | Aug 2009 | A1 |
20090195518 | Mattice et al. | Aug 2009 | A1 |
20090207144 | Bridger | Aug 2009 | A1 |
20090219250 | Ure | Sep 2009 | A1 |
20090231275 | Odgers | Sep 2009 | A1 |
20090239586 | Boeve et al. | Sep 2009 | A1 |
20090244009 | Staats et al. | Oct 2009 | A1 |
20090244832 | Behar et al. | Oct 2009 | A1 |
20090244872 | Yan | Oct 2009 | A1 |
20090251008 | Sugaya | Oct 2009 | A1 |
20090259865 | Sheynblat et al. | Oct 2009 | A1 |
20090262492 | Whitchurch et al. | Oct 2009 | A1 |
20090265670 | Kim et al. | Oct 2009 | A1 |
20090285491 | Ravenscroft et al. | Nov 2009 | A1 |
20090296331 | Choy | Dec 2009 | A1 |
20090303137 | Kusaka et al. | Dec 2009 | A1 |
20090303204 | Nasiri et al. | Dec 2009 | A1 |
20090315830 | Westerman | Dec 2009 | A1 |
20090320244 | Lin | Dec 2009 | A1 |
20090321490 | Groene et al. | Dec 2009 | A1 |
20100001963 | Doray et al. | Jan 2010 | A1 |
20100013319 | Kamiyama et al. | Jan 2010 | A1 |
20100021022 | Pittel et al. | Jan 2010 | A1 |
20100023869 | Saint-Hilaire et al. | Jan 2010 | A1 |
20100026656 | Hotelling et al. | Feb 2010 | A1 |
20100038821 | Jenkins et al. | Feb 2010 | A1 |
20100039081 | Sip | Feb 2010 | A1 |
20100039764 | Locker et al. | Feb 2010 | A1 |
20100045540 | Lai et al. | Feb 2010 | A1 |
20100045609 | Do et al. | Feb 2010 | A1 |
20100045633 | Gettemy et al. | Feb 2010 | A1 |
20100051356 | Stern et al. | Mar 2010 | A1 |
20100051432 | Lin et al. | Mar 2010 | A1 |
20100052880 | Laitinen et al. | Mar 2010 | A1 |
20100053534 | Hsieh et al. | Mar 2010 | A1 |
20100054435 | Louch et al. | Mar 2010 | A1 |
20100056130 | Louch et al. | Mar 2010 | A1 |
20100073329 | Raman et al. | Mar 2010 | A1 |
20100075517 | Ni et al. | Mar 2010 | A1 |
20100077237 | Sawyers | Mar 2010 | A1 |
20100079379 | Demuynck et al. | Apr 2010 | A1 |
20100081377 | Chatterjee et al. | Apr 2010 | A1 |
20100083108 | Rider et al. | Apr 2010 | A1 |
20100085321 | Pundsack | Apr 2010 | A1 |
20100102182 | Lin | Apr 2010 | A1 |
20100103112 | Yoo et al. | Apr 2010 | A1 |
20100103131 | Segal et al. | Apr 2010 | A1 |
20100103611 | Yang | Apr 2010 | A1 |
20100105443 | Vaisanen | Apr 2010 | A1 |
20100106983 | Kasprzak et al. | Apr 2010 | A1 |
20100115309 | Carvalho et al. | May 2010 | A1 |
20100117993 | Kent | May 2010 | A1 |
20100123686 | Klinghult et al. | May 2010 | A1 |
20100128427 | Iso | May 2010 | A1 |
20100133398 | Chiu et al. | Jun 2010 | A1 |
20100142130 | Wang et al. | Jun 2010 | A1 |
20100148995 | Elias | Jun 2010 | A1 |
20100148999 | Casparian et al. | Jun 2010 | A1 |
20100149104 | Sim et al. | Jun 2010 | A1 |
20100149111 | Olien | Jun 2010 | A1 |
20100149134 | Westerman et al. | Jun 2010 | A1 |
20100149377 | Shintani et al. | Jun 2010 | A1 |
20100154171 | Lombardi et al. | Jun 2010 | A1 |
20100156798 | Archer | Jun 2010 | A1 |
20100156913 | Ortega et al. | Jun 2010 | A1 |
20100161522 | Tirpak et al. | Jun 2010 | A1 |
20100162109 | Chatterjee et al. | Jun 2010 | A1 |
20100164857 | Liu et al. | Jul 2010 | A1 |
20100164897 | Morin et al. | Jul 2010 | A1 |
20100171891 | Kaji et al. | Jul 2010 | A1 |
20100174421 | Tsai et al. | Jul 2010 | A1 |
20100180063 | Ananny et al. | Jul 2010 | A1 |
20100188299 | Rinehart et al. | Jul 2010 | A1 |
20100188338 | Longe | Jul 2010 | A1 |
20100205472 | Tupman et al. | Aug 2010 | A1 |
20100206614 | Park et al. | Aug 2010 | A1 |
20100206644 | Yeh | Aug 2010 | A1 |
20100214214 | Corson et al. | Aug 2010 | A1 |
20100214257 | Wussler et al. | Aug 2010 | A1 |
20100222110 | Kim et al. | Sep 2010 | A1 |
20100231498 | Large et al. | Sep 2010 | A1 |
20100231510 | Sampsell et al. | Sep 2010 | A1 |
20100231556 | Mines et al. | Sep 2010 | A1 |
20100235546 | Terlizzi et al. | Sep 2010 | A1 |
20100238075 | Pourseyed | Sep 2010 | A1 |
20100238119 | Dubrovsky et al. | Sep 2010 | A1 |
20100238138 | Goertz et al. | Sep 2010 | A1 |
20100238620 | Fish | Sep 2010 | A1 |
20100245221 | Khan | Sep 2010 | A1 |
20100250988 | Okuda et al. | Sep 2010 | A1 |
20100259482 | Ball | Oct 2010 | A1 |
20100259876 | Kim | Oct 2010 | A1 |
20100265182 | Ball et al. | Oct 2010 | A1 |
20100271771 | Wu et al. | Oct 2010 | A1 |
20100274932 | Kose | Oct 2010 | A1 |
20100279768 | Huang et al. | Nov 2010 | A1 |
20100289457 | Onnerud et al. | Nov 2010 | A1 |
20100295812 | Burns et al. | Nov 2010 | A1 |
20100302378 | Marks et al. | Dec 2010 | A1 |
20100304793 | Kim | Dec 2010 | A1 |
20100306538 | Thomas et al. | Dec 2010 | A1 |
20100308778 | Yamazaki et al. | Dec 2010 | A1 |
20100308844 | Day et al. | Dec 2010 | A1 |
20100309617 | Wang et al. | Dec 2010 | A1 |
20100313680 | Joung et al. | Dec 2010 | A1 |
20100315348 | Jellicoe et al. | Dec 2010 | A1 |
20100315373 | Steinhauser et al. | Dec 2010 | A1 |
20100321301 | Casparian et al. | Dec 2010 | A1 |
20100321339 | Kimmel | Dec 2010 | A1 |
20100321877 | Moser | Dec 2010 | A1 |
20100324457 | Bean et al. | Dec 2010 | A1 |
20100325155 | Skinner et al. | Dec 2010 | A1 |
20100331059 | Apgar et al. | Dec 2010 | A1 |
20110007008 | Algreatly | Jan 2011 | A1 |
20110012873 | Prest et al. | Jan 2011 | A1 |
20110019123 | Prest et al. | Jan 2011 | A1 |
20110031287 | Le Gette et al. | Feb 2011 | A1 |
20110032127 | Roush | Feb 2011 | A1 |
20110036965 | Zhang et al. | Feb 2011 | A1 |
20110037721 | Cranfill et al. | Feb 2011 | A1 |
20110043990 | Mickey et al. | Feb 2011 | A1 |
20110050576 | Forutanpour et al. | Mar 2011 | A1 |
20110050587 | Natanzon et al. | Mar 2011 | A1 |
20110050626 | Porter et al. | Mar 2011 | A1 |
20110055407 | Lydon et al. | Mar 2011 | A1 |
20110057724 | Pabon | Mar 2011 | A1 |
20110057899 | Sleeman et al. | Mar 2011 | A1 |
20110060926 | Brooks et al. | Mar 2011 | A1 |
20110069148 | Jones et al. | Mar 2011 | A1 |
20110074688 | Hull et al. | Mar 2011 | A1 |
20110095994 | Birnbaum | Apr 2011 | A1 |
20110096513 | Kim | Apr 2011 | A1 |
20110102326 | Casparian et al. | May 2011 | A1 |
20110102356 | Kemppinen et al. | May 2011 | A1 |
20110102752 | Chen et al. | May 2011 | A1 |
20110107958 | Pance et al. | May 2011 | A1 |
20110113368 | Carvajal et al. | May 2011 | A1 |
20110115738 | Suzuki et al. | May 2011 | A1 |
20110115747 | Powell et al. | May 2011 | A1 |
20110117970 | Choi | May 2011 | A1 |
20110134032 | Chiu et al. | Jun 2011 | A1 |
20110134043 | Chen | Jun 2011 | A1 |
20110134112 | Koh et al. | Jun 2011 | A1 |
20110157046 | Lee et al. | Jun 2011 | A1 |
20110157087 | Kanehira et al. | Jun 2011 | A1 |
20110163955 | Nasiri et al. | Jul 2011 | A1 |
20110164370 | McClure et al. | Jul 2011 | A1 |
20110167181 | Minoo et al. | Jul 2011 | A1 |
20110167287 | Walsh et al. | Jul 2011 | A1 |
20110167391 | Momeyer et al. | Jul 2011 | A1 |
20110167992 | Eventoff et al. | Jul 2011 | A1 |
20110169762 | Weiss | Jul 2011 | A1 |
20110170289 | Allen et al. | Jul 2011 | A1 |
20110176035 | Poulsen | Jul 2011 | A1 |
20110179864 | Raasch et al. | Jul 2011 | A1 |
20110184646 | Wong et al. | Jul 2011 | A1 |
20110184824 | George et al. | Jul 2011 | A1 |
20110188199 | Pan | Aug 2011 | A1 |
20110193787 | Morishige et al. | Aug 2011 | A1 |
20110193938 | Oderwald et al. | Aug 2011 | A1 |
20110199389 | Lu et al. | Aug 2011 | A1 |
20110202878 | Park et al. | Aug 2011 | A1 |
20110205372 | Miramontes | Aug 2011 | A1 |
20110216266 | Travis | Sep 2011 | A1 |
20110221678 | Davydov | Sep 2011 | A1 |
20110227913 | Hyndman | Sep 2011 | A1 |
20110231682 | Kakish et al. | Sep 2011 | A1 |
20110234494 | Peterson et al. | Sep 2011 | A1 |
20110234502 | Yun et al. | Sep 2011 | A1 |
20110242138 | Tribble | Oct 2011 | A1 |
20110248152 | Svajda et al. | Oct 2011 | A1 |
20110248920 | Larsen | Oct 2011 | A1 |
20110248941 | Abdo et al. | Oct 2011 | A1 |
20110261001 | Liu | Oct 2011 | A1 |
20110261083 | Wilson | Oct 2011 | A1 |
20110265287 | Li et al. | Nov 2011 | A1 |
20110266672 | Sylvester | Nov 2011 | A1 |
20110267272 | Meyer et al. | Nov 2011 | A1 |
20110267300 | Serban et al. | Nov 2011 | A1 |
20110273475 | Herz et al. | Nov 2011 | A1 |
20110290686 | Huang | Dec 2011 | A1 |
20110295697 | Boston et al. | Dec 2011 | A1 |
20110297566 | Gallagher et al. | Dec 2011 | A1 |
20110298919 | Maglaque | Dec 2011 | A1 |
20110302518 | Zhang | Dec 2011 | A1 |
20110304577 | Brown | Dec 2011 | A1 |
20110304962 | Su | Dec 2011 | A1 |
20110305875 | Sanford et al. | Dec 2011 | A1 |
20110310038 | Park et al. | Dec 2011 | A1 |
20110316807 | Corrion | Dec 2011 | A1 |
20110317399 | Hsu | Dec 2011 | A1 |
20110320204 | Locker et al. | Dec 2011 | A1 |
20120002820 | Leichter | Jan 2012 | A1 |
20120007821 | Zaliva | Jan 2012 | A1 |
20120011462 | Westerman et al. | Jan 2012 | A1 |
20120013519 | Hakansson et al. | Jan 2012 | A1 |
20120020490 | Leichter | Jan 2012 | A1 |
20120023401 | Arscott et al. | Jan 2012 | A1 |
20120023459 | Westerman | Jan 2012 | A1 |
20120024682 | Huang et al. | Feb 2012 | A1 |
20120026048 | Vazquez et al. | Feb 2012 | A1 |
20120026096 | Ku | Feb 2012 | A1 |
20120032887 | Chiu et al. | Feb 2012 | A1 |
20120032891 | Parivar | Feb 2012 | A1 |
20120032901 | Kwon | Feb 2012 | A1 |
20120038495 | Ishikawa | Feb 2012 | A1 |
20120044179 | Hudson | Feb 2012 | A1 |
20120047368 | Chinn et al. | Feb 2012 | A1 |
20120050975 | Garelli et al. | Mar 2012 | A1 |
20120062564 | Miyashita | Mar 2012 | A1 |
20120068919 | Lauder et al. | Mar 2012 | A1 |
20120068933 | Larsen | Mar 2012 | A1 |
20120069540 | Lauder et al. | Mar 2012 | A1 |
20120072167 | Cretella, Jr. et al. | Mar 2012 | A1 |
20120075249 | Hoch | Mar 2012 | A1 |
20120077384 | Bar-Niv et al. | Mar 2012 | A1 |
20120081316 | Sirpal et al. | Apr 2012 | A1 |
20120087078 | Medica et al. | Apr 2012 | A1 |
20120092279 | Martin | Apr 2012 | A1 |
20120094257 | Pillischer et al. | Apr 2012 | A1 |
20120099263 | Lin | Apr 2012 | A1 |
20120099749 | Rubin et al. | Apr 2012 | A1 |
20120106082 | Wu et al. | May 2012 | A1 |
20120113137 | Nomoto | May 2012 | A1 |
20120113579 | Agata et al. | May 2012 | A1 |
20120115553 | Mahe et al. | May 2012 | A1 |
20120117409 | Lee et al. | May 2012 | A1 |
20120127118 | Nolting et al. | May 2012 | A1 |
20120127126 | Mattice et al. | May 2012 | A1 |
20120133561 | Konanur et al. | May 2012 | A1 |
20120139727 | Houvener et al. | Jun 2012 | A1 |
20120140396 | Zeliff et al. | Jun 2012 | A1 |
20120145525 | Ishikawa | Jun 2012 | A1 |
20120155015 | Govindasamy et al. | Jun 2012 | A1 |
20120161406 | Mersky | Jun 2012 | A1 |
20120162693 | Ito | Jun 2012 | A1 |
20120175487 | Goto | Jul 2012 | A1 |
20120182242 | Lindahl et al. | Jul 2012 | A1 |
20120182249 | Endo et al. | Jul 2012 | A1 |
20120182743 | Chou | Jul 2012 | A1 |
20120194393 | Utterman et al. | Aug 2012 | A1 |
20120194448 | Rothkopf | Aug 2012 | A1 |
20120195063 | Kim et al. | Aug 2012 | A1 |
20120200802 | Large | Aug 2012 | A1 |
20120206937 | Travis et al. | Aug 2012 | A1 |
20120212438 | Vaisanen | Aug 2012 | A1 |
20120218194 | Silverman | Aug 2012 | A1 |
20120223866 | Ayala Vazquez et al. | Sep 2012 | A1 |
20120224073 | Miyahara | Sep 2012 | A1 |
20120229634 | Laett et al. | Sep 2012 | A1 |
20120235635 | Sato | Sep 2012 | A1 |
20120235921 | Laubach | Sep 2012 | A1 |
20120242584 | Tuli | Sep 2012 | A1 |
20120243165 | Chang et al. | Sep 2012 | A1 |
20120243204 | Robinson | Sep 2012 | A1 |
20120246377 | Bhesania | Sep 2012 | A1 |
20120249443 | Anderson et al. | Oct 2012 | A1 |
20120250873 | Bakalos et al. | Oct 2012 | A1 |
20120256829 | Dodge | Oct 2012 | A1 |
20120256959 | Ye et al. | Oct 2012 | A1 |
20120260177 | Sehrer | Oct 2012 | A1 |
20120268912 | Minami et al. | Oct 2012 | A1 |
20120274811 | Bakin | Nov 2012 | A1 |
20120287562 | Wu et al. | Nov 2012 | A1 |
20120299872 | Nishikawa et al. | Nov 2012 | A1 |
20120300275 | Vilardell et al. | Nov 2012 | A1 |
20120312955 | Randolph | Dec 2012 | A1 |
20120326003 | Solow et al. | Dec 2012 | A1 |
20120328349 | Isaac et al. | Dec 2012 | A1 |
20130009413 | Chiu et al. | Jan 2013 | A1 |
20130015311 | Kim | Jan 2013 | A1 |
20130016468 | Oh | Jan 2013 | A1 |
20130021289 | Chen et al. | Jan 2013 | A1 |
20130027867 | Lauder et al. | Jan 2013 | A1 |
20130044074 | Park et al. | Feb 2013 | A1 |
20130046397 | Fadell et al. | Feb 2013 | A1 |
20130050922 | Lee et al. | Feb 2013 | A1 |
20130063873 | Wodrich et al. | Mar 2013 | A1 |
20130067126 | Casparian et al. | Mar 2013 | A1 |
20130069916 | Estève | Mar 2013 | A1 |
20130073877 | Radke | Mar 2013 | A1 |
20130076617 | Csaszar et al. | Mar 2013 | A1 |
20130082824 | Colley | Apr 2013 | A1 |
20130082950 | Lim et al. | Apr 2013 | A1 |
20130088431 | Ballagas et al. | Apr 2013 | A1 |
20130093388 | Partovi | Apr 2013 | A1 |
20130100082 | Bakin et al. | Apr 2013 | A1 |
20130106723 | Bakken et al. | May 2013 | A1 |
20130106766 | Yilmaz et al. | May 2013 | A1 |
20130107144 | Marhefka et al. | May 2013 | A1 |
20130107572 | Holman et al. | May 2013 | A1 |
20130135214 | Li et al. | May 2013 | A1 |
20130154959 | Lindsay et al. | Jun 2013 | A1 |
20130162554 | Lauder et al. | Jun 2013 | A1 |
20130172906 | Olson et al. | Jul 2013 | A1 |
20130191741 | Dickinson et al. | Jul 2013 | A1 |
20130207937 | Lutian et al. | Aug 2013 | A1 |
20130212483 | Brakensiek et al. | Aug 2013 | A1 |
20130217451 | Komiyama et al. | Aug 2013 | A1 |
20130222272 | Martin, Jr. | Aug 2013 | A1 |
20130222274 | Mori et al. | Aug 2013 | A1 |
20130222323 | McKenzie | Aug 2013 | A1 |
20130227836 | Whitt, III | Sep 2013 | A1 |
20130228023 | Drasnin | Sep 2013 | A1 |
20130228433 | Shaw | Sep 2013 | A1 |
20130228434 | Whitt, III | Sep 2013 | A1 |
20130228435 | Whitt, III | Sep 2013 | A1 |
20130228439 | Whitt, III | Sep 2013 | A1 |
20130229100 | Siddiqui | Sep 2013 | A1 |
20130229335 | Whitman | Sep 2013 | A1 |
20130229347 | Lutz, III | Sep 2013 | A1 |
20130229350 | Shaw | Sep 2013 | A1 |
20130229351 | Whitt, III | Sep 2013 | A1 |
20130229354 | Whitt, III et al. | Sep 2013 | A1 |
20130229356 | Marwah | Sep 2013 | A1 |
20130229363 | Whitman | Sep 2013 | A1 |
20130229366 | Dighde | Sep 2013 | A1 |
20130229380 | Lutz, III | Sep 2013 | A1 |
20130229534 | Panay | Sep 2013 | A1 |
20130229568 | Belesiu | Sep 2013 | A1 |
20130229570 | Beck et al. | Sep 2013 | A1 |
20130229756 | Whitt, III | Sep 2013 | A1 |
20130229757 | Whitt, III et al. | Sep 2013 | A1 |
20130229758 | Belesiu | Sep 2013 | A1 |
20130229759 | Whitt, III | Sep 2013 | A1 |
20130229760 | Whitt, III | Sep 2013 | A1 |
20130229761 | Shaw | Sep 2013 | A1 |
20130229762 | Whitt, III | Sep 2013 | A1 |
20130229773 | Siddiqui | Sep 2013 | A1 |
20130230346 | Shaw | Sep 2013 | A1 |
20130231755 | Perek | Sep 2013 | A1 |
20130232280 | Perek | Sep 2013 | A1 |
20130232348 | Oler | Sep 2013 | A1 |
20130232349 | Oler | Sep 2013 | A1 |
20130232350 | Belesiu et al. | Sep 2013 | A1 |
20130232353 | Belesiu | Sep 2013 | A1 |
20130232571 | Belesiu | Sep 2013 | A1 |
20130242495 | Bathiche et al. | Sep 2013 | A1 |
20130262886 | Nishimura | Oct 2013 | A1 |
20130278552 | Kamin-Lyndgaard | Oct 2013 | A1 |
20130300590 | Dietz | Nov 2013 | A1 |
20130300647 | Drasnin | Nov 2013 | A1 |
20130301199 | Whitt | Nov 2013 | A1 |
20130301206 | Whitt | Nov 2013 | A1 |
20130304941 | Drasnin | Nov 2013 | A1 |
20130304944 | Young | Nov 2013 | A1 |
20130321992 | Liu et al. | Dec 2013 | A1 |
20130322000 | Whitt | Dec 2013 | A1 |
20130322001 | Whitt | Dec 2013 | A1 |
20130329360 | Aldana | Dec 2013 | A1 |
20130332628 | Panay | Dec 2013 | A1 |
20130335330 | Lane | Dec 2013 | A1 |
20130335902 | Campbell | Dec 2013 | A1 |
20130335903 | Raken | Dec 2013 | A1 |
20130339757 | Reddy | Dec 2013 | A1 |
20130342464 | Bathiche et al. | Dec 2013 | A1 |
20130342465 | Bathiche | Dec 2013 | A1 |
20130342976 | Chung | Dec 2013 | A1 |
20130346636 | Bathiche | Dec 2013 | A1 |
20140012401 | Perek | Jan 2014 | A1 |
20140028635 | Krah | Jan 2014 | A1 |
20140029183 | Ashcraft et al. | Jan 2014 | A1 |
20140043275 | Whitman | Feb 2014 | A1 |
20140048399 | Whitt, III | Feb 2014 | A1 |
20140049894 | Rihn | Feb 2014 | A1 |
20140085814 | Kielland | Mar 2014 | A1 |
20140117928 | Liao | May 2014 | A1 |
20140118241 | Chai | May 2014 | A1 |
20140119802 | Shaw | May 2014 | A1 |
20140131000 | Bornemann et al. | May 2014 | A1 |
20140135060 | Mercer | May 2014 | A1 |
20140148938 | Zhang | May 2014 | A1 |
20140154523 | Bornemann | Jun 2014 | A1 |
20140166227 | Bornemann | Jun 2014 | A1 |
20140167585 | Kuan et al. | Jun 2014 | A1 |
20140185215 | Whitt | Jul 2014 | A1 |
20140185220 | Whitt | Jul 2014 | A1 |
20140204514 | Whitt | Jul 2014 | A1 |
20140204515 | Whitt | Jul 2014 | A1 |
20140233237 | Lutian | Aug 2014 | A1 |
20140247546 | Whitt | Sep 2014 | A1 |
20140248506 | McCormack | Sep 2014 | A1 |
20140291134 | Whitt | Oct 2014 | A1 |
20140293534 | Siddiqui | Oct 2014 | A1 |
20140362506 | Whitt, III et al. | Dec 2014 | A1 |
20140372914 | Byrd et al. | Dec 2014 | A1 |
20140379942 | Perek et al. | Dec 2014 | A1 |
20150005953 | Fadell et al. | Jan 2015 | A1 |
20150036274 | Belesiu et al. | Feb 2015 | A1 |
20150234478 | Belesiu et al. | Aug 2015 | A1 |
20150241929 | Raken et al. | Aug 2015 | A1 |
20150261262 | Whitt, III et al. | Sep 2015 | A1 |
20150277500 | Turowski et al. | Oct 2015 | A1 |
20150311014 | Shaw et al. | Oct 2015 | A1 |
20150378392 | Siddiqui et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
990023 | Jun 1976 | CA |
687757 | Feb 1997 | CH |
1653411 | Aug 2005 | CN |
1787605 | Jun 2006 | CN |
101198925 | Jun 2008 | CN |
101366001 | Feb 2009 | CN |
101410781 | Apr 2009 | CN |
101452334 | Jun 2009 | CN |
101464750 | Jun 2009 | CN |
101490642 | Jul 2009 | CN |
101500388 | Aug 2009 | CN |
101908428 | Dec 2010 | CN |
102096494 | Jun 2011 | CN |
102112947 | Jun 2011 | CN |
201853163 | Jun 2011 | CN |
102124532 | Jul 2011 | CN |
102138113 | Jul 2011 | CN |
102214040 | Oct 2011 | CN |
202441167 | Sep 2012 | CN |
103455149 | Dec 2013 | CN |
203606723 | May 2014 | CN |
0271956 | Jun 1988 | EP |
645726 | Mar 1995 | EP |
1003188 | May 2000 | EP |
1223722 | Jul 2002 | EP |
1480029 | Nov 2004 | EP |
1591891 | Nov 2005 | EP |
1983411 | Oct 2008 | EP |
2006869 | Dec 2008 | EP |
2026178 | Feb 2009 | EP |
2353978 | Aug 2011 | EP |
2378607 | Oct 2011 | EP |
2123213 | Jan 1984 | GB |
2178570 | Feb 1987 | GB |
2305780 | Apr 1997 | GB |
2402460 | Dec 2004 | GB |
2482932 | Feb 2012 | GB |
52107722 | Sep 1977 | JP |
56108127 | Aug 1981 | JP |
6014315 | Jan 1985 | JP |
08273471 | Oct 1996 | JP |
10326124 | Dec 1998 | JP |
1173239 | Mar 1999 | JP |
11338575 | Dec 1999 | JP |
11345041 | Dec 1999 | JP |
2000010654 | Jan 2000 | JP |
2001142564 | May 2001 | JP |
2002170458 | Jun 2002 | JP |
2004038950 | Feb 2004 | JP |
2005117161 | Apr 2005 | JP |
2006163459 | Jun 2006 | JP |
2006294361 | Oct 2006 | JP |
2010244514 | Oct 2010 | JP |
2003077368 | Mar 2014 | JP |
20010107055 | Dec 2001 | KR |
20050014299 | Feb 2005 | KR |
20060003093 | Jan 2006 | KR |
20080006404 | Jan 2008 | KR |
20090029411 | Mar 2009 | KR |
20100022059 | Feb 2010 | KR |
20100067366 | Jun 2010 | KR |
20100115675 | Oct 2010 | KR |
1020110087178 | Aug 2011 | KR |
20110109791 | Oct 2011 | KR |
20110120002 | Nov 2011 | KR |
20110122333 | Nov 2011 | KR |
101113530 | Feb 2012 | KR |
1038411 | May 2012 | NL |
WO-9919995 | Apr 1999 | WO |
WO-2006044818 | Apr 2006 | WO |
WO-2007112172 | Oct 2007 | WO |
WO-2008055039 | May 2008 | WO |
WO-2009034484 | Mar 2009 | WO |
WO-2010011983 | Jan 2010 | WO |
WO-2010074116 | Jul 2010 | WO |
WO-2010105272 | Sep 2010 | WO |
WO-2011049609 | Apr 2011 | WO |
WO-2012036717 | Mar 2012 | WO |
WO-2014209818 | Dec 2014 | WO |
Entry |
---|
Sumocat, et al., “Touch & Write: Surface Computing With Touch and Pen Input”, Retrieved at <<http://www.gottabemobile.com/2009/08/07/touch-write-surface-computing-with-touch-and-pen-input/>>, Aug. 7, 2009, pp. 4. |
Qin, et al., “pPen: Enabling Authenticated Pen and Touch Interaction on Tabletop Surfaces”, Retrieved at <<http://www.dfki.de/its2010/papers/pdf/po172.pdf>>, Proceeding of ITS 2010: Poster, Nov. 7, 2010, pp. 283-284. |
“SMART Board™ Interactive Display Frame Pencil Pack”, Retrieved at <<http://downloads01.smarttech.com/media/sitecore/en/support/product/sbfpd/400series(interactivedisplayframes)/guides/smartboardinteractivedisplayframepencilpackv12mar09.pdf>>, Retrieved Date: Jun. 19, 2012, pp. 283-284. |
“i-Interactor electronic pen”, Retrieved at <<http://www.alibaba.com/product-gs/331004878/i—Interactor—electronic—pen.html>>, Retrieved Date: Jun. 19, 2012, pp. 2. |
“Cholesteric liquid crystal”, Retrieved at <<http://en.wikipedia.org/wiki/Cholesteric—liquid—crystal>>, Retrieved Date: Aug. 6, 2012, pp. 12. |
“Reflex™ LCD Writing Tablets”, Retrieved at <<http://www.kentdisplays.com/products/lcdwritingtablets.html>>, Retrieved Date: Jun. 27, 2012, pp. 3. |
“Accessing Device Sensors”, retrieved from <https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html> on May 25, 2012, 4 pages. |
“ACPI Docking for Windows Operating Systems”, Retrieved from: <http://www.scritube.com/limba/engleza/software/ACPI-Docking-for-Windows-Opera331824193.php> on Jul. 6, 2012, 10 pages. |
“DR2PA”, retrieved from <http://www.architainment.co.uk/wp-content/uploads/2012/08/DR2PA-AU-US-size-Data-Sheet-Rev-H—LOGO.pdf> on Sep. 17, 2012, 4 pages. |
“First One Handed Fabric Keyboard with Bluetooth Wireless Technology”, Retrieved from: <http://press.xtvworld.com/article3817.html> on May 8, 2012,(Jan. 6, 2005), 2 pages. |
“Force and Position Sensing Resistors: An Emerging Technology”, Interlink Electronics, Available at <http://staff.science.uva.nl/˜vlaander/docu/FSR/An—Exploring—Technology.pdf>,(Feb. 1990), pp. 1-6. |
“Frogpad Introduces Weareable Fabric Keyboard with Bluetooth Technology”, Retrieved from: <http://www.geekzone.co.nz/content.asp?contentid=3898> on May 7, 2012,(Jan. 7, 2005), 3 pages. |
“Incipio LG G-Slate Premium Kickstand Case—Black Nylon”, Retrieved from: <http://www.amazon.com/Incipio-G-Slate-Premium-Kickstand-Case/dp/B004ZKP916> on May 8, 2012, 4 pages. |
“Membrane Keyboards & Membrane Keypads”, Retrieved from: <http://www.pannam.com/> on May 9, 2012,(Mar. 4, 2009), 2 pages. |
“Motion Sensors”, Android Developers, retrieved from <http://developer.android.com/guide/topics/sensors/sensors—motion.html> on May 25, 2012, 7 pages. |
“MPC Fly Music Production Controller”, AKAI Professional, Retrieved from: <http://www.akaiprompc.com/mpc-fly> on Jul. 9, 2012,4 pages. |
“NI Releases New Maschine & Maschine Mikro”, Retrieved from <http://www.djbooth.net/index/dj-equipment/entry/ni-releases-new-maschine-mikro/> on Sep. 17, 2012, 19 pages. |
“Position Sensors”, Android Developers, retrieved from <http://developer.android.com/guide/topics/sensors/sensors—position.html> on May 25, 2012, 5 pages. |
“SoIRxTM E-Series Multidirectional Phototherapy ExpandableTM 2-Bulb Full Body Panel System”, Retrieved from: < http://www.solarcsystems.com/us—multidirectional—uv—light—therapy—1—intro.html > on Jul. 25, 2012,(2011), 4 pages. |
“Virtualization Getting Started Guide”, Red Hat Enterprise Linux 6, Edition 0.2, retrieved from <http://docs.redhat.com/docs/en-US/Red—Hat—Enterprise—Linux/6/html-single/Virtualization—Getting—Started—Guide/index.html> on Jun. 13, 2012,24 pages. |
Block, Steve et al., “DeviceOrientation Event Specification”, W3C, Editor's Draft, retrieved from <https://developer.palm.com/content/api/dev-guide/pdk/accessing-device-sensors.html> on May 25, 2012,(Jul. 12, 2011), 14 pages. |
Brown, Rich “Microsoft Shows Off Pressure-Sensitive Keyboard”, retrieved from <http://news.cnet.com/8301-17938—105-10304792-1.html> on May 7, 2012, (Aug. 6, 2009),2 pages. |
Butler, Alex et al., “SideSight: Multi-“touch” Interaction around Small Devices”, In the proceedings of the 21st annual ACM symposium on User interface software and technology., retrieved from <http://research.microsoft.com/pubs/132534/sidesight—crv3.pdf> on May 29, 2012,(Oct. 19, 2008), 4 pages. |
Crider, Michael “Sony Slate Concept Tablet “Grows” a Kickstand”, Retrieved from: <http://androidcommunity.com/sony-slate-concept-tablet-grows-a-kickstand-20120116/> on May 4, 2012,(Jan. 16, 2012), 9 pages. |
Das, Apurba et al., “Study of Heat Transfer through Multilayer Clothing Assemblies: A Theoretical Prediction”, Retrieved from <http://www.autexrj.com/cms/zalaczone—pliki/5—013—11.pdf>, (Jun. 2011), 7 pages. |
Dietz, Paul H., et al., “A Practical Pressure Sensitive Computer Keyboard”, In Proceedings of UIST 2009,(Oct. 2009), 4 pages. |
Glatt, Jeff “Channel and Key Pressure (Aftertouch).”, Retrieved from: <http://home.roadrunner.com/˜jgglatt/tutr/touch.htm> on Jun. 11, 2012, 2 pages. |
Hanlon, Mike “ElekTex Smart Fabric Keyboard Goes Wireless”, Retrieved from: <http://www.gizmag.com/go/5048/ > on May 7, 2012,(Jan. 15, 2006), 5 pages. |
Kaur, Sukhmani “Vincent Liew's redesigned laptop satisfies ergonomic needs”, Retrieved from: <http://www.designbuzz.com/entry/vincent-liew-s-redesigned-laptop-satisfies-ergonomic-needs/> on Jul. 27, 2012,(Jun. 21, 2010), 4 pages. |
Khuntontong, Puttachat et al., “Fabrication of Molded Interconnection Devices by Ultrasonic Hot Embossing on Thin Polymer Films”, IEEE Transactions on Electronics Packaging Manufacturing, vol. 32, No. 3,(Jul. 2009), pp. 152-156. |
Linderholm, Owen “Logitech Shows Cloth Keyboard for PDAs”, Retrieved from: <http://www.pcworld.com/article/89084/logitech—shows—cloth—keyboard—for—pdas.html> on May 7, 2012,(Mar. 15, 2002), 5 pages. |
McLellan, Charles “Eleksen Wireless Fabric Keyboard: a first look”, Retrieved from: <http://www.zdnetasia.com/eleksen-wireless-fabric-keyboard-a-first-look-40278954.htm> on May 7, 2012,(Jul. 17, 2006), 9 pages. |
Post, E.R. et al., “E-Broidery: Design and Fabrication of Textile-Based Computing”, IBM Systems Journal, vol. 39, Issue 3 & 4,(Jul. 2000), pp. 840-860. |
Purcher, Jack “Apple is Paving the Way for a New 3D GUI for IOS Devices”, Retrieved from: <http://www.patentlyapple.com/patently-apple/2012/01/apple-is-paving-the-way-for-a-new-3d-gui-for-ios-devices.html> on Jun. 4, 2012,(Jan. 12, 2012), 15 pages. |
Takamatsu, Seiichi et al., “Flexible Fabric Keyboard with Conductive Polymer-Coated Fibers”, In Proceedings of Sensors 2011,(Oct. 28, 2011), 4 pages. |
Valliath, G T., “Design of Hologram for Brightness Enhancement in Color LCDs”, Retrieved from <http://www.loreti.it/Download/PDF/LCD/44—05.pdf> on Sep. 17, 2012, 5 pages. |
Williams, Jim “A Fourth Generation of LCD Backlight Technology”, Retrieved from <http://cds.linear.com/docs/Application%20Note/an65f.pdf>, (Nov. 1995), 124 pages. |
Zhang, et al., “Model-Based Development of Dynamically Adaptive Software”, In Proceedings of ICSE 2006, Available at <http://www.irisa.fr/lande/lande/icse-proceedings/icse/p371.pdf>,(May 20, 2006), pp. 371-380. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/470,633, (Jul. 2, 2013), 2 pages. |
“Developing Next-Generation Human Interfaces using Capacitive and Infrared Proximity Sensing”, Silicon Laboratories, Inc., Available at <http://www.silabs.com/pages/DownloadDoc.aspx?FILEURL=support%20documents/technicaldocs/capacitive%20and%20proximity%20sensing—wp.pdf&src=SearchResults>,(Aug. 30, 2010), pp. 1-10. |
“Directional Backlighting for Display Panels”, U.S. Appl. No. 13/021,448, (Feb. 4, 2011), 38 pages. |
“Final Office Action”, U.S. Appl. No. 13/651,195, (Apr. 18, 2013),13 pages. |
“Final Office Action”, U.S. Appl. No. 13/651,232, (May 21, 2013), 21 pages. |
“Final Office Action”, U.S. Appl. No. 13/651,287, (May 3, 2013),16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/021,448, (Dec. 13, 2012), 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/563,435, (Jun. 14, 2013), 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, (Jun. 19, 2013), 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/565,124, (Jun. 17, 2013), 5 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,871, (Jul. 1, 2013), 5 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, (Jun. 3, 2013),14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/656,055, (Apr. 23, 2013),11 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/471,202, (May 28, 2013), 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/651,195, (Jul. 8, 2013), 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/651,272, (May 2, 2013), 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/651,304, (Jul. 1, 2013), 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/651,327, (Jun. 11, 2013), 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/651,726, (May 31, 2013), 5 pages. |
“Optical Sensors in Smart Mobile Devices”, ON Semiconductor, TND415/D, Available at <http://www.onsemi.jp/pub—link/Collateral/TND415-D.PDF>,(Nov. 2010), pp. 1-13. |
“Optics for Displays: Waveguide-based Wedge Creates Collimated Display Backlight”, OptoIQ, retrieved from <http://www.optoiq.com/index/photonics-technologies-applications/lfw-display/lfw-article-display.articles.laser-focus-world.volume-46.issue-1.world-news.optics-for—displays.html> on Nov. 2, 2010,(Jan. 1, 2010), 3 pages. |
Gaver, William W., et al., “A Virtual Window on Media Space”, retrieved from <http://www.gold.ac.uk/media/15gaver-smets-overbeeke.MediaSpaceWindow.chi95.pdf> on Jun. 1, 2012, retrieved from <http://www.gold.ac.uk/media/15gaver-smets-overbeeke.MediaSpaceWindow.chi95.pdf> on Jun. 1, 2012,(May 7, 1995), 9 pages. |
Harada, Susumu et al., “VoiceDraw: A Hands-Free Voice-Driven Drawing Application for People with Motor Impairments”, In Proceedings of Ninth International ACM SIGACCESS Conference on Computers and Accessibility, retrieved from <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.7211&rep=rep1&type=pdf> on Jun. 1, 2012,(Oct. 15, 2007), 8 pages. |
Kaufmann, Benoit et al., “Hand Posture Recognition Using Real-time Artificial Evolution”, EvoApplications'09,retrieved from <http://evelyne.lutton.free.fr/Papers/KaufmannEvolASP2010.pdf> on Jan. 5, 2012,(Apr. 3, 2010),10 pages. |
Manresa-Yee, Cristina et al., “Experiences Using a Hands-Free Interface”, In Proceedings of the 10th International ACM SIGACCESS Conference on Computers and Accessibility, retrieved from http://dmi.uib.es/˜cmanresay/Research/%5BMan08%5DAssets08.pdf> on Jun. 1, 2012,(Oct. 13, 2008), pp. 261-262. |
Nakanishi, Hideyuki et al., “Movable Cameras Enhance Social Telepresence in Media Spaces”, In Proceedings of the 27th International Conference on Human Factors in Computing Systems, retrieved from <http://smg.ams.eng.osaka-u.ac.jp/˜nakanishi/hnp—2009—chi.pdf> on Jun. 1, 2012,(Apr. 6, 2009),10 pages. |
Reilink, Rob et al., “Endoscopic Camera Control by Head Movements for Thoracic Surgery”, In Proceedings of 3rd IEEE RAS & EMBS International Conference of Biomedical Robotics and Biomechatronics, retrieved from <http://doc.utwente.nl/74929/1/biorob—online.pdf> on Jun. 1, 2012,(Sep. 26, 2010), pp. 510-515. |
Sundstedt, Veronica “Gazing at Games: Using Eye Tracking to Control Virtual Characters”, In ACM SIGGRAPH 2010 Courses, retrieved from <http://www.tobii.com/Global/Analysis/Training/EyeTrackAwards/veronica—sundstedt.pdf> on Jun. 1, 2012,(Jul. 28, 2010), 85 pages. |
Travis, Adrian et al., “Collimated Light from a Waveguide for a Display Backlight”, Optics Express, 19714, vol. 17, No. 22, retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/OpticsExpressbacklightpaper.pdf> on Oct. 15, 2009, 6 pages. |
Travis, Adrian et al., “The Design of Backlights for View-Sequential 3D”, retrieved from <http://download.microsoft.com/download/D/2/E/D2E425F8-CF3C-4C71-A4A2-70F9D4081007/Backlightforviewsequentialautostereo.docx> on Nov. 1, 2010, 4 pages. |
Valli, Alessandro “Notes on Natural Interaction”, retrieved from <http://www.idemployee.id.tue.nl/g.w.m.rauterberg/lecturenotes/valli-2004.pdf> on Jan. 5, 2012,(Sep. 2005), 80 pages. |
Vaucelle, Cati “Scopemate, A Robotic Microscope!”, Architectradure, retrieved from <http://architectradure.blogspot.com/2011/10/at-uist-this-monday-scopemate-robotic.html> on Jun. 6, 2012,(Oct. 17, 2011), 2 pages. |
Xu, Zhang et al., “Hand Gesture Recognition and Virtual Game Control Based on 3D Accelerometer and EMG Sensors”, IUI'09, Feb. 8-11, 2009, retrieved from <http://sclab.yonsei.ac.kr/courses/10TPR/10TPR.files/Hand%20Gesture%20Recognition%20and%20Virtual%20Game%20Control%20based%20on%203d%20accelerometer%20and%20EMG%20sensors.pdf> on Jan. 5, 2012,(Feb. 8, 2009), 5 pages. |
Xu, Zhi-Gang et al., “Vision-based Detection of Dynamic Gesture”, ICTM'09, Dec. 5-6, 2009, retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5412956> on Jan. 5, 2012,(Dec. 5, 2009), pp. 223-226. |
Zhu, Dingyun et al., “Keyboard before Head Tracking Depresses User Success in Remote Camera Control”, In Proceedings of 12th IFIP TC 13 International Conference on Human-Computer Interaction, Part II, retrieved from <http://csiro.academia.edu/Departments/CSIRO—ICT—Centre/Papers?page=5> on Jun. 1, 2012,(Aug. 24, 2009), 14 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,327, (Sep. 12, 2013), 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,327, (Sep. 23, 2013), 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,726, (Sep. 17, 2013), 2 pages. |
“Final Office Action”, U.S. Appl. No. 13/471,001, (Jul. 25, 2013), 20 pages. |
“Final Office Action”, U.S. Appl. No. 13/471,139, (Sep. 16, 2013),13 pages. |
“Final Office Action”, U.S. Appl. No. 13/471,336, (Aug. 28, 2013),18 pages. |
“Final Office Action”, U.S. Appl. No. 13/651,976, (Jul. 25, 2013), 21 pages. |
“Final Office Action”, U.S. Appl. No. 13/653,321, (Aug. 2, 2013),17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/938,930, (Aug. 29, 2013), 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/939,002, (Aug. 28, 2013), 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/939,032, (Aug. 29, 2013), 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/651,871, (Oct. 2, 2013), 7 pages. |
“PCT Search Report and Written Opinion”, Application No. PCT/US2013/044871, (Aug. 14, 2013),12 pages. |
“Write & Learn Spellboard Advanced”, Available at <http://somemanuals.com/VTECH,WRITE%2526LEARN--SPELLBOARD--ADV--71000,JIDFHE.PDF>, (2006), 22 pages. |
Bathiche, Steven N., et al., “Input Device with Interchangeable Surface”, U.S. Appl. No. 13/974,749, (Aug. 23, 2013), 51 pages. |
Lance, David M., et al., “Media Processing Input Device”, U.S. Appl. No. 13/655,065, (Oct. 18, 2012), 43 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/063,912, Jan. 2, 2014, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/603,918, Dec. 19, 2013, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/468,918, Dec. 26, 2013, 18 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/563,435, Jan. 14, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/563,435, Jan. 22, 2014, 2 pages. |
“Notice to Grant”, CN Application No. 201320097124.7, Oct. 8, 2013, 2 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/653,321, Dec. 18, 2013, 4 pages. |
“Foreign Office Action”, CN Application No. 201320097066.8, Oct. 24, 2013, 5 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/939,002, Dec. 20, 2013, 5 pages. |
“Final Office Action”, U.S. Appl. No. 13/939,032, Dec. 20, 2013, 5 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/468,918, Nov. 29, 2013, 6 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/565,124, Dec. 24, 2013, 6 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/044873, Nov. 22, 2013, 9 pages. |
“Advisory Action”, U.S. Appl. No. 13/939,032, Feb. 24, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/563,435, Mar. 20, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/565,124, Apr. 3, 2014, 4 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/565,124, Mar. 10, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/565,124, Apr. 14, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/938,930, May 6, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,002, May 5, 2014, 2 pages. |
“Final Office Action”, U.S. Appl. No. 13/371,725, Apr. 2, 2014, 22 pages. |
“Final Office Action”, U.S. Appl. No. 13/564,520, Jan. 15, 2014, 7 pages. |
“Final Office Action”, U.S. Appl. No. 13/603,918, Mar. 21, 2014, 14 pages. |
“Final Office Action”, U.S. Appl. No. 13/780,228, Mar. 28, 2014, 13 pages. |
“Final Office Action”, U.S. Appl. No. 14/063,912, Apr. 29, 2014, 10 pages. |
“Final Office Action”, U.S. Appl. No. 14/199,924, May 6, 2014, 5 pages. |
“Foreign Office Action”, CN Application No. 201320328022.1, Feb. 17, 2014, 4 Pages. |
“Foreign Office Action”, CN Application No. 201320328022.1, Oct. 18, 2013, 3 Pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/045283, Mar. 12, 2014, 19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/599,635, Feb. 25, 2014, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,186, Feb. 27, 2014, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,237, Mar. 24, 2014, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,336, May 7, 2014, 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,376, Apr. 2, 2014, 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,405, Feb. 20, 2014, 37 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/492,232, Apr. 30, 2014, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/527,263, Apr. 3, 2014, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, Feb. 14, 2014, 5 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, Feb. 26, 2014, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/655,065, Apr. 24, 2014, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/656,055, Mar. 12, 2014, 17 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/975,087, May 8, 2014, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/199,924, Apr. 10, 2014, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/200,595, Apr. 11, 2014, 4 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/471,139, Mar. 17, 2014, 4 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/471,237, May 12, 2014, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/651,232, Apr. 25, 2014, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/651,287, May 2, 2014, 6 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/938,930, Feb. 20, 2014, 4 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/939,002, Mar. 3, 2014, 4 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/939,032, Apr. 3, 2014, 4 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/653,321, Mar. 28, 2014, 4 pages. |
“Cirago Slim Case®—Protective case with built-in kickstand for your iPhone 5®”, Retrieved from <http://cirago.com/wordpress/wp-content/uploads/2012/10/ipc1500brochure1.pdf> on Jan. 29, 2013, 1 page. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/470,633, (Apr. 9, 2013), 2 pages. |
“How to Use the iPad's Onscreen Keyboard”, Retrieved from <http://www.dummies.com/how-to/content/how-to-use-the-ipads-onscreen-keyboard.html> on Aug. 28, 2012, 3 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,001, (Feb. 19, 2013),15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,139, (Mar. 21, 2013),12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,202, (Feb. 11, 2013),10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,336, (Jan. 18, 2013),14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,195, (Jan. 2, 2013),14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,232, (Jan. 17, 2013),15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,272, (Feb. 12, 2013),10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,287, (Jan. 29, 2013),13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,304, (Mar. 22, 2013), 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,327, (Mar. 22, 2013), 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,726, (Apr. 15, 2013), 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,871, (Mar. 18, 2013),14 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,976, (Feb. 22, 2013),16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/653,321, (Feb. 1, 2013),13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/653,682, (Feb. 7, 2013),11 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/470,633, (Mar. 22, 2013), 7 pages. |
“On-Screen Keyboard for Windows 7, Vista, XP with Touchscreen”, Retrieved from <www.comfort-software.com/on-screen-keyboard.html> on Aug. 28, 2012, (Feb. 2, 2011), 3 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/471,139, (Jan. 17, 2013), 7 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/651,304, (Jan. 18, 2013), 7 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/651,726, (Feb. 22, 2013), 6 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/651,871, (Feb. 7, 2013), 6 pages. |
“The Microsoft Surface Tablets Comes With Impressive Design and Specs”, Retrieved from <http://microsofttabletreview.com/the-microsoft-surface-tablets-comes-with-impressive-design-and-specs> on Jan. 30, 2013, (Jun. 2012), 2 pages. |
“Tilt Shift Lenses: Perspective Control”, retrieved from http://www.cambridgeincolour.com/tutorials/tilt-shift-lenses1.htm, (Mar. 28, 2008), 11 Pages. |
“What is Active Alignment?”, http://www.kasalis.com/active—alignment.html, retrieved on Nov. 22, 2012, 2 Pages. |
Iwase, Eiji “Multistep Sequential Batch Assembly of Three-Dimensional Ferromagnetic Microstructures with Elastic Hinges”, Retrieved at <<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1549861>> Proceedings: Journal of Microelectromechanical Systems, (Dec. 2005), 7 pages. |
Piltch, Avram “ASUS Eee Pad Slider SL101 Review”, Retrieved from <http://www.laptopmag.com/review/tablets/asus-eee-pad-slider-sl101.aspx>, (Sep. 22, 2011), 5 pages. |
“Advanced Configuration and Power Management Specification”, Intel Corporation, Microsoft Corporation, Toshiba Corp. Revision 1, (Dec. 22, 1996), 364 pages. |
“Final Office Action”, U.S. Appl. No. 13/653,682, (Oct. 18, 2013),16 pages. |
“Final Office Action”, U.S. Appl. No. 13/656,055, (Oct. 23, 2013),14 pages. |
“Final Office Action”, U.S. Appl. No. 13/938,930, (Nov. 8, 2013),10 pages. |
“Final Office Action”, U.S. Appl. No. 13/939,002, (Nov. 8, 2013), 7 pages. |
“FingerWorks Installation and Operation Guide for the TouchStream ST and TouchStream LP”, FingerWorks, Inc. Retrieved from <http://ec1.images-amazon.com/media/i3d/01/A/man-migrate/MANUAL000049862.pdf>, (2002),14 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/040968, (Sep. 5, 2013),12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/045049, (Sep. 16, 2013), 9 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/042550, (Sep. 24, 2013),14 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/029461, (Jun. 21, 2013),11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028948, (Jun. 21, 2013),11 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/371,725, (Nov. 7, 2013),19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/527,263, (Jul. 19, 2013), 5 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,232, (Dec. 5, 2013),15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/780,228, (Oct. 30, 2013),12 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/563,435, (Nov. 12, 2013), 5 pages. |
“Notice to Grant”, CN Application No. 201320097089.9, (Sep. 29, 2013), 2 Pages. |
“Restriction Requirement”, U.S. Appl. No. 13/603,918, (Nov. 27, 2013), 8 pages. |
“Welcome to Windows 7”, Retrieved from: <http://www.microsoft.com/en-us/download/confirmation.aspx?id=4984> on Aug. 1, 2013, (Sep. 16, 2009), 3 pages. |
Prospero, Michael “Samsung Outs Series 5 Hybrid PC Tablet”, Retrieved from: <http://blog.laptopmag.com/samsung-outs-series-5-hybrid-pc-tablet-running-windows-8> on Oct. 31, 2013, (Jun. 4, 2012), 7 pages. |
“Advisory Action”, U.S. Appl. No. 14/199,924, May 28, 2014, 2 pages. |
“Basic Cam Motion Curves”, Retrieved From: <http://ocw.metu.edu.tr/pluginfile.php/6886/mod—resource/content/1/ch8/8-3.htm> Nov. 22, 2013, Middle East Technical University,1999, 14 Pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/471,030, Sep. 30, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,232, Jul. 31, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,287, Aug. 21, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/656,520, Jan. 16, 2014, 3 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/715,133, Apr. 2, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/938,930, Jun. 6, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,002, May 22, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,002, Jun. 19, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,032, Jun. 26, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/939,032, Jul. 15, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/199,924, Aug. 29, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/199,924, Sep. 5, 2014, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/199,924, Sep. 19, 2014, 2 pages. |
“Final Office Action”, U.S. Appl. No. 13/471,336, Oct. 6, 2014, 13 pages. |
“Final Office Action”, U.S. Appl. No. 13/471,376, Aug. 18, 2014, 24 pages. |
“Final Office Action”, U.S. Appl. No. 13/595,700, Aug. 15, 2014, 6 pages. |
“Final Office Action”, U.S. Appl. No. 13/595,700, Oct. 9, 2014, 8 pages. |
“Final Office Action”, U.S. Appl. No. 13/599,635, Aug. 8, 2014, 16 pages. |
“Final Office Action”, U.S. Appl. No. 13/653,682, Jun. 11, 2014, 11 pages. |
“Final Office Action”, U.S. Appl. No. 13/655,065, Aug. 8, 2014, 20 pages. |
“Final Office Action”, U.S. Appl. No. 13/656,055, Sep. 17, 2014, 10 pages. |
“Final Office Action”, U.S. Appl. No. 13/974,994, Oct. 6, 2014, 26 pages. |
“Final Office Action”, U.S. Appl. No. 13/975,087, Sep. 10, 2014, 19 pages. |
“Foreign Notice of Allowance”, CN Application No. 201320096755.7, Jan. 27, 2014, 2 pages. |
“Foreign Notice of Allowance”, CN Application No. 201320097065.3, Nov. 21, 2013, 2 pages. |
“Foreign Office Action”, CN Application No. 201320097065.3, Jun. 18, 2013, 2 pages. |
“Foreign Office Action”, CN Application No. 201320097079.5, Sep. 26, 2013, 4 pages. |
“Interlink Electronics FSR (TM) Force Sensing Resistors (TM)”, Retrieved at <<http://akizukidenshi.com/download/ds/ interlinkelec/94-00004+Rev+B%20FSR%201ntegration%20Guide.pdf on Mar. 21, 2013, 36 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2014/031531, Jun. 20, 2014, 10 Pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028483, Jun. 24, 2014, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028484, Jun. 24, 2014, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028485, Jun. 25, 2014, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028769, Jun. 26, 2014, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/065154, Feb. 5, 2014, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028771, Jun. 19, 2014, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028486, Jun. 20, 2014, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/041017, Jul. 17, 2014, 10 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028489, Jun. 20, 2014, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028488, Jun. 24, 2014, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028767, Jun. 24, 2014, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2014/016654, May 16, 2014, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028481, Jun. 19, 2014, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028490, Jun. 24, 2014, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028766, Jun. 26, 2014, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028772, Jun. 30, 2014, 11 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028768, Jun. 24, 2014, 12 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028482, Jun. 20, 2014, 13 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/067905, Apr. 15, 2014, 9 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028487, May 27, 2014, 9 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2013/028770, Jun. 26, 2014, 9 pages. |
“International Search Report and Written Opinion”, PCT App PCT/US2014/043546, Oct. 9, 2014, 10 pages. |
“Microsoft Tablet PC”, Retrieved from <http://web.archive.org/web/20120622064335/https://en.wikipedia.org/wiki/Microsoft—Tablet—PC> on Jun. 4, 2014, Jun. 21, 2012, 9 pages. |
“neXus Charging Cradle”, Retrieved from <http://www.gen-xtech.com/neXus.php> on Jul. 28, 2014, Apr. 17, 2012, 2 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/468,882, Jul. 9, 2014, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/468,949, Jun. 20, 2014, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/470,951, Jul. 2, 2014, 19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,001, Jun. 17, 2014, 23 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,030, May 15, 2014, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,054, Jun. 3, 2014, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,282, Sep. 3, 2014, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,412, Jul. 11, 2014, 22 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, Jun. 16, 2014, 5 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/595,700, Jun. 18, 2014, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/599,763, May 28, 2014, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/603,918, Sep. 2, 2014, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/645,405, Jan. 31, 2014, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/651,976, Jun. 16, 2014, 23 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/656,520, Feb. 1, 2013, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/656,520, Jun. 5, 2013, 8 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/715,229, Aug. 19, 2014, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/773,496, Jun. 23, 2014, 10 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/780,228, Sep. 15, 2014, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/974,994, Jun. 4, 2014, 24 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/063,912, Sep. 2, 2014, 11 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/225,250, Jun. 17, 2014, 5 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/225,276, Jun. 13, 2014, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/277,240, Jun. 13, 2014, 6 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/468,918, Jun. 17, 2014, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/471,030, Sep. 5, 2014, 6 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/471,186, Jul. 3, 2014, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/471,405, Jun. 24, 2014, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/656,520, Oct. 2, 2013, 5 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/715,133, Jan. 6, 2014, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/018,286, May 23, 2014, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/199,924, Jun. 10, 2014, 4 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/277,240, Sep. 16, 2014, 4 pages. |
“Rechargeable Stylus Pen”, Retrieved from <http://www.e-pens.com/uk/rechargeable-stylus-pen.html> on Jul. 28, 2014, Jul. 5, 2013, 1 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/715,133, Oct. 28, 2013, 6 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/595,700, May 28, 2014, 6 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/653,184, Sep. 5, 2014, 6 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/715,133, Dec. 3, 2013, 6 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/715,229, Aug. 13, 2013, 7 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/471,405, Aug. 29, 2014, 5 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 14/018,286, Jun. 11, 2014, 5 pages. |
“Teach Me Simply”, Retrieved From: <http://techmesimply.blogspot.in/2013/05/yugatech—3.html> on Nov. 22, 2013, May 3, 2013, pp. 1-6. |
Chavan, et al., “Synthesis, Design and Analysis of a Novel Variable Lift Cam Follower System”, In Proceedings: International Journal of Desingn Engineering, vol. 3, Issue 4, Inderscience Publishers,Jun. 3, 2010, 1 Page. |
Justin, “SEIDIO Active with Kickstand for the Galaxy SIII”, Retrieved From: <http://www.t3chniq.com/seidio-active-with-kickstand-gs3/> on Nov. 22, 2013, Jan. 3, 2013, 5 Pages. |
Lahr, “Development of a Novel Cam-based Infinitely Variable Transmission”, Proceedings: In Thesis of Master of Science in Mechanical Engineering, Virginia Polytechnic Institute and State University,Nov. 6, 2009, 91 pages. |
Lambert, “Cam Design”, In Proceedings: Kinematics and dynamics of Machine, University of Waterloo Department of Mechanical Engineering,Jul. 2, 2002, pp. 51-60. |
Lee, et al., “LED Light Coupler Design for a Ultra Thin Light Guide”, Journal of the Optical Society of Korea, vol. 11, Issue.3, Retrieved from <http://opticslab.kongju.ac.kr/pdf/06.pdf>,Sep. 2007, 5 pages. |
Li, et al., “Characteristic Mode Based Tradeoff Analysis of Antenna-Chassis Interactions for Multiple Antenna Terminals”, In IEEE Transactions on Antennas and Propagation, Retrieved from <http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6060882>,Feb. 2012, 13 pages. |
Sanap, et al., “Design and Analysis of Globoidal Cam Index Drive”, Proceedings: In International Journal of Scientific Research Engineering & Technology, Jun. 2013, 6 Pages. |
Siddiqui, “Hinge Mechanism for Rotatable Component Attachment”, U.S. Appl. No. 13/852,848, Mar. 28, 2013, 51 pages. |
Van “Lenovo Thinkpad Tablet 2 Review”, Retrieved from: <http://www.digitaltrends.com/tablet-reviews/lenovo-thinkpad-tablet-2-review/> Jan. 29, 2014, Feb. 12, 2013, 7 Pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/277,240, Jan. 8, 2015, 2 pages. |
“Ex Parte Quayle Action”, U.S. Appl. No. 13/599,763, Nov. 14, 2014, 6 pages. |
“Final Office Action”, U.S. Appl. No. 14/063,912, Jan. 12, 2015, 12 pages. |
“Final Office Action”, U.S. Appl. No. 14/200,595, Nov. 19, 2014, 5 pages. |
“Final Office Action”, U.S. Appl. No. 14/225,276, Dec. 17, 2014, 6 pages. |
“First Examination Report”, NZ Application No. 628690, Nov. 27, 2014, 2 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,030, Jan. 15, 2015, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/655,065, Dec. 19, 2014, 24 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/974,994, Jan. 23, 2015, 26 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/603,918, Jan. 22, 2015, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/651,976, Jan. 21, 2015, 10 pages. |
“Restriction Requirement”, U.S. Appl. No. 14/147,252, Dec. 1, 2014, 6 pages. |
“Snugg iPad 3 Keyboard Case—Cover Ultra Slim Bluetooth Keyboard Case for the iPad 3 & iPad 2”, Retrieved from <https://web.archive.org/web/20120810202056/http://www.amazon.com/Snugg-iPad-Keyboard-Case-Bluetooth/dp/B008CCHXJE> on Jan. 23, 2015, Aug. 10, 2012, 4 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/471,405, Dec. 17, 2014, 5 pages. |
“Writer 1 for iPad 1 keyboard + Case (Aluminum Bluetooth Keyboard, Quick Eject and Easy Angle Function!)”, Retrieved from <https://web.archive.org/web/20120817053825/http://www.amazon.com/keyboard-Aluminum-Bluetooth-Keyboard-Function/dp/B004OQLSLG> on Jan. 23, 2015, Aug. 17, 2012, 5 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/603,918, May 8, 2015, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,232, Apr. 24, 2015, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,232, Jun. 10, 2015, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/651,232, Jul. 6, 2015, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/656,055, Apr. 13, 2015, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/656,055, Jul. 1, 2015, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/200,595, Jun. 4, 2015, 3 pages. |
“Final Office Action”, U.S. Appl. No. 13/468,882, Feb. 12, 2015, 9 pages. |
“Final Office Action”, U.S. Appl. No. 13/468,949, Oct. 6, 2014, 11 pages. |
“Final Office Action”, U.S. Appl. No. 13/470,951, Jan. 12, 2015, 20 pages. |
“Final Office Action”, U.S. Appl. No. 13/471,054, Oct. 23, 2014, 17 pages. |
“Final Office Action”, U.S. Appl. No. 13/471,412, Dec. 15, 2014, 11 pages. |
“Final Office Action”, U.S. Appl. No. 13/492,232, Nov. 17, 2014, 13 pages. |
“Final Office Action”, U.S. Appl. No. 13/527,263, Jan. 27, 2015, 7 pages. |
“Final Office Action”, U.S. Appl. No. 13/655,065, Apr. 2, 2015, 23 pages. |
“Final Office Action”, U.S. Appl. No. 13/780,228, Apr. 10, 2015, 19 pages. |
“Final Office Action”, U.S. Appl. No. 13/974,994, Jun. 10, 2015, 28 pages. |
“Final Office Action”, U.S. Appl. No. 14/059,280, Jul. 22, 2015, 25 pages. |
“Final Office Action”, U.S. Appl. No. 14/147,252, Jun. 25, 2015, 11 pages. |
“Final Office Action”, U.S. Appl. No. 14/225,250, Mar. 13, 2015, 7 pages. |
“Foreign Notice on Reexamination”, CN Application No. 201320097066.8, Apr. 3, 2015, 7 Pages. |
“Foreign Office Action”, CN Application No. 201310067335.0, Jun. 12, 2015, 15 Pages. |
“Foreign Office Action”, CN Application No. 201320097079.5, Jul. 28, 2014, 4 pages. |
“International Search Report and Written Opinion”, Application No. PCT/US2015/022349, Jun. 25, 2015, 9 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,054, Mar. 13, 2015, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,336, Jun. 24, 2015, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,376, Mar. 27, 2015, 28 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,393, Mar. 26, 2015, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/471,393, Oct. 20, 2014, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/492,232, Feb. 24, 2015, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/525,614, Nov. 24, 2014, 19 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/564,520, Jan. 26, 2015, 6 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/599,635, Feb. 12, 2015, 16 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/852,848, Mar. 26, 2015, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/975,087, Feb. 27, 2015, 20 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/059,280, Mar. 3, 2015, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/063,912, May 7, 2015, 12 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/147,252, Feb. 23, 2015, 11 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/225,276, Apr. 23, 2015, 7 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/727,001, Jul. 10, 2015, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/468,949, Apr. 24, 2015, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/468,918, Apr. 8, 2015, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/468,949, Apr. 24, 2015, 8 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/471,030, Apr. 6, 2015, 6 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/595,700, Jan. 21, 2015, 4 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/599,763, Feb. 18, 2015, 4 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/651,232, Mar. 30, 2015, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/653,682, Sep. 24, 2014, 4 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/656,055, Mar. 4, 2015, 7 pages. |
“Notice of Allowance”, U.S. Appl. No. 13/666,958, Aug. 29, 2014, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/200,595, Feb. 17, 2015, 2 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/200,595, Feb. 25, 2015, 4 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/225,276, Jun. 22, 2015, 4 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/457,881, Jul. 22, 2015, 7 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/468,918, Jun. 4, 2015, 2 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/468,949, Jun. 5, 2015, 2 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/595,700, Apr. 10, 2015, 2 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/603,918, Apr. 20, 2015, 8 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/656,055, May 15, 2015, 2 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/656,055, Jun. 10, 2015, 2 pages. |
Cunningham,“Software Infrastructure for Natural Language Processing”, In Proceedings of the fifth conference on Applied natural languge processing, Mar. 31, 1997, pp. 237-244. |
Harrison,“UIST 2009 Student Innovation Contest—Demo Video”, Retrieved From: <https://www.youtube.com/watch?v=PDI8eYIASf0> Sep. 16, 2014, Jul. 23, 2009, 1 pages. |
Schafer,“Using Interactive Maps for Navigation and Collaboration”, CHI '01 Extended Abstracts on Human Factors in Computing Systems, Mar. 31, 2001, 2 pages. |
“Advisory Action”, U.S. Appl. No. 14/059,280, Sep. 25, 2015, 7 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 13/471,030, Aug. 10, 2015, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/225,276, Aug. 27, 2015, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/225,276, Sep. 29, 2015, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/457,881, Aug. 20, 2015, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/457,881, Oct. 2, 2015, 2 pages. |
“Extended European Search Report”, EP Application No. 13859280.3, Sep. 7, 2015, 6 pages. |
“Extended European Search Report”, EP Application No. 13859406.4, Sep. 8, 2015, 6 pages. |
“Final Office Action”, U.S. Appl. No. 13/975,087, Aug. 7, 2015, 16 pages. |
“Final Office Action”, U.S. Appl. No. 14/063,912, Sep. 3, 2015, 13 pages. |
“Foreign Office Action”, CN Application No. 201310067592.4, Oct. 23, 2015, 12 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 13/655,065, Aug. 19, 2015, 18 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/162,529, Sep. 18, 2015, 13 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/225,250, Aug. 19, 2015, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/225,276, Aug. 19, 2015, 9 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/697,501, Sep. 29, 2015, 11 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/727,001, Oct. 2, 2015, 4 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/468,918, Aug. 7, 2015, 4 pages. |
“Supplemental Notice of Allowance”, U.S. Appl. No. 13/468,949, Sep. 14, 2015, 2 pages. |
Odegard,“My iPad MagPad concept”, Retrieved from <http://www.pocketables.com/2011/02/my-ipad-magpad-concept.html> on Oct. 1, 2015, Feb. 26, 2011, 8 pages. |
“Advisory Action”, U.S. Appl. No. 13/975,087, Nov. 16, 2015, 3 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/727,001, Jan. 25, 2016, 2 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/727,001, Dec. 15, 2015, 2 pages. |
“Extended European Search Report”, EP Application No. 13858283.8, Nov. 23, 2015, 10 pages. |
“Extended European Search Report”, EP Application No. 13858674.8, Nov. 27, 2015, 6 pages. |
“Extended European Search Report”, EP Application No. 13861292.4, Nov. 23, 2015, 7 pages. |
“Final Office Action”, U.S. Appl. No. 13/471,336, Dec. 10, 2015, 17 pages. |
“Final Office Action”, U.S. Appl. No. 13/655,065, Nov. 17, 2015, 25 pages. |
“Foreign Office Action”, CN Application No. 201310065273.X, Oct. 28, 2015, 14 pages. |
“Foreign Office Action”, CN Application No. 201310067373.6, Dec. 23, 2015, 15 Pages. |
“Foreign Office Action”, CN Application No. 201310067429.8, Nov. 25, 2015, 12 Pages. |
“Foreign Office Action”, CN Application No. 201310067631.0, Dec. 10, 2015, 11 Pages. |
“Foreign Office Action”, CN Application No. 201310067641.4, Dec. 30, 2015, 12 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/229,507, Nov. 10, 2015, 11 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/059,280, Nov. 23, 2015, 9 pages. |
“Notice of Allowance”, U.S. Appl. No. 14/727,001, Dec. 15, 2015, 2 pages. |
“Restriction Requirement”, U.S. Appl. No. 14/794,182, Dec. 22, 2015, 6 pages. |
“Final Office Action”, U.S. Appl. No. 14/225,250, Jan. 29, 2016, 10 pages. |
“Foreign Office Action”, CN Application No. 201310067356.2, Feb. 4, 2016, 15 Pages. |
“Notice of Allowance”, U.S. Appl. No. 14/517,048, Feb. 24, 2016, 8 pages. |
“Restriction Requirement”, U.S. Appl. No. 14/307,262, Mar. 21, 2016, 6 pages. |
“Restriction Requirement”, U.S. Appl. No. 13/891,109, Sep. 22, 2015, 6 pages. |
Hinckley,“Codex: A Dual Screen Tablet Computer”, Conference on Human Factors in Computing Systems, Apr. 9, 2009, 10 pages. |
“Corrected Notice of Allowance”, U.S. Appl. No. 14/517,048, Apr. 13, 2016, 2 pages. |
“Foreign Notice of Allowance”, CN Application No. 201310065273.X, Mar. 31, 2016, 4 Pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/794,182, Apr. 13, 2016, 15 pages. |
“Non-Final Office Action”, U.S. Appl. No. 14/994,737, Apr. 5, 2016, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20130229386 A1 | Sep 2013 | US |
Number | Date | Country | |
---|---|---|---|
61659353 | Jun 2012 | US | |
61606321 | Mar 2012 | US | |
61606301 | Mar 2012 | US | |
61606313 | Mar 2012 | US | |
61606333 | Mar 2012 | US | |
61613745 | Mar 2012 | US | |
61606336 | Mar 2012 | US | |
61607451 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13470633 | May 2012 | US |
Child | 13647479 | US |