The present invention relates generally to electronic devices, and, more specifically, to input members with capacitive sensors for use in electronic devices.
Electronic devices in use today typically require input from a user in order to, for example, turn the electronic device on or complete some operation. A variety of different mechanisms are in place for receiving input from the user, such as a mechanical button. A mechanical button typically includes a body that is depressed by the user in order to complete an electrical circuit or otherwise trigger a reaction from the device. A restoring force then restores the button back to its original, non-depressed position, until the body is again depressed. Mechanical buttons such as these, however, typically consume a large amount of space in today's ever-slimming electronic devices. Furthermore, mechanical buttons such as these usually allow only for a binary output—indicating that the button is either depressed or is not depressed—and do not provide a smooth, continuous response. Such a smooth, continuous response is usually precluded by the structure of mechanical buttons as the depressed button either completes an electrical circuit or does not complete the circuit.
In one aspect, an electronic button can include a first circuit configured to capture a fingerprint of a user's finger placed on the electronic button, and a second circuit configured to sense a force applied to the electronic button by the user's finger. In some embodiments, the first circuit is further configured to provide temperature information to compensate for temperature sensitivities of the second circuit, and the second circuit is further configured to provide force information to the first circuit. The first circuit may be configured to determine when to sense a fingerprint based on the force information provided by the second circuit. Additionally or alternatively, the first circuit can be configured to correct the captured fingerprint responsive to the sensed force being greater than a predefined acceptable force for fingerprint capture.
In other embodiments, the temperature information is provided to a third circuit, the third circuit being configured to correct the sensed force using the temperature information.
Additionally or alternatively, a third circuit configured to combine an orientation of the captured fingerprint and the sensed force to provide three dimensional control of an electronic device.
In another aspect, a method of operating an electronic button includes sensing a force applied to the electronic button using a force sensor, and correcting the sensed force using a temperature measurement. A fingerprint sensor is configured to trigger the force sensor to sense the force responsive to human skin being detected by the fingerprint sensor. The force sensor may be further configured to trigger capturing a fingerprint responsive to sensing a predefined level of force applied to the electronic button. In some embodiments, a user is notified when the sensed force exceeds a predefined level of force at which a fingerprint can be properly captured.
In yet another aspect, an electronic device includes an electronic button, where the electronic button includes a rigid body defining a beam and at least one opening adjacent the beam, and a strain gauge coupled to the rigid body. At least one portion of the strain gauge is mounted to the beam and sensitive to strain applied to a longitudinal axis of the beam. In some embodiments, the electronic device also includes a capacitive fingerprint sensor configured to provide a temperature measurement to correct measurements from the strain gauge.
Embodiments of an input member with a capacitive sensor, such as an electronic button, are described herein.
The electronic button 110 allows a user to interact with the electronic device 100. For example, the electronic button 110 may turn the electronic device 100 on, allow a user to perform some action such as returning to a home screen, and the like. The electronic device 100 may include more than one electronic button 110 in some embodiments, or may include only a single electronic button 110. The electronic device 100 may also include other input mechanisms, such as a mechanical button, multi-touch capacitive sensing display screen, one or more input/output ports, and so forth.
The electronic button 110 may in some embodiments be mechanically decoupled (e.g., isolated) from a housing 103 that surrounds the button 110 on one or more sides of the electronic button 110, or be decoupled from another part of the body of the electronic device 100. In other embodiments, the electronic button 110 may not be mechanically decoupled from the housing 103 or body (e.g., may be mechanically coupled to the housing 103), or may only be partially decoupled from the housing 103 or body. For example, in some embodiments, the housing 103 may be a glass plate, in which case one or more portions of the electronic button 110 may be integral with the glass plate.
As mentioned above, although not explicitly shown in
The second circuit 160 may be configured to sense a force applied to the electronic button 110 by the user's finger. The second circuit 160 may include, for example, a strain gauge, a capacitive gap sensor, and so forth. In some embodiments, such as when the second circuit 160 is a strain gauge, the second circuit 160 may be susceptible to temperature variations such that the force measurements provided by the second circuit 160 depend not only on the displacement of the electronic button 110, but also on the ambient temperature around the second circuit 160 or on the temperature of the components of the second circuit 160 themselves. The temperature of the components of the second circuit 160 may change in some embodiments as a result of, for example, the heat from a user's finger and/or the heat from the first circuit 130 operating, if the first and second circuits 130, 160 are positioned in proximity to one another.
In some embodiments, and as illustrated in
As also illustrated in
Turning now to
With reference to
In some embodiments, and still with reference to
With reference to
In one example, if the force measurement 312 from the second circuit 160, as optionally corrected using the temperature measurement 314, is within a range of forces at which a fingerprint can be properly captured, the indication 316 may be provided to the first circuit 130 in order to capture the fingerprint. If, on the other hand, the force measurement 312 from the second circuit 160, as optionally corrected using the temperature measurement 314, is below a predefined level of force, the electronic button 110 may cause the electronic device 100 to request that the user try again, pressing more firmly on the electronic button 110. If, however, the sensed force 312 from the second circuit 160, as optionally corrected using the temperature measurement 314, exceeds a predefined level of force at which a fingerprint can be properly captured, the electronic button 110 may cause the electronic device 100 to request that the user try again, pressing less firmly on the electronic button 110.
In still other examples, the force measurements 312 may be used in other manners. For example, the force measurements 312 may be monitored such that when the force applied to the electronic button 110 is relatively stable (e.g., is not rapidly varying), the indication 318 is given to capture the fingerprint. Alternatively, the force measurement 312 may be used by the electronic button 110 to compensate for the effect of too much or too little force being used to press the button 110—for example, if too much force is used, and the force measurement 312 reflects this excess, an algorithm may be applied to a fingerprint that is nonetheless captured by the first circuit 130 in order to compensate for the distortions in the captured fingerprint caused by the excess force. If, for example, the excess force causes the ridges of a fingerprint to be more spaced out and the valleys of the fingerprint to be wider, the force measurement 312 representative of the force applied to the electronic button 110 at that time may be used to adjust the width of the valleys and the spacing of the ridges.
In some embodiments, the force sensing accomplished by the second circuit 160 may consume less power and generate less heat than the fingerprint capturing of the first circuit 130, and thus it may be more economical to measure the force applied to the electronic button 110 at a relatively high sample rate, and only capture a fingerprint when a sufficient, but not excessive, force is applied to the electronic button 110. The first circuit 130 may nonetheless operate in a limited fashion, for example it may obtain and provide the temperature measurement 314 in order to adjust the force measurements 312 from the second circuit 160 during operation, without necessarily activating the components of the first circuit 130 that actually function to capture the fingerprint (e.g., the capacitive sensing aspects of the first circuit 130).
With reference to
With reference now to
The first circuit 130 includes a cylindrical member 132, which may include sapphire, glass, and so forth. The cylindrical member 132 may include a layer of ink 134 positioned on the bottom of the cylindrical member 132. The first circuit 130 also includes a capacitive fingerprint sensor 138, which may be embodied in a silicon die with circuitry for detecting and capturing a fingerprint, circuitry for sensing human skin, temperature sensors, and so forth.
The electronic button 110 also includes a second circuit 160, which may include a strain gauge 162. The strain gauge 162 may generally define a T-shape, and may in some embodiments include four gauge components 164, 165, 166, 167, as explained in more detail below. The four gauge components 164, 165, 166, 167 may together form a full-bridge, in order to thermally and electrically match the strain gauge 162.
The electronic button also includes trim 112, which may generally have a ring shape, and may be coupled between the first and second circuits 130, 160. The trim 112 may be a rigid body (comprised, for example, of stainless steel or another hard material), and may define a beam 116 and one or more openings 114, 115 adjacent the beam. As illustrated in
The electronic button 110 may also include a flex circuit 118 configured to be coupled to the first and second circuits 130, 160, and to route signals from the first and second circuits 130, 160 to a processor or other portion of the electronic device 100.
As illustrated in
With reference to
Still with reference to
As mentioned above, the trim 112 may include one or more openings 114, 115, which may facilitate communication of signals between the strain gauge 162 and the capacitive fingerprint sensor 138, and also may allow a single flex circuit 118 to be used to route signals from both the strain gauge 162 and the capacitive fingerprint sensor 138 to another location of the electronic device 100, such as a processor. As illustrated for example in
As illustrated in
As also illustrated in
As can be seen in
The layout of the capacitive fingerprint sensor 138 may be such that its various components are arranged in order to provide a substantially uniform temperature gradient of the capacitive fingerprint sensor adjacent the beam 116 of the trim 112. So, for example, relatively “cool” digital components of the capacitive fingerprint sensor 138 may be positioned in quadrants 139-F, 139-G, 139-H, and 139-I so that the temperature gradient along those quadrants is minimized. In another example, the “warm” analog components of the capacitive fingerprint sensor 138 may be evenly distributed among quadrants 139-F, 139-G, 139-H, and 139-I in order to reduce the temperature gradient therealong.
Minimizing the temperature gradient along the NE and SE components 164, 165 of the strain gauge 162 may allow the SE component 165 to better cancel out the thermal dependency of the NE component 164, because both SE, NE components 164, 165 will be subjected to similar thermal conditions. If, on the other hand, quadrants 139-F and 139-G were much warmer or much cooler than quadrants 139-H, 139-I, the effectiveness of the thermal cancellation between the NE and SE components 164, 165 of the strain gauge 162 may be reduced.
As mentioned above, and with reference still to the quadrants 139-A, 139-B, 139-C, 139-D, 139-E, 139-F, 139-G, 139-H, 139-I illustrated in
With reference to
With reference to
The sensor circuit 1201 is shown bonded to a control circuit 1203 via bond 1202, which may be an adhesive. The sensor circuit 1201 may likewise be bonded to flex circuit 1208 by an adhesive or the like. As also shown, the sensor circuit may be positioned adjacent the button, which may be generally cylindrical in shape (although this shape is not necessary).
Wire bonding 1206 connects the flex circuit 1208 to the control circuit 1203, and the wire bonding 1206 is encapsulated by rigid encapsulant 1210 and secondary compliant encapsulant 1212 to protect the wire bonding 1206. The wire bonding 1206 is seated underneath locally thinned stiffener 1214 (with respect to the orientation shown in
The foregoing description has broad application. For example, while examples disclosed herein may focus on a strain gauge type of force sensing circuit, it should be appreciated that the concepts disclosed herein may equally apply to substantially any other type of force sensing circuit with or without appropriate modifications as would be appreciated by one skilled in the art of input members for electronic devices. Moreover, although certain examples have been described with reference to particular figures, it will be understood that other embodiments are also within the scope of this disclosure and the appended claims.
As another example of an alternate embodiment, in some examples a force concentrator may be coupled between the capacitive fingerprint sensor and the strain gauge, and may translate motion of the fingerprint sensor into deflection of the strain gauge, thereby indirectly causing strain. In this manner, strain can be applied in a localized area, which can allow for a very small strain gauge to be used, which may be more accurate and sensitive than a relatively larger strain gauge. This also may allow for thermal separation (e.g., air) between the capacitive fingerprint sensor and the strain gauge.
Accordingly, the discussion of any embodiment is meant only to be exemplary and is not intended to suggest that the scope of the disclosure, including the claims, is limited to these examples.
This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/858,606, filed Jul. 25, 2013, entitled “Input Member With Capacitive Sensor,” the entirety of which is incorporated herein by reference as if fully disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
4527862 | Arakawa | Jul 1985 | A |
5343064 | Spangler et al. | Aug 1994 | A |
6002389 | Kasser | Dec 1999 | A |
6079282 | Lanter | Jun 2000 | A |
6154580 | Kuriyama | Nov 2000 | A |
6323846 | Westerman et al. | Nov 2001 | B1 |
6545495 | Warmack et al. | Apr 2003 | B2 |
6568275 | Scholz et al. | May 2003 | B2 |
6570557 | Westerman et al. | May 2003 | B1 |
6570707 | Murakami | May 2003 | B1 |
6677932 | Westerman | Jan 2004 | B1 |
6989728 | Van Zeeland et al. | Jan 2006 | B2 |
7158122 | Roberts | Jan 2007 | B2 |
7211885 | Nordal et al. | May 2007 | B2 |
7511702 | Hotelling | Mar 2009 | B2 |
7538760 | Hotelling et al. | May 2009 | B2 |
7609178 | Son et al. | Oct 2009 | B2 |
7719522 | Lyon et al. | May 2010 | B2 |
7784366 | Daverman et al. | Aug 2010 | B2 |
7920134 | Krah | Apr 2011 | B2 |
7920225 | Nishikawa et al. | Apr 2011 | B2 |
8072437 | Miller et al. | Dec 2011 | B2 |
8169332 | Son | May 2012 | B2 |
8169416 | Han | May 2012 | B2 |
8253711 | Kim et al. | Aug 2012 | B2 |
8274495 | Lee | Sep 2012 | B2 |
8334849 | Murphy et al. | Dec 2012 | B2 |
8351993 | Nunes | Jan 2013 | B2 |
8390481 | Pance et al. | Mar 2013 | B2 |
8421978 | Wang et al. | Apr 2013 | B2 |
8436823 | Kanehira et al. | May 2013 | B2 |
8547350 | Anglin et al. | Oct 2013 | B2 |
8577289 | Schlub et al. | Nov 2013 | B2 |
8577644 | Ksondzyk et al. | Nov 2013 | B1 |
8633916 | Bernstein et al. | Jan 2014 | B2 |
8638316 | Badaye et al. | Jan 2014 | B2 |
8669963 | Baker et al. | Mar 2014 | B2 |
8711122 | Wada et al. | Apr 2014 | B2 |
8743083 | Zanone et al. | Jun 2014 | B2 |
8760413 | Peterson et al. | Jun 2014 | B2 |
8780055 | Marchand et al. | Jul 2014 | B2 |
8830205 | Chang et al. | Sep 2014 | B2 |
8922523 | Lynch et al. | Dec 2014 | B2 |
8963874 | Li et al. | Feb 2015 | B2 |
9001080 | Okayama et al. | Apr 2015 | B2 |
9024907 | Bolender | May 2015 | B2 |
9030440 | Pope et al. | May 2015 | B2 |
9057653 | Schediwy et al. | Jun 2015 | B2 |
9086768 | Elias et al. | Jul 2015 | B2 |
9088282 | Holenarsipur et al. | Jul 2015 | B2 |
9092129 | Abdo et al. | Jul 2015 | B2 |
9116569 | Stacy et al. | Aug 2015 | B2 |
9229587 | Kawaguchi et al. | Jan 2016 | B2 |
9262002 | Momeyer et al. | Feb 2016 | B2 |
9354752 | Kanehira et al. | May 2016 | B2 |
9375874 | Lin et al. | Jun 2016 | B2 |
9411458 | Worfolk et al. | Aug 2016 | B2 |
9430102 | Prest et al. | Aug 2016 | B2 |
9454268 | Badaye et al. | Sep 2016 | B2 |
20060197753 | Hotelling | Sep 2006 | A1 |
20070272919 | Mori et al. | Nov 2007 | A1 |
20090015564 | Ye et al. | Jan 2009 | A1 |
20090066345 | Klauk et al. | Mar 2009 | A1 |
20090237374 | Li et al. | Sep 2009 | A1 |
20100117989 | Chang | May 2010 | A1 |
20100123686 | Klinghult | May 2010 | A1 |
20100128002 | Stacy et al. | May 2010 | A1 |
20100220065 | Ma | Sep 2010 | A1 |
20110012845 | Rothkopf et al. | Jan 2011 | A1 |
20110037706 | Pasquero et al. | Feb 2011 | A1 |
20110080373 | Wang et al. | Apr 2011 | A1 |
20110096013 | Krumpelman et al. | Apr 2011 | A1 |
20110227866 | Kawaguchi et al. | Sep 2011 | A1 |
20110227872 | Huska et al. | Sep 2011 | A1 |
20110235156 | Kothari et al. | Sep 2011 | A1 |
20110248941 | Abdo et al. | Oct 2011 | A1 |
20120038577 | Brown et al. | Feb 2012 | A1 |
20120086669 | Kim et al. | Apr 2012 | A1 |
20120089348 | Perlin et al. | Apr 2012 | A1 |
20120090757 | Buchan et al. | Apr 2012 | A1 |
20120098760 | Chuang | Apr 2012 | A1 |
20120105358 | Momeyer et al. | May 2012 | A1 |
20120169612 | Alameh et al. | Jul 2012 | A1 |
20120188202 | Tsujino et al. | Jul 2012 | A1 |
20120274602 | Bita et al. | Nov 2012 | A1 |
20120313863 | Hsu | Dec 2012 | A1 |
20120319987 | Woo | Dec 2012 | A1 |
20130076375 | Hanumanthaiah et al. | Mar 2013 | A1 |
20130113732 | Kang et al. | May 2013 | A1 |
20130176270 | Cattivelli et al. | Jul 2013 | A1 |
20130234977 | Lin | Sep 2013 | A1 |
20130328575 | Ra et al. | Dec 2013 | A1 |
20140085247 | Leung et al. | Mar 2014 | A1 |
20140111953 | McClure et al. | Apr 2014 | A1 |
20150071509 | Myers | Mar 2015 | A1 |
20150135108 | Pope et al. | May 2015 | A1 |
20150185946 | Fourie | Jul 2015 | A1 |
20160042166 | Kang | Feb 2016 | A1 |
20160378255 | Butler et al. | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
1577385 | Feb 2005 | CN |
1582453 | Feb 2005 | CN |
1707415 | Dec 2005 | CN |
1714336 | Dec 2005 | CN |
101046720 | Oct 2007 | CN |
101427468 | May 2009 | CN |
101950224 | Jan 2011 | CN |
102016780 | Apr 2011 | CN |
201828892 | May 2011 | CN |
102138120 | Jul 2011 | CN |
102449583 | May 2012 | CN |
102483673 | May 2012 | CN |
2073107 | Jun 2009 | EP |
2128747 | Dec 2009 | EP |
2267791 | Dec 2010 | EP |
2315102 | Apr 2011 | EP |
2315186 | Apr 2011 | EP |
2357547 | Aug 2011 | EP |
2413224 | Feb 2012 | EP |
2418561 | Feb 2012 | EP |
2420918 | Feb 2012 | EP |
2508960 | Oct 2012 | EP |
2660688 | Nov 2013 | EP |
2313195 | Nov 1997 | GB |
2007310539 | Nov 2007 | JP |
2010244252 | Oct 2010 | JP |
2014052997 | Mar 2014 | JP |
WO 97018528 | May 1997 | WO |
WO 2011156447 | Dec 2011 | WO |
WO 2012031564 | Mar 2012 | WO |
WO 2012160844 | Nov 2012 | WO |
WO 2013083207 | Jun 2013 | WO |
WO 2014018121 | Jan 2014 | WO |
WO 2014124173 | Aug 2014 | WO |
Entry |
---|
Engineers Edge, Common Plastic Molding Design Material Specification, 2015, http://www.engineersedge.com/plastic/materials—common—plastic.htm, 3 pages. |
Widdle, “Measurement of the Poisson's ratio of flexible polyurethane foam and its influence on a uniaxial compression model,” International Journal of Engineering Science, vol. 46, 2008, pp. 31-49. |
Bau, et al., “TeslaTouch: Electrovibration for Touch Surfaces,” UIST'10, Oct. 3-6, 2010, New York, New York USA, 10 pages. |
Feist, “Samsung snags patent for new pressure sensitive touchscreens,” posted on AndroidAuthority.com at URL: http://www.androidauthority.com/samsung-patent-pressure-sensitive-touchscreens-354860, Mar. 7, 2014, 1 page. |
Number | Date | Country | |
---|---|---|---|
61858606 | Jul 2013 | US |