1. Field of the Invention
The present invention relates to methods and systems for the computer aided diagnosis (CAD) of abnormalities and digital processing of radiological images. More specifically, the present invention relates to a user interface for an automated method and system for the re-screening and detection of abnormalities.
2. Background Art
Computer-aided diagnosis (CAD) systems use digital processing methods to assist users in the identification of abnormalities. U.S. Pat. No. 5,917,929 describes a user interface for facilitating the input of films into a CAD system. The user interface includes a scanner that receives and scans the film-based images and a film feeder that holds and transports them to the scanner. A touch-sensitive display screen is provided to display status information to and receive instructions from an operator. The display screen displays miniature images of the films having color-coded borders, the colors indicating to the operator the stage of the processing of the films. The interface also includes a bar code reader and allows the operator to conduct procedures for testing the scanner. However, there are a number of capabilities, in addition to the above, that could be furnished, but are not.
The object of the current invention is to provide a more flexible user interface for a CAD system with greater capabilities than in prior art user interfaces. More specifically, the current invention has as its objects at least the following: (1) to allow the user to change diagnosis results from the output of the CAD system; (2) to allow the user to manipulate images after the CAD processing; (3) to allow the CAD processor to connect to an image acquisition device such as a film developer, film digitizer or phospher-plate scanner directly without human interface; (4) to allow the CAD processor to connect to multiple image acquisition devices; and (5) to allow the entry of multiple image identification for multiple image scanning.
In one embodiment, the present invention comprises a user interface including an input interface. The input interface may accommodate both image inputs and data inputs. To accommodate image input, the input interface may comprise at least one film feeder and at least one image acquisition device. It may further comprise multiple image feeders and scanners. At least one of the image feeders and/or scanners may receive input directly from an image developer. The input interface may further comprise means by which to receive digital image inputs, including via wireless communications and via computer networks.
To accommodate data inputs, the input interface may comprise a keyboard, a keypad, a mouse, a bar code reader, and/or other input devices. It may further include a voice interface and/or a writing interface (e.g., a digital tablet). Such data inputs may also be furnished via wireless means or via computer networks.
In another embodiment, the invention comprises an output interface including display means. The display means may include small “thumbnail” displays of multiple images, and it may also include a large display of a single image. The display may include indications of suspected abnormalities detected by CAD processing. The display may further accommodate user-identified user-accepted, and user-deleted abnormalities, entered using an input interface.
The output interface may further include displays of image data and of comments entered by a user. It may also include options and displays for use in conjunction with an input interface.
Definitions
In describing the invention, the following definitions are applicable throughout (including above).
A “computer” refers to any apparatus that is capable of accepting a structured input, processing the structured input according to prescribed rules, and producing results of the processing as output. Examples of a computer include a computer; a general-purpose computer; a supercomputer; a mainframe; a super mini-computer; a mini-computer; a workstation; a microcomputer; a server; an interactive television; a hybrid combination of a computer and an interactive television; and application-specific hardware to emulate a computer and/or software. A computer can have a single processor or multiple processors, which can operate in parallel and/or not in parallel. A computer also refers to two or more computers connected together via a network for transmitting or receiving information between the computers. An example of such a computer includes a distributed computer system for processing information via computers linked by a network.
A “computer-readable medium” refers to any storage device used for storing data accessible by a computer. Examples of a computer-readable medium include a magnetic hard disk; a floppy disk; an optical disk, like a CD-ROM or a DVD; a magnetic tape; a memory chip; and a carrier wave used to carry computer-readable electronic data, such as those used in transmitting and receiving e-mail or in accessing a network.
“Software” refers to prescribed rules to operate a computer. Examples of software include software; code segments; instructions; computer programs; and programmed logic.
A “computer system” refers to a system having a computer, where the computer comprises a computer-readable medium embodying software to operate the computer.
A “network” refers to a number of computers and associated devices that are connected by communication facilities. A network involves permanent connections such as cables or temporary connections such as those made through telephone or other communication links, or both. Examples of a network include an internet, such as the Internet; an intranet; a local area network (LAN); a wide area network (WAN); and a combination of networks, such as an internet and an intranet.
A “computer-aided diagnosis (CAD) system” is a computer system that:
A physician or other health care provider can use the CAD results along with other tools and information to determine the specifics and locations of diseases for the patients.
Embodiments of the invention will now be described in conjunction with the accompanying drawings, in which:
In this disclosure, a chest X-ray based CAD system is used as an example. The invention is not, however, limited to such a system, but is applicable to CAD systems, in general. Furthermore, the embodiments described here involve a single processing unit connecting with one or multiple image acquisition devices; however, the invention is also applicable to a configuration consisting of multiple processing units.
The invention comprises a method and system for providing interfaces with a CAD system. Such interfaces include both input and output interfaces.
Input interface 1 may comprise a number of different input devices. Computer system 2 may have the capability of interacting with only a single input device; however, it will typically be capable of interacting with multiple input devices. In general, there are two types of inputs: user input (e.g., alphanumeric data, bar code data, selections/instructions, marks of user-identified or other-devices-identified abnormalities, and the like) and image data (e.g., X-ray images, computer tomography (CT) images, and the like). Input interface 1 will generally include means for facilitating both types of inputs.
There are several types of film scanners on the market. One exemplary type is a laser scanner made by Lumysis (now part of Kodak). The Lumysis scanner emits laser light and uses a photo multiplier to acquire the signal. Another type of scanner is a CCD scanner, like those produced by Howtek and Vidar. The Vidar scanner emits fluorescence light and uses a CCD to acquire the image, whereas the Howtek scanner emits narrow-bandwidth light and uses a CCD to acquire the image. The Vidar scanner, used in an exemplary system embodiment, can accept up to twenty-five films at a time in its feeder.
Yet another image input possibility for a film-based CAD system is for a film scanner to be directly connected to a film processor. This is shown in
Input interface 1 may further facilitate multiple image ID management using bar codes or data entered using a numeric keypad, keyboard, network (for example, over an Internet connection), or other input devices.
As discussed above, input interface 1 also generally includes devices to facilitate user input. Such devices may include, for example, a numeric keypad, a keyboard, a mouse, an electronic pen, a touch screen (which would be a hybrid input interface 1/output interface 3), or a voice interface. Inputs made using such devices may be used for either or both purposes of inputting data about images and inputting information necessary to run the CAD system (e.g., telling the system to run, entering parameters, accepting and rejecting marks/indications associated with abnormalities identified by the CAD system, adding a new mark/indication identified by the user, selecting images, etc.). In the case of a voice interface, exemplary voice interfaces include a voice-activated device that could be used to operate the CAD system and/or a voice recording device to record a physician's diagnosis or other comments.
Output interface 3 generally consists of all devices providing output to the system user. Such devices may include monitors, touch screens, audio speakers, or any other output devices. Output interface 3, together with input interface 1 permits a user to initiate, control, and review and manipulate results of CAD processing.
A particular embodiment of an output interface 3 of a CAD system according to the present invention allows a user, in either a new diagnosis result or result modified from the CAD result, to
The thumbnail images in
When the image displayed in the image display 55 represents a CAD output, the results of CAD processing will generally be displayed on the image. In
The screen shown in
The output interface 3 may also serve as part of input interface 1. In
Output interface 3 may enable the user to perform numerous types of post-processing manipulation of CAD results.
The output interface shown in
The output interface 3 as shown in
Another important function enabled by output interface 3 is what may be termed, “result editing.” Such result editing involves the user reviewing the CAD findings (as shown, e.g., by reference numeral 62 in
The output interface shown in
The invention has been described in detail with respect to preferred embodiments, and it will now be apparent from the foregoing to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects. The invention, therefore, as defined in the appended claims, is intended to cover all such changes and modifications as fall within the true spirit of the invention.
This application is a continuation of co-pending U.S. patent application Ser. No. 10/414,292, filed on Apr. 16, 2003, commonly-assigned, having the same title as this application, and which claims the benefit of the priority date of U.S. Provisional Application No. 60/394,239, filed on Jul. 9, 2002. Both of these applications are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
60394239 | Jul 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10414292 | Apr 2003 | US |
Child | 10984789 | Nov 2004 | US |