The present disclosure is related generally to an insect trap, more particularly, to a removable insect trap having a minimal footprint and an aesthetically pleasing design.
Flying insect pests have long been a nuisance and a health hazard. Since ancient times, insect traps have been used to eliminate flying insects, and hundreds of different traps have been proposed and developed over the centuries. There has always been a need to eliminate flies and mosquitos that inevitably find their way into homes. Recent US outbreaks of Eastern Equine Encephalitis, West Nile virus and harmful E. Coli infections, public health threats that can be spread by flying insects, have only increased this need. Because insects may see and be attracted to a combination of ultraviolet (UV) and visible light, an indoor insect trap may have its own UV and visible light sources. Insect traps commonly have a fluorescent tube that emits both UV and visible light to attract insects and a glue board to trap them. However, insect traps incorporating fluorescent tubes and the transformers that power them may be too large to fit wherever they're needed and too expensive to afford one for every room in the house. In addition, insects may contact the fluorescent tube and over time it may accumulate dust and insect debris, blocking the light and reducing the trap's effectiveness. Furthermore, the glue board may be difficult to remove and replace without touching trapped insects and adhesive.
An insect trap device and methods of using the device are described herein. The insect trap may effectively attract and trap insects indoors and may be manufactured and sold at a lower cost than commercially available traps. The insect trap device may be smaller than competing indoor insect traps, and may be conveniently movable from one location to another. The insect trap device may be easier to clean and maintain without contacting trapped insects.
In a first aspect, an insect trap is disclosed including: a trap portion including an enclosure having an adhesive surface and a first opening, wherein the adhesive surface is at least partially contained within the enclosure and is configured to adhere to an insect; and a base portion including a lighting element and a mounting portion, wherein the lighting element is configured to provide light to the trap portion, and wherein the mounting portion is configured to communicate with and receive power from a power source; wherein the trap portion is configured to removably engage with the base portion and receive light from the base portion when engaged therewith. In an embodiment of the first aspect, the first opening is configured to allow an insect to enter into the enclosure. In an embodiment of the first aspect, the enclosure includes a second opening, the second opening configured to allow light to emit from the enclosure. In an embodiment of the first aspect, within the base portion, the light is not manipulated. In an embodiment of the first aspect, the enclosure includes a third opening, the third opening configured to allow light to be received from base portion into the enclosure. In an embodiment of the first aspect, wherein the enclosure is configured to distribute the light in a predetermined pattern. In an embodiment of the first aspect, the enclosure includes: a front housing portion having a first internal surface; and a rear housing portion having a second internal surface, wherein the front housing portion and rear housing portion are matingly engaged with each other to form the enclosure; and wherein at least one of the first or second internal surfaces is configured to manipulate light. In an embodiment of the first aspect, at least one of the first or second internal surfaces includes an adhesive surface. In an embodiment of the first aspect, the rear housing portion has a concave surface, the concave surface configured to reflect light evenly within the enclosure. In an embodiment of the first aspect, light is transmitted through the adhesive surface, illuminating the adhesive surface to attract an insect to the adhesive surface. In an embodiment of the first aspect, the enclosure includes: a front housing portion having a first internal surface; a rear housing portion having a second internal surface; and a divider portion disposed at least partially between the front housing portion and rear housing portion, wherein the front housing portion and rear housing portion are matingly engaged with each other to form the enclosure; and wherein the divider portion divides the enclosure into a front enclosure portion and a rear enclosure portion. In an embodiment of the first aspect, the divider portion includes a rear surface including translucent material and includes a front surface including an adhesive surface. In an embodiment of the first aspect, the second internal surface of the rear housing portion includes a concave surface, the concave surface configured to reflect light onto the rear surface of the divider portion. In an embodiment of the first aspect, light is transmitted through the adhesive surface, illuminating the adhesive surface to attract an insect to the adhesive surface. In an embodiment of the first aspect, the rear surface of the divider portion is configured to receive the light from the second internal surface of the rear housing portion or directly from the lighting element. In an embodiment of the first aspect, the divider portion is configured to receive light at an oblique angle and spread across the divider portion. In an embodiment of the first aspect, the divider portion is configured to manipulate light. In an embodiment of the first aspect, the divider portion includes a planar or contoured shape, wherein the shape of the divider portion is configured to optimize light distribution. In an embodiment of the first aspect, the base portion includes a protrusion and wherein the trap portion includes a recess for receiving the protrusion, wherein when the protrusion is received by the trap portion, the base portion and trap portion are engaged. In an embodiment of the first aspect, the trap portion includes a protrusion and wherein the base portion includes a recess for receiving the protrusion, wherein when the protrusion is received by the base portion, the base portion and trap portion are engaged. In an embodiment of the first aspect, the trap portion includes a polymeric, fibrous, or carbon-based material. In an embodiment of the first aspect, the mounting portion includes an electrical plug having rigid conductors protruding substantially perpendicularly and directly from the rear surface of the mounting portion, wherein the conductors are insertable into an electrical power outlet. In an embodiment of the first aspect, the power source includes an electrical power outlet or a battery. In an embodiment of the first aspect, the lighting element includes a light emitting diode (LED). In an embodiment of the first aspect, the lighting element includes an ultraviolet (UV) LED and a blue LED. In an embodiment of the first aspect, the base portion includes an energy stabilizer configured to provide a constant voltage to the lighting element. In an embodiment of the first aspect, the energy stabilizer includes full rectifier circuit. In an embodiment of the first aspect, the base portion includes an opening, the opening configured to allow light to emit from the base portion to the trap portion. In an embodiment of the first aspect, the opening includes a transparent or translucent window. In an embodiment of the first aspect, the opening is proximate to the lighting element. In an embodiment of the first aspect, the trap portion includes an insect attractant. In an embodiment of the first aspect, the insect attractant is selected from the group consisting of: sorbitol, coleopteran attractants, dipteran attractants, homopteran attractants, lepidopteran, straight chain lepidopteran pheromones, eugenol, methyl eugenol, and siglure. In an embodiment of the first aspect, the coleopteran attractants include brevicomin, dominicalure, frontalin, grandlure, ipsdienol, ipsenol, japonilure, lineatin, megatomoic acid, multistriatin, oryctalure, sulcatol, and trunc-call. In an embodiment of the first aspect, the dipteran attractants include ceralure, cue-lure, latilure, medlure, moguchun, muscalure, and trimedlure. In an embodiment of the first aspect, the homopteran attractants include rescalure. In an embodiment of the first aspect, the lepidopteran attractants include disparlure. In an embodiment of the first aspect, the straight chain lepidopteran pheromones include codlelure, gossyplure, hexalure, litlure, looplure, orfralure, and ostramone. In an embodiment of the first aspect, the insect attractant is integral to the enclosure. In an embodiment of the first aspect, the base portion includes a transmitter. In an embodiment of the first aspect, the transmitter includes a piezoelectric speaker configured to emit an insect-attracting sound. In an embodiment of the first aspect, the insect-attracting sound includes frequencies in the range of approximately 0.2 Hz to 240 KHz. In an embodiment of the first aspect, the base includes a switch, the switch configured to allow a user to control a property of the trap. In an embodiment of the first aspect, the property is selected from the group consisting of: power, light intensity, light wavelength or frequency, light flickering, light patterns, and combinations thereof. In an embodiment of the first aspect, the switch includes a mechanical switch, an optical switch, an electronic switch, an electromechanical switch, or a Hall effect sensor. In an embodiment of the first aspect, the enclosure includes a reflective surface. In an embodiment of the first aspect, the adhesive surface is proximate to the reflective surface. In an embodiment of the first aspect, the base portion includes a circuit configured to a varying voltage to the lighting element, wherein the lighting element provides intermittent light to the trap portion. In an embodiment of the first aspect, the enclosure includes an outer surface, the outer surface at least partially surrounded by sleeve that is configured to reduce the amount of light emitted by the enclosure. In an embodiment of the first aspect, the at least one of the first or second internal surfaces includes a textured surface, the textured surface configured to increase the surface area of the enclosure. In an embodiment of the first aspect, the textured surfaces include ribs extending at least a portion of the length of the first or second internal surfaces. In an embodiment of the first aspect, the at least one of the first or second internal surfaces include a textured surface, the textured surface configured to increase the surface area of the enclosure. In an embodiment of the first aspect, the textured surfaces include ribs extending at least a portion of the length of the first or second internal surfaces. In an embodiment of the first aspect, the trap further includes: a light conducting body located proximate to the second internal surface of the rear housing portion, the light conducting body having a front surface and a rear surface and the light conducting body configured to receive light from the base portion and distribute the light in a predetermined pattern in the enclosure. In an embodiment of the first aspect, the front surface of the light conducting body further includes an adhesive material. In an embodiment of the first aspect, the rear surface of the light reflecting body is configured to reduce the amount of light from being emitted in a predetermined direction. In an embodiment of the first aspect, the light conducting body is tapered, having a thicker depth at a portion proximate to the base portion and a thinner depth at an opposite end. In an embodiment of the first aspect, the rear surface of the light conducting body is configured to reflect light into the light conducting body. In an embodiment of the first aspect, light is reflected multiple times within the light conducting body before being emitted into the enclosure. In an embodiment of the first aspect, the rear surface includes a rear cover or a matte layer. In an embodiment of the first aspect, the base portion further includes an optical enhancer, the optical enhancer configured to direct the light into the trap portion in a predetermined pattern. In an embodiment of the first aspect, the optical enhancer includes a lens. In an embodiment of the first aspect, the enclosure includes an inner sleeve and the base portion includes an outer sleeve, the inner sleeve configured to align with the outer sleeve. In an embodiment of the first aspect, the outer sleeve includes a face plate having an opening. In an embodiment of the first aspect, the face plate opening corresponds to an enclosure opening, the openings providing an alignment means. In an embodiment of the first aspect, the inner sleeve is configured to be dropped into the outer sleeve. In an embodiment of the first aspect, the inner sleeve includes a tab for holding on to the inner sleeve. In an embodiment of the first aspect, the base portion includes a docking switch, the docking switch configured to activate the lighting element when the trap portion is correctly engaged with the base portion. In an embodiment of the first aspect, the trap portion includes a docking switch activator, the docking switch activator configured to activate the docking switch when the trap portion is correctly engaged with the base portion. In an embodiment of the first aspect, the docking switch includes a mechanical switch, an optical switch, an electronic switch, an electromechanical switch, or a Hall effect sensor.
In a second aspect, an insect trap is disclosed including: a trap portion including: an enclosure having an adhesive surface and a first opening, wherein the adhesive surface is at least partially contained within the enclosure and is configured to adhere to an insect, and a lighting element at least partially contained within the enclosure, wherein the lighting element is configured to provide light within the enclosure and wherein the lighting element is configured to communicate with and receive power from a power source; and a base portion configured to removably engage the trap portion and provide access to the power source. In an embodiment of the second aspect, the lighting element includes a plurality of electrical trap contacts and wherein the base portion includes a plurality of electrical base contacts, the trap contacts configured to communicate with the base contacts to provide power to the lighting element. In an embodiment of the second aspect, the base contacts are in communication with the power source. In an embodiment of the second aspect, the lighting element includes a light emitting diode (LED).
In a third aspect, a removable insect trap cartridge is disclosed including: an enclosure defining the cartridge, the enclosure having an adhesive surface and a first opening, wherein the adhesive surface is at least partially contained within the enclosure and is configured to adhere to an insect, wherein the first opening is configured to allow an insect to enter the enclosure, and wherein the enclosure is configured to provide light in a predetermined pattern within the enclosure. In an embodiment of the third aspect, the enclosure further includes a lighting element. In an embodiment of the third aspect, the lighting element includes a light emitting diode (LED). In an embodiment of the third aspect, the lighting element includes an ultraviolet (UV) LED and a blue LED. In an embodiment of the third aspect, the enclosure includes: a front housing portion having a first internal surface; and a rear housing portion having a second internal surface, wherein the front housing portion and rear housing portion are matingly engaged with each other to form the enclosure; and wherein at least one of the first or second internal surfaces is configured to manipulate light. In an embodiment of the third aspect, at least one of the first or second internal surfaces includes an adhesive surface. In an embodiment of the third aspect, the rear housing portion has a concave surface, the concave surface configured to reflect light evenly within the enclosure. In an embodiment of the third aspect, light is transmitted through the adhesive surface, illuminating the adhesive surface to attract an insect to the adhesive surface. In an embodiment of the third aspect, the enclosure includes: a front housing portion having a first internal surface; a rear housing portion having a second internal surface; and a divider portion disposed at least partially between the front housing portion and rear housing portion, wherein the front housing portion and rear housing portion are matingly engaged with each other to form the enclosure; and wherein the divider portion divides the enclosure into a front enclosure portion and a rear enclosure portion. In an embodiment of the third aspect, the divider portion includes a rear surface having translucent material and includes a front surface having an adhesive surface. In an embodiment of the third aspect, the second internal surface of the rear housing portion includes a concave surface, the concave surface configured to reflect light onto the rear surface of the divider portion. In an embodiment of the third aspect, light is transmitted through the adhesive surface, illuminating the adhesive surface to attract an insect to the adhesive surface. In an embodiment of the third aspect, the rear surface of the divider portion is configured to receive the light from the second internal surface of the rear housing portion or directly from a lighting element. In an embodiment of the third aspect, the enclosure includes a bottom surface, the bottom surface configured to be removably received in a pluggable base. In an embodiment of the third aspect, wherein the enclosure includes biodegradable materials. In an embodiment of the third aspect, the enclosure includes an outer surface, the outer surface including a decorative element. In an embodiment of the third aspect, the decorative element includes a shape selected from the group consisting of: a flower, a plant, a shell, a company logo, a sports team logo, a football, a basketball, a soccer ball, a hockey puck, a football helmet or a hockey stick. In an embodiment of the third aspect, the trap portion includes an insect attractant. In an embodiment of the third aspect, the insect attractant is selected from the group consisting of: sorbitol, coleopteran attractants, dipteran attractants, homopteran attractants, lepidopteran, straight chain lepidopteran pheromones, eugenol, methyl eugenol, and siglure. In an embodiment of the third aspect, the insect attractant is detectable by an insect at a distance of approximately 2 meters from the cartridge. In an embodiment of the third aspect, the enclosure includes a textured surface, the textured surface configured to increase the surface area of the enclosure. In an embodiment of the third aspect, the textured surface includes ribs extending at least a portion of the length of the enclosure. In an embodiment of the third aspect, the cartridge further includes: a light conducting body located within the enclosure, the light conducting body configured to receive light and distribute the light in a predetermined pattern in the enclosure. In an embodiment of the third aspect, the enclosure includes an inner sleeve that is configured to be received into and aligned with an outer sleeve. In an embodiment of the third aspect, the outer sleeve includes a face plate having an opening. In an embodiment of the third aspect, the face plate opening corresponds to an enclosure opening, the openings providing an alignment means. In an embodiment of the third aspect, the inner sleeve includes a tab for holding on to the inner sleeve. In an embodiment of the third aspect, the cartridge includes a docking switch activator, the docking switch activator configured to activate a docking switch when the cartridge is correctly engaged with a base portion. In an embodiment of the third aspect, the docking switch activator includes a mechanical switch, an optical switch, an electronic switch, an electromechanical switch, or a Hall effect sensor.
In a fourth aspect, a method is disclosed including: providing a base portion of an insect trap; providing a first trap portion of an insect trap, wherein the first trap portion includes an opening; mounting the first trap portion to the base portion; coupling the base portion to a power source to provide power to a lighting element, wherein the lighting element is within the base portion or first trap portion and wherein the lighting element is configured to attract an insect into the first trap portion; and receiving an insect into the first trap portion through the opening. In an embodiment of the fourth aspect, the method further includes: separating the first trap portion from the base portion; and disposing of the first trap portion, wherein the insect remains in the disposed first trap portion. In an embodiment of the fourth aspect, the first trap portion is disposed without the human contact with the insect in the first trap portion. In an embodiment of the fourth aspect, the first trap portion includes an adhesive surface and wherein the insect adheres to the adhesive surface. In an embodiment of the fourth aspect, the base portion includes a docking switch, wherein the docking switch is configured to activate the lighting element when the first trap portion is correctly mounted to the base portion. In an embodiment of the fourth aspect, upon separating the first trap portion from the base portion, the lighting element is powered off. In an embodiment of the fourth aspect, upon separating the first trap portion from the base portion, the lighting element is partially shielded from emitting light. In an embodiment of the fourth aspect, the method further includes: providing a second trap portion of an insect trap, wherein the second trap portion includes an opening; and mounting the second trap portion to the base portion. In an embodiment of the fourth aspect, the first insect trap and second insect trap have different configurations.
In a fifth aspect, a docking apparatus is disclosed including: a docking structure configured to activate in response to a docking activator, the docking activator located on a separate piece configured to engage the docking structure, wherein the docking structure is in communication with a power source and is configured to control power to a lighting element. In an embodiment of the fifth aspect, the docking activator includes a surface, a protrusion, a tab or a magnet. In an embodiment of the fifth aspect, the docking structure is configured to close when the docking activator engages with it and is configured to open when the docking activator disengages from it. In an embodiment of the fifth aspect, the docking structure is configured to activate in response to pressure from the docking activator. In an embodiment of the fifth aspect, the docking structure is configured to activate in response to displacement from the docking activator.
In a sixth aspect, a removable insect trap cartridge is disclosed including: an enclosure defining the cartridge, the enclosure having an adhesive surface and a first opening, wherein the adhesive surface is at least partially contained within the enclosure and is configured to adhere to an insect, and a docking activator, the docking activator configured to engage a docking structure in a mounting portion.
Further objects, features, and advantages of the disclosure will be apparent from the following detailed description when taken in conjunction with the following drawings.
While the appended claims set forth the features of the present techniques with particularity, these techniques, together with their objects and advantages, may be best understood from the following detailed description taken in conjunction with the accompanying drawings of which:
To provide an overall understanding of the devices and methods described herein, certain illustrative embodiments will now be described. For the purpose of clarity and illustration, these devices and methods will be described with respect to insect traps used for indoor residential or commercial purposes. It will be understood by one of ordinary skill in the art that the devices and methods described herein may be adapted and modified as appropriate.
As described herein, an insect trap may include a light source, a removable enclosure with at least one opening, an adhesive surface at least partially within the enclosure, and optics to redirect light from the light source onto the adhesive trapping surface. The light source may include at least one light emitting diode (LED). The optics may be attached to the removable enclosure, and may be located at least partially within the enclosure. The optics may include optical enhancers such as a reflector, a lens and/or a diffuser. The insect trap may further include an insect attractant that emits sound or scent. The light source in the insect trap may deactivate when the removable enclosure is removed from the insect trap. The insect trap may further include rigid conductors protruding substantially perpendicularly and directly from a rear surface of the insect trap, wherein the conductors may be insertable into an electrical socket, whereby the insect trap may be mounted by inserting the electrical plug into an electrical socket. Alternately, the insect trap may include a battery power supply electrically coupled to the light source.
The insect trap may effectively attract and trap insects indoors and may be manufactured and sold at a lower cost than traditionally available insect traps. An insect trap with this example configuration may be smaller than competing indoor insect traps, and may be conveniently movable from one location to another. An insect trap with this example configuration may be easier to clean and maintain without contacting trapped insects.
With reference to the drawings,
Front housing 118 and rear housing 140 may be constructed from any suitable material, including a thermoformed opaque plastic material or other opaque, transparent or translucent materials such as paper, paperboard, cardboard or paper pulp. In some embodiments, front housing 118 and rear housing 140 are constructed by injection molding or by other suitable manufacturing techniques. As shown, divider 134 is substantially planar, although it may be formed into a convex, concave or saddle-shaped contour, or a combination of contours to optimize the even distribution of light. Alternatively, divider 134 may have ribs or other features that increase adhesive surface area and create regions of light/dark contrast, which are highly visible to a wide variety of insects and may be more attractive to them.
In some embodiments, front housing 118 may be coated with transparent, translucent or opaque adhesive on an inside surface 170 to provide additional insect trapping efficiency and capacity. In addition, front housing 118 may also have a reflective coating underneath the adhesive coating on inside surface 170 to enhance its attraction to insects and further improve the insect trapping efficiency and effectiveness.
In some embodiments, front housing 118, divider 134 and rear housing 140 are joined together at their perimeters with adhesive, although they may also be joined by other commonly used packaging assembly techniques such as ultrasonic welding or RF sealing, or any other suitable assembly method. The materials of trap portion 114 may also include insect attractants. For example, trap portion 114 may be impregnated with sorbitol, coleopteran attractants including brevicomin, dominicalure, frontalin, grandlure, ipsdienol, ipsenol, japonilure, lineatin, megatomoic acid, multistriatin, oryctalure, sulcatol, and trunc-call, dipteran attractants including ceralure, cue-lure, latilure, medlure, moguchun, muscalure, and trimedlure, homopteran attractants including rescalure, lepidopteran attractants such as disparlure, straight chain lepidopteran pheromones including codlelure, gossyplure, hexalure, litlure, looplure, orfralure, and ostramone, and other insect attractants such as eugenol, methyl eugenol, and siglure, or other substances to provide a scent that further increases the insect-attracting efficiency of the insect trap 110. In such embodiments, the insect attractant is integral to trap portion 114. Alternatively, the insect attractants may be embedded in a separate piece that mounts on inside surface 170 of front housing 118 or through an opening 120 in front housing 118 or on front surface 138 of divider 134. It is desirable for such attractants to be detectable by an insect for approximately a 2 meter radius from trap 110.
As shown, slot 130 in top surface 126 of base portion 112 and protrusions 132 on top surface 126 of base portion 112 engage with trap portion 114 to secure it in place during use, although any other form of attachment may be substituted that allows trap portion 114 to be securely but removably mounted to base portion 112.
In the operation of insect trap insect trap 110, conductive prongs 122 are inserted into a wall electrical socket, and switch 116 may be moved to a closed position. The one or more LEDs 124 emit light, represented by arrows, preferably UV and visible light, which is transmitted through window 128 in base portion 112, through opening 144 in rear housing 140 of trap portion 114, into rear enclosure 148, and directly onto reflective-coated inside surface 142 of rear housing 140 and a rear surface 152 of divider 134. In some embodiments, light is not manipulated in base portion 112 and is emitted directly into trap portion 114. Reflective-coated inside surface 142 of rear housing 140 may include a concave shape and may be configured to reflect the UV and visible light from the one or more LEDs 124 to distribute the light evenly onto rear surface 152 of the divider 134, although the shape of the inside surface 142 of the rear housing 140 may have a convex shape or a saddle shape or a combination of shapes, or may also have ribs or other features to more evenly distribute the light.
Alternatively, an optical enhancer such as an anamorphic lens (not shown) or any other lens or combination of lenses configured to distribute the UV and visible light (e.g., evenly, according to specific patterns, at a focal point, etc.) onto rear surface 152 of divider 134, may be mounted to the rear housing 140 at or near opening 144, and may replace or augment the role of the reflective-coated inside surface 142 of rear housing 140. In some embodiments, the UV and visible light from the one or more LEDs 124 may directly strike rear surface 152 of divider 134 at an oblique angle (e.g., an acute angle from approximately 0° to 90°) and be spread across divider 134, and may replace or augment the role of reflective-coated inside surface 142 of rear housing 140 or of the lens or lenses mounted to rear housing 140.
Thereafter, light may transmit through divider 134 and adhesive coating 136 on its front surface 138, and into front enclosure 146. Light may be further evenly distributed by the light-diffusing properties of divider 134, adhesive coating 136 on its front surface 138, or both. A portion of the light entering front enclosure 146 continues through one or more openings 120 in front housing 118 and is emitted into the surrounding area where the trap is installed. Insects may be attracted to the UV and/or visible light emitted through adhesive coating 136 and one or more openings 120 in the front housing 118, and fly or crawl into the one or more openings 120 and onto the adhesive coating 136, where they become trapped in adhesive (e.g. from adhesive coating 136). A user may observe trapped insects by looking through one or more openings 120 in front housing 118. When a sufficient number of insects have been trapped, the user may easily remove and discard the entire used trap portion 114 without touching the trapped insects, insect debris or adhesive, which remain out of reach inside trap portion 114, and replace it with a new trap portion 114. The new trap portion 114 may have fresh adhesive-coated surfaces and light-directing surfaces, ensuring that insect trap 110 will continue to efficiently and effectively attract and trap insects.
It should be appreciated that a benefit of trap 110 is the manipulation of light within trap portion 114. In some embodiments, light manipulation occurs solely within trap portion 114. Light manipulation may include reflection, refraction, polarization and/or diffusion and is achieved by engaging with a manipulative element or surface (e.g., inside surface 142, divider 134 and adhesive coating 136). In some embodiments, light manipulation produces an even distribution of light on an adhesive surface or adhesive coating 136. In some embodiments, light is manipulated to produce a predetermined pattern on the adhesive coating 136 or within trap portion 114, for example, an even distribution, an even distribution with hot spots of higher intensity, hot spot patterns, and/or combinations thereof.
Any suitable adhesive material may be used as part of an adhesive surface for trapping an insect. In some embodiments, pressure sensitive adhesives such as acrylics, butyl rubber, natural rubber, nitriles, silicones, styrene block copolymers, styrene-ethylene/propylene, styrene-isoprene-styrene, vinyl ethers may be used. Generally, the thickness of such adhesives will be in the range of approximately 0.01 mm to 1 mm. In some embodiments, the adhesive thickness is in the range of approximately 0.05 mm to 0.2 mm, with a thickness of approximately 0.1 mm being most often used.
An insect trap 110 of this configuration may accommodate a variety of different trap portions 114 that may be removably mounted to base portion 112, each trap portion 114 being uniquely configured to attract and trap a specific species or multiple species of flying insect. For example, the overall size and shape of trap portion 114, and the size, shape, and orientation of the openings 120 in the front housing 118 of the trap portion 114, may be uniquely configured to attract and trap a specific species or multiple species of flying insect. For example, in some embodiments, trap portion 114 is approximately 20 mm to 600 mm wide, 20 mm to 600 mm high and 5 mm to 150 mm deep. In some embodiments, trap portion 114 is approximately 20 mm to 200 mm wide, 20 mm to 200 mm high and 5 mm to 80 mm deep. In some embodiments, trap portion 114 is approximately 20 mm to 130 mm wide, 20 mm to 130 mm high and 5 mm to 50 mm deep.
In some embodiments, base portion 112 is approximately 20 mm to 600 mm wide, 10 mm to 150 mm high and 10 mm to 150 mm deep. In some embodiments, base portion 112 is 20 mm to 200 mm wide, 10 mm to 100 mm high and 10 mm to 80 mm deep. In some embodiments, base portion 112 is 20 mm to 130 mm wide, 10 mm to 50 mm high and 10 mm to 50 mm deep.
As provided herein, openings 120 may be a variety of shapes and/or sizes. For example, openings 120 may be circular, square, rectangular, polygonal and/or elliptical in shape. Alternatively, openings 120 may be slots having straight, curved or undulating shapes or patterns. When openings 120 are circular, openings 120 may be approximately 0.5 mm to 30 mm in diameter. In some embodiments, circular openings 120 are approximately 0.5 mm to 20 mm in diameter. In some embodiments, circular openings 120 are approximately 0.5 mm to 15 mm in diameter. When openings 120 are slot shaped, openings 120 may be approximately 2 mm to 30 mm wide and 5 mm to 500 mm long. In some embodiments, slot openings 120 are approximately 2 mm to 20 mm wide and 5 mm to 200 mm long. In some embodiments, slot openings 120 are approximately 2 mm to 15 mm wide and 5 mm to 100 mm long.
In some embodiments, openings 120 cover all or a portion of trap portion 114. For example, openings 120 may cover a range of approximately 1% to 75% of the surface area of trap portion 114. In some embodiments, openings 120 cover approximately 5% to 50% of the surface area of trap portion 114. In some embodiments, openings 120 cover approximately 10% to 30% of the surface area of trap portion 114.
In some embodiments, mounted in a top surface 220 of base portion 212 is a transparent or translucent window 222, shown partially cut away to reveal LEDs 218. Transparent or translucent window 222 protects the one or more LEDs 218 from dust and insect debris, and allows base portion 212 to be easily cleaned. Top surface 220 of base portion 212 may include a slot 224, and on perimeter 270 of top surface 220 are upwardly directed protrusions 226.
Trap portion 214 includes a front housing 228 with at least one opening 230 and a light-conducting body 238. In some embodiments, light-conducting body 238 includes a front surface 254, an adhesive coating or an adhesive layer 234 on the front surface 254, and a rear cover 248. In some embodiments, the material and thickness of adhesive layer 234 are selected to transmit a substantial proportion of the UV and visible light, for example greater than 60% of the light is transmitted through adhesive layer 234. Light-conducting body may be tapered and configured to receive light through its bottom surface 240 from the one or more LEDs 218 and deflect and evenly distribute the light (e.g., through front surface 254 and adhesive layer 234). Rear cover 248 may be configured to prevent light from escaping through the back, top and side surfaces of light-conducting body 238. As provided herein, any suitable light-conducting body may be used.
Front housing 228 may be constructed from any suitable material, including a thermoformed opaque plastic material or other opaque, transparent or translucent materials such as paper, paperboard, cardboard or paper pulp. In some embodiments, front housing 228 is constructed by injection molding or by other suitable manufacturing techniques.
The front housing 228 may also be coated with transparent, translucent or opaque adhesive on an inside surface (not shown) to provide additional insect trapping efficiency and capacity. In addition, the front housing 228 may also have a reflective coating underneath the adhesive coating on its inside surface to enhance its attraction to insects and further improve the insect trapping efficiency and effectiveness. Front housing 228 and light-conducting body 238 may be joined together at their perimeters with adhesive, although they may also be joined by other commonly used packaging assembly techniques such as ultrasonic welding or RF sealing, or any other suitable assembly method.
As shown, front housing 228 and light-conducting body 238 together form a front enclosure 246. Light-conducting body 238 may be tapered (e.g., thicker at a bottom surface 240 and thinner at a top surface 242), and may be constructed from any transparent material that conducts UV and/or visible light, such as acrylic or polycarbonate plastic. The inside surfaces (not shown) of rear cover 248 may have a reflective coating to reflect light back into light-conducting body 238 and through its front surface 254, thereby increasing its light-transmitting efficiency. Light-conducting body 238 may also have facets or other features of varying size, depth, and density on front surface 254 to enhance its light-transmitting efficiency.
Alternatively, in some embodiments, light-conducting body 238 has facets or other features on its front surface 254 and is not tapered. Light-conducting body 238 with microscopic facets or other features on its front surface 254 is commonly referred to as a Light Guide Plate, although the facets or other features may also be larger and still function effectively.
Alternatively, in some embodiments, light-conducting body 238 may not have an adhesive coating, and light conducting body 238 and rear cover 248 may be part of the base portion 212. In such embodiments, trap portion 214 may include a transparent or translucent back plate (not shown) with an adhesive coating on its front surface, attached at its perimeter to the front housing 228.
The materials of the trap portion 214 may also include insect attractants. For example, trap portion 214 may be impregnated with sorbitol, coleopteran attractants including brevicomin, dominicalure, frontalin, grandlure, ipsdienol, ipsenol, japonilure, lineatin, megatomoic acid, multistriatin, oryctalure, sulcatol, and trunc-call, dipteran attractants including ceralure, cue-lure, latilure, medlure, moguchun, muscalure, and trimedlure, homopteran attractants including rescalure, lepidopteran attractants such as disparlure, straight chain lepidopteran pheromones including codlelure, gossyplure, hexalure, litlure, looplure, orfralure, and ostramone, and other insect attractants such as eugenol, methyl eugenol, and siglure, or other substances to provide a scent that further increases the insect-attracting efficiency of the insect trap. In such embodiments, the insect attractant is integral to trap portion 214. Alternatively, the insect attractants may be embedded in a separate piece that mounts on an inside surface 250 of front housing 228 or through the at least one opening 230 in front housing 228 or on front surface 254 of light-conducting body 238. It is desirable for such attractants to be detectable by an insect for approximately a 2 meter radius from trap 210.
In some embodiments, base portion 212 includes a circuit board 252 having a programmable processor or chip (not shown) for executing commands, electrically connected to the conductive prongs 216 and one or more LEDs 218. For clarity, however, not all of the electrical connections are shown. Circuit board 252 may include electronic circuitry to receive ordinary household current from conductive prongs 216 and provide power to illuminate the one or more LEDs 218. Circuit board 252 may include an energy stabilizer such as a full wave rectifier circuit or any other circuit that provides steady voltage to one or more LEDs 218, although it may also provide a varying voltage to the one or more LEDs 218 to provide a flickering light, which some species of insects find attractive. For example, light flickering frequencies in the approximate range from 0.05 Hz (e.g., to mimic the breathing rate of large mammals), to 270 Hz (e.g., the highest flicker frequency known to attract male houseflies), may be desirable and the lighting element may be configured to flicker within this range. Circuit board 252 may provide power to the one or more LEDs 218 to provide both UV and visible light although it may be configured to provide power to only the one or more UV LEDs 218 or to only the one or more visible light LEDs 218, or to provide variable power to produce combinations of flickering UV and visible light. Circuit board 252 may also be configured to drive a transmitter or transceiver such as a piezoelectric speaker or other device that may be mounted in base portion 212 to emit an insect-attracting sound. For example, the transmitter or transceiver may emit an insect-attracting sound having a frequency in the range of approximately 0.5 Hz (e.g., the heart rate of large mammals), to 240 KHz (e.g., the highest frequency detectable by insects). In some embodiments, the frequency is in the range of approximately 5 Hz to 100 KHz. In some embodiments, the frequency is in the range of approximately 35 Hz to 50 Khz. It is desirable for such insect-attracting sound to be detectable by an insect for approximately a 2 meter radius from trap 210. It is desirable for such insect-attracting sound to be undetectable by a human beyond approximately a 1 meter radius from trap 210.
As shown, slot 224 in top surface 220 of base portion 212 and protrusions 226 on top surface 220 of base portion 212 engage with trap portion 214 to secure it in place during use, although any other form of attachment may be substituted that allows trap portion 214 to be securely but removably mounted on base portion 212.
In the operation of insect trap 210, conductive prongs 216 are inserted into a wall electrical socket, and one or more LEDs 218 emit light, represented by arrows, preferably UV and visible light. The light from one or more LEDs 218 may transmit through window 222, enter the thicker bottom surface 240 of tapered light-conducting body 238 and repeatedly reflect off of its front surface 254 and its rear surface 256. In some embodiments, light is not manipulated in base portion 212 and is emitted directly into trap portion 214. A portion of the reflected light may transmit through front surface 254 of the light-conducting body 238 to provide an evenly-distributed light onto and through adhesive coating 234 and into front enclosure 246. The light may be further evenly distributed by refractive and light-diffusing properties of adhesive coating 234 on front surface 254 of light-conducting body 238. A portion of the light entering the front enclosure 246 continues through one or more openings 230 in front housing 228 and is emitted into the surrounding area where the trap 210 is installed. Insects may be attracted to the UV and/or visible light transmitted through adhesive coating 234 and through one or more openings 230 in the front housing 228, and fly or crawl into one or more openings 230 and onto the adhesive coating 234, where they become trapped in the adhesive. The user may observe trapped insects by looking through one or more openings 230 in front housing 228. When a sufficient number of insects have been trapped, the user may easily remove and discard the entire used trap portion 214 without touching the trapped insects, insect debris or adhesive, which remain out of reach inside trap portion 114, and replace it with a new trap portion 214. The new trap portion 214 may have fresh adhesive-coated surfaces and light-directing surfaces, ensuring that the insect trap 210 will continue to efficiently and effectively attract and trap insects.
It should be appreciated that a benefit of trap 210 is the manipulation of light within trap portion 214. In some embodiments, light manipulation occurs solely within trap portion 214. Light manipulation may include reflection, refraction, polarization and/or diffusion and is achieved by engaging with a manipulative element or surface (e.g., light-conducting body 238, front surface 254 and rear surface 256, and adhesive coating 234). In some embodiments, light manipulation produces an even distribution of light on an adhesive surface or adhesive coating 234. In some embodiments, light is manipulated to produce a predetermined pattern on the adhesive coating 234 or within trap portion 214, for example, an even distribution, an even distribution with hot spots of higher intensity, hot spot patterns, and/or combinations thereof.
Any suitable adhesive material may be used as part of an adhesive surface for trapping an insect. In some embodiments, pressure sensitive adhesives such as acrylics, butyl rubber, natural rubber, nitriles, silicones, styrene block copolymers, styrene-ethylene/propylene, styrene-isoprene-styrene, vinyl ethers may be used. Generally, the thickness of such adhesives will be in the range of approximately 0.01 mm to 1 mm. In some embodiments, the adhesive thickness is in the range of approximately 0.05 mm to 0.2 mm, with a thickness of approximately 0.1 mm being most often used.
An insect trap 210 of this configuration may accommodate a variety of different trap portions 214 that may be removably mounted to base portion 212, each trap portion 214 being uniquely configured to attract and trap a specific species or multiple species of insects. For example, the overall size and shape of trap portion 214, and the size, shape, and orientation of the openings 230 in front housing 228 of trap portion 214, may be uniquely configured to attract and trap a specific species or multiple species of insects. For example, in some embodiments, trap portion 214 is approximately 20 mm to 600 mm wide, 20 mm to 600 mm high and 5 mm to 150 mm deep. In some embodiments, trap portion 214 is approximately 20 mm to 200 mm wide, 20 mm to 200 mm high and 5 mm to 80 mm deep. In some embodiments, trap portion 214 is approximately 20 mm to 130 mm wide, 20 mm to 130 mm high and 5 mm to 50 mm deep.
In some embodiments, base portion 212 is approximately 20 mm to 600 mm wide, 10 mm to 150 mm high and 10 mm to 150 mm deep. In some embodiments, base portion 212 is 20 mm to 200 mm wide, 10 mm to 100 mm high and 10 mm to 80 mm deep. In some embodiments, base portion 212 is 20 mm to 130 mm wide, 10 mm to 50 mm high and 10 mm to 50 mm deep.
As provided herein, openings 230 may be a variety of shapes and/or sizes. For example, openings 230 may be circular, square, rectangular, polygonal and/or elliptical in shape. Alternatively, openings 230 may be slots having straight, curved or undulating shapes or patterns. When openings 230 are circular, openings 230 may be approximately 0.5 mm to 30 mm in diameter. In some embodiments, circular openings 230 are approximately 0.5 mm to 20 mm in diameter. In some embodiments, circular openings 230 are approximately 0.5 mm to 15 mm in diameter. When openings 230 are slot shaped, openings 230 may be approximately 2 mm to 30 mm wide and 5 mm to 500 mm long. In some embodiments, slot openings 230 are approximately 2 mm to 20 mm wide and 5 mm to 200 mm long. In some embodiments, slot openings 230 are approximately 2 mm to 15 mm wide and 5 mm to 100 mm long.
In some embodiments, openings 230 cover all or a portion of trap portion 214. For example, openings 230 may cover a range of approximately 1% to 75% of the surface area of trap portion 214. In some embodiments, openings 230 cover approximately 5% to 50% of the surface area of trap portion 214. In some embodiments, openings 230 cover approximately 10% to 30% of the surface area of trap portion 214.
As shown, housing 318 includes ribs 336 or other features that increase the adhesive-coated surface area, produce alternating light/dark regions that some insect species find attractive, and enhance the transmission of insect-attracting light into interior 370 of trap portion 314. A sleeve 338, configured to reduce the amount of light emitted by outside surface 368 of housing 318, covers outside surface 368 of housing 318 except for a bottom surface 366 and at one or more openings 320. Sleeve 338 may be constructed from any suitable material, including a thermoformed opaque plastic material or other opaque, transparent or translucent materials such as paper, paperboard, cardboard or paper pulp. In some embodiments, sleeve 338 includes a reflective coating on one or more of its inside surfaces, allowing sleeve 338 to direct more light through adhesive-coated inside surfaces 334 of housing 318 and further enhance the insect attracting and trapping efficiency and effectiveness. In some embodiments, sleeve 338 is replaced by a coating configured to reduce the amount of light emitted by outside surface 368 of housing 318, or by the coating applied over a reflective coating, applied to outside surface 368 of housing 318, except for bottom surface 366.
The materials of the trap portion 314 may also include insect attractants. For example, trap portion 314 may be impregnated with sorbitol, coleopteran attractants including brevicomin, dominicalure, frontalin, grandlure, ipsdienol, ipsenol, japonilure, lineatin, megatomoic acid, multistriatin, oryctalure, sulcatol, and trunc-call, dipteran attractants including ceralure, cue-lure, latilure, medlure, moguchun, muscalure, and trimedlure, homopteran attractants including rescalure, lepidopteran attractants such as disparlure, straight chain lepidopteran pheromones including codlelure, gossyplure, hexalure, litlure, looplure, orfralure, and ostramone, and other insect attractants such as eugenol, methyl eugenol, and siglure, or other substances to provide a scent that increases the insect-attracting efficiency of the insect trap. In such embodiments, the insect attractant is integral to trap portion 314. Alternatively, the insect attractants may be embedded in a separate piece that mounts on inside surface 334 of housing 318 or through opening 320 in housing 318. It is desirable for such attractants to be detectable by an insect for approximately a 2 meter radius from trap 310.
In the operation of insect trap 310, conductive prongs 322 are inserted into a wall electrical socket and switch 316 may be moved to a closed position. The one or more LEDs 324 emit light, represented by arrows, preferably UV and visible light, which transmit through at least one window 328 in base portion 312 and through bottom surface 366 of housing 318. In some embodiments, light is not manipulated in base portion 312 and is emitted directly into trap portion 314. A portion of the light continues within the enclosure, up one or more sides 372 of housing 318, and out through adhesive-coated inside surfaces 334. Another portion of the light continues through bottom surface 366 of housing 318 and into the enclosure, where it illuminates adhesive-coated inside surfaces 334. A portion of the light entering housing 318 continues through openings 320 and is emitted into the surrounding area where the trap is installed. Insects in the area are attracted to the UV and/or visible light transmitted through openings 320 and fly or crawl into openings 320 and onto adhesive coated inside surfaces 334, where they become stuck in the adhesive and are trapped. The user may observe trapped insects by looking through openings 320. When a sufficient number of insects have been trapped, the user may easily remove and discard the entire used trap portion 314 without touching trapped insects, insect debris or adhesive, which remain out of reach inside trap portion 314, and replace it with a new trap portion 314. The new trap portion 314 may have fresh adhesive-coated inside surfaces 334, housing 318 has a clean bottom surface 366 through which the UV and/or visible light is transmitted into trap portion 314, and the transparent or translucent material of trap portion 314 has not been degraded by prolonged exposure to UV light, thereby ensuring that insect trap 310 will continue to efficiently and effectively attract and trap insects.
It should be appreciated that a benefit of trap 310 is the manipulation of light within trap portion 314. In some embodiments, light manipulation occurs solely within trap portion 314. Light manipulation may include reflection, refraction, polarization and/or diffusion and is achieved by engaging with a manipulative element or surface (e.g., housing 318 and adhesive-coated inside surfaces 334). In some embodiments, light manipulation produces an even distribution of light on an adhesive surface or adhesive coating. In some embodiments, light is manipulated to produce a predetermined pattern on the adhesive coating or within trap portion 314, for example, an even distribution, an even distribution with hot spots of higher intensity, hot spot patterns, and/or combinations thereof.
Any suitable adhesive material may be used as part of an adhesive surface for trapping an insect. In some embodiments, pressure sensitive adhesives such as acrylics, butyl rubber, natural rubber, nitriles, silicones, styrene block copolymers, styrene-ethylene/propylene, styrene-isoprene-styrene, vinyl ethers may be used. Generally, the thickness of such adhesives will be in the range of approximately 0.01 mm to 1 mm. In some embodiments, the adhesive thickness is in the range of approximately 0.05 mm to 0.2 mm, with a thickness of approximately 0.1 mm being most often used.
An insect trap 310 of this configuration may accommodate a variety of different trap portions 314 that may be removably mounted to base portion 312, each trap portion 314 being uniquely configured to attract and trap a specific species or multiple species of insects. For example, the overall size and shape of trap portion 314, and the size, shape, and orientation of openings 320 in housing 318 of the trap portion 314, may be uniquely configured to attract and trap a specific species or multiple species of insects. For example, in some embodiments, trap portion 314 is approximately 20 mm to 600 mm wide, 20 mm to 600 mm high and 5 mm to 150 mm deep. In some embodiments, trap portion 314 is approximately 20 mm to 200 mm wide, 20 mm to 200 mm high and 5 mm to 80 mm deep. In some embodiments, trap portion 314 is approximately 20 mm to 130 mm wide, 20 mm to 130 mm high and 5 mm to 50 mm deep.
In some embodiments, base portion 312 is approximately 20 mm to 600 mm wide, 10 mm to 150 mm high and 10 mm to 150 mm deep. In some embodiments, base portion 312 is 20 mm to 200 mm wide, 10 mm to 100 mm high and 10 mm to 80 mm deep. In some embodiments, base portion 312 is 20 mm to 130 mm wide, 10 mm to 50 mm high and 10 mm to 50 mm deep.
As provided herein, openings 320 may be a variety of shapes and/or sizes. For example, openings 320 may be circular, square, rectangular, polygonal and/or elliptical in shape. Alternatively, openings 320 may be slots having straight, curved or undulating shapes or patterns. When openings 320 are circular, openings 320 may be approximately 0.5 mm to 30 mm in diameter. In some embodiments, circular openings 320 are approximately 0.5 mm to 20 mm in diameter. In some embodiments, circular openings 320 are approximately 0.5 mm to 15 mm in diameter. When openings 320 are slot shaped, openings 320 may be approximately 2 mm to 30 mm wide and 5 mm to 500 mm long. In some embodiments, slot openings 320 are approximately 2 mm to 20 mm wide and 5 mm to 200 mm long. In some embodiments, slot openings 320 are approximately 2 mm to 15 mm wide and 5 mm to 100 mm long.
In some embodiments, openings 320 cover all or a portion of trap portion 314. For example, openings 320 may cover a range of approximately 1% to 75% of the surface area of trap portion 314. In some embodiments, openings 320 cover approximately 5% to 50% of the surface area of trap portion 314. In some embodiments, openings 320 cover approximately 10% to 30% of the surface area of trap portion 314.
Although as shown in the embodiments of
A lighting element such as one or more LEDs 414 may be mounted on a cross-shaped protrusion 416 protruding from front surface 418 of base portion 412. Alternatively, LEDs 414 may form a protrusion themselves. While shown as a cross-shaped protrusion, the mounting surface and/or LED 414 configuration may be any desired shape. Trap portion 420 includes a housing 450 of translucent or transparent material with one or more adhesive-coated inside surfaces 422 and one or more openings 424. In some embodiments, the material and thickness of housing 450 and the material and thickness of the adhesive are selected to transmit a substantial proportion of the UV and visible light, for example greater than 60% of the light is transmitted through housing 450 and the adhesive coating. Trap portion 420 may include a coating configured to reduce the amount of light emitted by the one or more outside surfaces 452, on one or more outside surfaces 452 except for at the one or more openings 424 and at opening 426 in rear surface 428. As shown, opening 426 is a cross-shaped cavity 454, but may be any desired shape. For example, cross-shaped protrusion 416 on front surface 418 of base portion 412 may engage with a recess in cross-shaped cavity 454 in rear surface 428 of trap portion 420 to removably attach trap portion 420 to base portion 412. In this configuration, therefore, trap portion 414 mounts in front of base portion 412.
In the operation of insect trap 410, base portion 412 is plugged into an electrical wall socket and trap portion 420 is mounted in front of base portion 412. Light from one or more LEDs 414, in UV and/or visible light wavelengths, may transmit into cross-shaped cavity 454 in rear surface 428 of trap portion 420. In some embodiments, light is not manipulated in base portion 412 and is emitted directly into trap portion 414. A portion of the light may continue within the translucent or transparent walls of the trap portion 420, diffusing the light and spreading it evenly within trap portion 420 and through adhesive-coated inside surfaces 422. Another portion of the light may continue through rear wall 456 of trap portion 420 and into interior 430 of trap portion 420, where it illuminates adhesive-coated inside surfaces 422. A portion of the light entering trap portion 420 may continue through one or more openings 424 and is emitted into the surrounding area where the trap 410 is installed. Insects in the area are attracted to the UV and/or visible light transmitted through one or more openings 424, and fly or crawl into one or more openings 424 and onto adhesive coated inside surfaces 422, where they become stuck in the adhesive and are trapped. The user may observe trapped insects by looking through one or more openings 424. When a sufficient number of insects have been trapped, the user may easily remove and discard the entire used trap portion 420 without touching trapped insects, insect debris or adhesive, which remain out of reach inside trap portion 314, and replace it with a new trap portion 420. The new trap portion 420 may have fresh adhesive-coated inside surfaces 422, a clean opening 426 in rear surface 428 through which the UV and/or visible light is transmitted into trap portion 420, and the transparent or translucent material of trap portion 420 has not been degraded by prolonged exposure to UV light, thereby ensuring that insect trap 410 will continue to efficiently and effectively attract and trap insects.
It should be appreciated that a benefit of trap 410 is the manipulation of light within trap portion 420. In some embodiments, light manipulation occurs solely within trap portion 420. Light manipulation may include reflection, refraction, polarization and/or diffusion and is achieved by engaging with a manipulative element or surface (e.g., trap portion 420 and adhesive-coated inside surfaces 422). In some embodiments, light manipulation produces an even distribution of light on an adhesive surface or adhesive coating. In some embodiments, light is manipulated to produce a predetermined pattern on the adhesive coating or within trap portion 420, for example, an even distribution, an even distribution with hot spots of higher intensity, hot spot patterns, and/or combinations thereof.
Any suitable adhesive material may be used as part of an adhesive surface for trapping an insect. In some embodiments, pressure sensitive adhesives such as acrylics, butyl rubber, natural rubber, nitriles, silicones, styrene block copolymers, styrene-ethylene/propylene, styrene-isoprene-styrene, vinyl ethers may be used. Generally, the thickness of such adhesives will be in the range of approximately 0.01 mm to 1 mm. In some embodiments, the adhesive thickness is in the range of approximately 0.05 mm to 0.2 mm, with a thickness of approximately 0.1 mm being most often used.
An insect trap 410 of this configuration may accommodate a variety of different trap portions 420 that may be removably mounted to base portion 412, each trap portion 420 being uniquely configured to attract and trap a specific species or multiple species of insects. For example, the overall size and shape of trap portion 420, and the size, shape, and orientation of openings 424 in trap portion 420, may be uniquely configured to attract and trap a specific species or multiple species of insects. For example, in some embodiments, trap portion 420 is approximately 20 mm to 600 mm wide, 20 mm to 600 mm high and 5 mm to 150 mm deep. In some embodiments, trap portion 420 is approximately 20 mm to 200 mm wide, 20 mm to 200 mm high and 5 mm to 80 mm deep. In some embodiments, trap portion 420 is approximately 20 mm to 130 mm wide, 20 mm to 130 mm high and 5 mm to 50 mm deep.
In some embodiments, base portion 412 is approximately 10 mm to 600 mm wide, 10 mm to 150 mm high and 10 mm to 150 mm deep. In some embodiments, base portion 412 is 10 mm to 200 mm wide, 10 mm to 100 mm high and 10 mm to 80 mm deep. In some embodiments, base portion 412 is 10 mm to 130 mm wide, 10 mm to 50 mm high and 10 mm to 50 mm deep.
As provided herein, openings 424 may be a variety of shapes and/or sizes. For example, openings 424 may be circular, square, rectangular, polygonal and/or elliptical in shape. Alternatively, openings 424 may be slots having straight, curved or undulating shapes or patterns. When openings 424 are circular, openings 424 may be approximately 0.5 mm to 30 mm in diameter. In some embodiments, circular openings 424 are approximately 0.5 mm to 20 mm in diameter. In some embodiments, circular openings 424 are approximately 0.5 mm to 15 mm in diameter. When openings 424 are slot shaped, openings 424 may be approximately 2 mm to 30 mm wide and 5 mm to 500 mm long. In some embodiments, slot openings 424 are approximately 2 mm to 20 mm wide and 5 mm to 200 mm long. In some embodiments, slot openings 320 are approximately 2 mm to 15 mm wide and 5 mm to 100 mm long.
In some embodiments, openings 424 cover all or a portion of trap portion 420. For example, openings 424 may cover a range of approximately 1% to 75% of the surface area of trap portion 420. In some embodiments, openings 424 cover approximately 5% to 50% of the surface area of trap portion 420. In some embodiments, openings 424 cover approximately 10% to 30% of the surface area of trap portion 420.
In the operation of insect trap 510, conductive prongs 522 are inserted into a wall electrical socket. One or more LEDs 536 emit light, represented by arrows, preferably UV and visible light, which transmit though rear surface 538 of housing 524 of trap portion 514. In some embodiments, light is not manipulated in base portion 512 and is emitted directly into trap portion 514. A portion of the light continues within the enclosure, up one or more sides 572 of housing 524, and out through adhesive-coated inside surfaces 530. Another portion of the light may continue through the wall of housing 524 and into the enclosure, where it illuminates the adhesive-coated inside surfaces 530. A portion of the light entering the enclosure may continue through openings 526 in trap portion 514 and corresponding openings 520 in base portion and be emitted into the area where the insect trap 510 is installed. Insects in the area are attracted to the UV and/or visible light transmitted through openings 520 in base portion 512, and fly or crawl into openings 520 and onto the adhesive-coated inside surfaces 530 of trap portion 514, where they become stuck in the adhesive and are trapped. The user may observe trapped insects by looking through openings 520 and 526. When a sufficient number of insects have been trapped, the user may easily remove and discard the entire used trap portion 514 without touching trapped insects, insect debris or adhesive, which remain out of reach inside trap portion 514, and replace it with a new trap portion 514. The new trap portion 514 may include fresh adhesive coating its inside surfaces 530, housing 524 has a clean rear surface 538, through which the UV and visible light is transmitted into trap portion 514, and the transparent or translucent material of trap portion 514 has not been degraded by prolonged exposure to UV light, thereby ensuring that insect trap 510 will continue to efficiently and effectively attract and trap insects.
It should be appreciated that a benefit of trap 510 is the manipulation of light within trap portion 514. In some embodiments, light manipulation occurs solely within trap portion 514. Light manipulation may include reflection, refraction, polarization and/or diffusion and is achieved by engaging with a manipulative element or surface (e.g., housing 516 and adhesive-coated inside surfaces 530). In some embodiments, light manipulation produces an even distribution of light on an adhesive surface or adhesive coating. In some embodiments, light is manipulated to produce a predetermined pattern on the adhesive coating or within trap portion 514, for example, an even distribution, an even distribution with hot spots of higher intensity, hot spot patterns, and/or combinations thereof.
Any suitable adhesive material may be used as part of an adhesive surface for trapping an insect. In some embodiments, pressure sensitive adhesives such as acrylics, butyl rubber, natural rubber, nitriles, silicones, styrene block copolymers, styrene-ethylene/propylene, styrene-isoprene-styrene, vinyl ethers may be used. Generally, the thickness of such adhesives will be in the range of approximately 0.01 mm to 1 mm. In some embodiments, the adhesive thickness is in the range of approximately 0.05 mm to 0.2 mm, with a thickness of approximately 0.1 mm being most often used.
An insect trap 510 of this configuration may accommodate a variety of different trap portions 514 that may be removably mounted to base portion 512, each trap portion 514 being uniquely configured to attract and trap a specific species or multiple species of insects. For example, the overall size and shape of trap portion 514, and the size, shape, and orientation of openings 526 in housing 524 of trap portion 514, may be uniquely configured to attract and trap a specific species or multiple species of insects. For example, in some embodiments, trap portion 514 is approximately 20 mm to 600 mm wide, 20 mm to 600 mm high and 5 mm to 150 mm deep. In some embodiments, trap portion 514 is approximately 20 mm to 200 mm wide, 20 mm to 200 mm high and 5 mm to 80 mm deep. In some embodiments, trap portion 514 is approximately 20 mm to 130 mm wide, 20 mm to 130 mm high and 5 mm to 50 mm deep.
In some embodiments, base portion 512 is approximately 20 mm to 600 mm wide, 10 mm to 150 mm high and 10 mm to 150 mm deep. In some embodiments, base portion 512 is 20 mm to 200 mm wide, 10 mm to 100 mm high and 10 mm to 80 mm deep. In some embodiments, base portion 512 is 20 mm to 130 mm wide, 10 mm to 50 mm high and 10 mm to 50 mm deep.
As provided herein, openings 526 and openings 520 may be a variety of shapes and/or sizes. For example, openings 526 and openings 520 may be circular, square, rectangular, polygonal and/or elliptical in shape. Alternatively, openings 526 and openings 520 may be slots having straight, curved or undulating shapes or patterns. When openings 526 and openings 520 are circular, openings 526 and openings 520 may be approximately 0.5 mm to 30 mm in diameter. In some embodiments, circular openings 526 and circular openings 520 are approximately 0.5 mm to 20 mm in diameter. In some embodiments, circular openings 526 and circular openings 520 are approximately 0.5 mm to 15 mm in diameter. When openings 526 and openings 520 are slot shaped, openings 526 and openings 526 may be approximately 2 mm to 30 mm wide and 5 mm to 500 mm long. In some embodiments, slot openings 526 and slot openings 520 are approximately 2 mm to 20 mm wide and 5 mm to 200 mm long. In some embodiments, slot openings 526 and slot openings 520 are approximately 2 mm to 15 mm wide and 5 mm to 100 mm long.
In some embodiments, openings 526 cover all or a portion of trap portion 514. For example, openings 526 may cover a range of approximately 1% to 75% of the surface area of trap portion 514. In some embodiments, openings 526 cover approximately 5% to 50% of the surface area of trap portion 514. In some embodiments, openings 526 cover approximately 10% to 30% of the surface area of trap portion 514.
Protruding from a rear surface 670 (shown in
In some embodiments, front housing 618 is be coated with transparent, translucent or opaque adhesive on an inside surface to provide additional insect trapping efficiency and capacity. In addition, front housing 618 may also have a reflective coating underneath the adhesive coating on its inside surface to enhance its attraction to insects and further improve the insect trapping efficiency and effectiveness. Front housing 618 and back plate 638 may be joined together at their perimeters with adhesive, although they may also be joined by other commonly used packaging assembly techniques such as ultrasonic welding or RF sealing, or any other suitable assembly method. The materials of trap portion 614 may include an insect attractant. For example, the materials of trap portion 614 may be impregnated with sorbitol, coleopteran attractants including brevicomin, dominicalure, frontalin, grandlure, ipsdienol, ipsenol, japonilure, lineatin, megatomoic acid, multistriatin, oryctalure, sulcatol, and trunc-call, dipteran attractants including ceralure, cue-lure, latilure, medlure, moguchun, muscalure, and trimedlure, homopteran attractants including rescalure, lepidopteran attractants such as disparlure, straight chain lepidopteran pheromones including codlelure, gossyplure, hexalure, litlure, looplure, orfralure, and ostramone, and other insect attractants such as eugenol, methyl eugenol, and siglure, or other substances to provide a scent that further increases the insect-attracting efficiency of the insect trap. In such embodiments, the insect attractant is integral to trap portion 614. Alternatively, the insect attractants may be embedded in a separate piece that mounts on an inside surface of front housing 618 or through an opening 620 in front housing 618 or on front surface 642 of back plate 638. It is desirable for such attractants to be detectable by an insect for approximately a 2 meter radius from trap 610.
As shown, front housing 618 and back plate 638 form a front enclosure 644 in trap portion 614, and rear housing 626 and window 630 form a rear enclosure 646 in base portion 612. In some embodiments, base portion 612 includes a circuit board 648 having a programmable processor or chip (not shown) for executing commands, electrically connected to conductive prongs 622, switch 616 and one or more LEDs 624. For clarity, however, not all of the electrical connections are shown. Circuit board 648 may include electronic circuitry to receive ordinary household current from conductive prongs 622, respond to the position of switch 616 and provide power to illuminate one or more LEDs 624. Circuit board 648 may include an energy stabilizer such as a full wave rectifier circuit or any other circuit that provides steady voltage to one or more LEDs 624 when switch 616 is in a closed position, although it may also provide a varying voltage to one or more LEDs 624 to provide a flickering light, which some species of insects find attractive. For example, light flickering frequencies in the approximate range of 0.05 Hz (e.g., to mimic the breathing rate of large mammals) to 250 Hz (e.g., the highest flicker frequency known to attract male houseflies), may be desirable and the lighting element may be configured to flicker within this range. Circuit board 648 may provide power to one or more LEDs 624 to provide both UV and visible light, although it may be configured to provide power to only one or more UV LEDs 624 or to only one or more visible light LEDs 624, or to provide variable power to produce combinations of flickering UV and visible light. Circuit board 648 may also be configured to drive a transmitter or transceiver such as a piezoelectric speaker or other device that may be mounted in the base portion 612 to emit an insect-attracting sound. For example, the transmitter or transceiver may emit an insect-attracting sound having a frequency in the range of approximately 0.5 Hz (e.g., the heart rate of large mammals) to 240 KHz (e.g., the highest frequency detectable by insects). In some embodiments, the frequency is in the range of approximately 5 Hz to 100 KHz. In some embodiments, the frequency is in the range of approximately 35 Hz to 50 Khz. It is desirable for such insect-attracting sound to be detectable by an insect for approximately a 2 meter radius from trap 610. It is desirable for such insect-attracting sound to be undetectable by a human beyond approximately a 1 meter radius from trap 610.
As shown, upward protrusions or rim 636 on top surface 634 of base portion 612 engage with trap portion 614 to secure it in place during use, although any other form of attachment may be substituted that allows trap portion 614 to be securely but removably mounted to base portion 612.
In the operation of insect trap 610, conductive prongs 622 are inserted into a wall electrical socket, and switch 616 is moved to a closed position. One or more LEDs 624 emit light, preferably UV and visible light, represented by arrows, which transmit through at least one opening 632 in base portion 612, into rear enclosure 646, and onto reflective-coated inside surface 628 of rear housing 626 and rear surface 650 of window 630. In some embodiments, light is not manipulated in base portion 612 and is emitted directly into trap portion 614. Reflective-coated inside surface 628 of rear housing 626 may include a concave shape and may be configured to reflect the UV and visible light from one or more LEDs 624 to distribute the light evenly onto rear surface 650 of window 630, although inside surface 628 of rear housing 626 may have a convex shape or a saddle shape or a combination of shapes, or may also have ribs or other features to more evenly distribute the light. Alternatively, an optical enhancer such as an anamorphic lens (not shown) or any other lens or combination of lenses configured to distribute UV and/or visible light (e.g., evenly, according to specific patterns, at a focal point, etc.) onto rear surface 650 of window 630, may be mounted to base portion 612 at or near opening 632 in base portion 612, and may replace or augment the role of reflective-coated inside surface 628 of rear housing 626. Alternatively, the UV and/or visible light from one or more LEDs 624 may directly strike rear surface 650 of window 630 at an oblique angle (e.g., an acute angle from approximately 0° to 90°) and be spread across and through window 630 of base portion 612 and onto back plate 638 of trap portion 614, and may replace or augment the role of reflective-coated inside surface 628 of rear housing 626 or of the lens or lenses mounted to base portion 612. The light may transmit through back plate 638 and adhesive coating 640 on front surface 642, and into front enclosure 644. The light may be further evenly distributed by light-diffusing properties of window 630 of base portion 612, back plate 638 of trap portion 614, adhesive coating 640 on front surface 642 of back plate 638, or any combination of window 630, back plate 638 and adhesive coating 640. In some embodiments, a portion of the light entering front enclosure 644 continues through one or more openings 620 in front housing 618 and is emitted into the area where the trap is installed. Insects may be attracted to the UV and/or visible light transmitted through adhesive coating 640 and/or through one or more openings 620 in front housing 618, and fly or crawl into one or more openings 620 and onto adhesive coating 640, where they become trapped in the adhesive. The user may observe trapped insects by looking through one or more openings 620 in front housing 618. When a sufficient number of insects have been trapped, the user may easily remove and discard the entire used trap portion 614 without touching trapped insects, insect debris or adhesive, which remain out of reach inside trap portion 614, and replace it with a new trap portion 614. The new trap portion 614 may have fresh adhesive-coated surfaces, ensuring that insect trap 610 will continue to efficiently and effectively attract and trap insects.
It should be appreciated that a benefit of trap 610 is the manipulation of light within trap portion 614. In some embodiments, light manipulation occurs solely within trap portion 614. Light manipulation may include reflection, refraction, polarization and/or diffusion and is achieved by engaging with a manipulative element or surface (e.g., inside surface 628, window 630, back plate 638 and adhesive coating 640). In some embodiments, light manipulation produces an even distribution of light on an adhesive surface or adhesive coating 640. In some embodiments, light is manipulated to produce a predetermined pattern on the adhesive coating 640 or within trap portion 614, for example, an even distribution, an even distribution with hot spots of higher intensity, hot spot patterns, and/or combinations thereof.
Any suitable adhesive material may be used as part of an adhesive surface for trapping an insect. In some embodiments, pressure sensitive adhesives such as acrylics, butyl rubber, natural rubber, nitriles, silicones, styrene block copolymers, styrene-ethylene/propylene, styrene-isoprene-styrene, vinyl ethers may be used. Generally, the thickness of such adhesives will be in the range of approximately 0.01 mm to 1 mm. In some embodiments, the adhesive thickness is in the range of approximately 0.05 mm to 0.2 mm, with a thickness of approximately 0.1 mm being most often used.
An insect trap 610 of this configuration may accommodate a variety of different trap portions 614 that may be removably mounted to base portion 612, each trap portion 614 being uniquely configured to attract and trap a specific species or multiple species of insects. For example, the overall size and shape of trap portion 614, and the size, shape, and orientation of openings 620 in front housing 618 of trap portion 614, may be uniquely configured to attract and trap a specific species or multiple species of insects. For example, in some embodiments, trap portion 614 is approximately 20 mm to 600 mm wide, 20 mm to 600 mm high and 5 mm to 150 mm deep. In some embodiments, trap portion 614 is approximately 20 mm to 200 mm wide, 20 mm to 200 mm high and 5 mm to 80 mm deep. In some embodiments, trap portion 614 is approximately 20 mm to 130 mm wide, 20 mm to 130 mm high and 5 mm to 50 mm deep.
In some embodiments, base portion 612 is approximately 20 mm to 600 mm wide, 10 mm to 150 mm high and 10 mm to 150 mm deep. In some embodiments, base portion 612 is 20 mm to 200 mm wide, 10 mm to 100 mm high and 10 mm to 80 mm deep. In some embodiments, base portion 612 is 20 mm to 130 mm wide, 10 mm to 50 mm high and 10 mm to 50 mm deep.
As provided herein, openings 620 may be a variety of shapes and/or sizes. For example, openings 620 may be circular, square, rectangular, polygonal and/or elliptical in shape. Alternatively, openings 620 may be slots having straight, curved or undulating shapes or patterns. When openings 620 are circular, openings 620 may be approximately 0.5 mm to 30 mm in diameter. In some embodiments, circular openings 620 are approximately 0.5 mm to 20 mm in diameter. In some embodiments, circular openings 620 are approximately 0.5 mm to 15 mm in diameter. When openings 620 are slot shaped, openings 620 may be approximately 2 mm to 30 mm wide and 5 mm to 500 mm long. In some embodiments, slot openings 620 are approximately 2 mm to 20 mm wide and 5 mm to 200 mm long. In some embodiments, slot openings 120 are approximately 2 mm to 15 mm wide and 5 mm to 100 mm long.
In some embodiments, openings 620 cover all or a portion of trap portion 614. For example, openings 620 may cover a range of approximately 1% to 75% of the surface area of trap portion 614. In some embodiments, openings 620 cover approximately 5% to 50% of the surface area of trap portion 614. In some embodiments, openings 620 cover approximately 10% to 30% of the surface area of trap portion 614.
Trap portion 714 includes a front housing 726 with at least one opening 728, a divider 730, a rear housing 736, a lighting element such as one or more LEDs 740, and electrical trap contacts 742. In some embodiments, divider 730 is constructed from transparent or translucent material and is coated with a transparent or translucent adhesive 732 on a front surface 734. In some embodiments, the material and thickness of the divider 730 and the material and thickness of the adhesive 732 are selected to transmit a substantial proportion of the UV and/or visible light, for example greater than 60% of the light is transmitted through divider 730 and adhesive 732. In some embodiments, LEDs 740 include one that emits ultraviolet (UV) light and one that emits visible light (e.g., blue light). In some embodiments, the lighting element emits a combination of wavelengths to mimic sunlight. As shown, there are two electrical trap contacts 742 for each of the one or more LEDs 740. Thus, each pair of trap contacts 742 are electrically connected to their respective LED 740.
In some embodiments, rear housing 736 includes a reflective-coated inside surface 738. The material and surface finish of rear housing 736 may alternatively be configured to reflect UV and/or visible light without a reflective coating. Front housing 726 and rear housing 736 may be constructed from any suitable material, including a thermoformed opaque plastic material or other opaque, transparent or translucent materials such as paper, paperboard, cardboard or paper pulp. In some embodiments, front housing 726 and rear housing 736 are constructed by injection molding or by other suitable manufacturing techniques.
As shown, divider 730 may be substantially planar, although it may be formed into a convex, concave or saddle-shaped contour, or a combination of contours to optimize the even distribution of light. Alternatively, divider 730 may include ribs or other features that increase the adhesive-coated surface area, produce alternating light/dark regions that some insect species find attractive, and enhance the transmission of insect-attracting light into interior of trap portion 714. In some embodiments, front housing 726 is coated with transparent, translucent or opaque adhesive on an inside surface to provide additional insect trapping efficiency and capacity. In addition, front housing 726 may include a reflective coating underneath the adhesive coating on an inside surface to enhance its attraction to insects and further improve the insect trapping efficiency and effectiveness. Front housing 726, divider 730 and rear housing 736 may be joined together at their perimeters with adhesive, although they may also be joined by other commonly used packaging assembly techniques such as ultrasonic welding or RF sealing, or any other suitable assembly method.
The materials of trap portion 714 may also include insect attractants. For example, trap portion 714 may be impregnated with be impregnated with sorbitol, coleopteran attractants including brevicomin, dominicalure, frontalin, grandlure, ipsdienol, ipsenol, japonilure, lineatin, megatomoic acid, multistriatin, oryctalure, sulcatol, and trunc-call, dipteran attractants including ceralure, cue-lure, latilure, medlure, moguchun, muscalure, and trimedlure, homopteran attractants including rescalure, lepidopteran attractants such as disparlure, straight chain lepidopteran pheromones including codlelure, gossyplure, hexalure, litlure, looplure, orfralure, and ostramone, and other insect attractants such as eugenol, methyl eugenol, and siglure, or other substances to provide a scent that further increases the insect-attracting efficiency of the insect trap. In such embodiments, the insect attractant is integral to trap portion 714. Alternatively, the insect attractants may be embedded in a separate piece that mounts on an inside surface of front housing 726 or through an opening 728 in front housing 726 or on front surface 734 of divider 730. It is desirable for such attractants to be detectable by an insect for approximately a 2 meter radius from trap 710. As shown, divider 730 separates trap portion 714 into a front enclosure 744 and a rear enclosure 746.
In some embodiments, base portion 712 includes a circuit board 748 having a programmable processor or chip (not shown) for executing commands, electrically connected to conductive prongs 718, switch 716, and electrical base contacts 750. For clarity, however, not all of the electrical connections are shown. While two base contacts 750 in the base portion 712 for each of the LEDs 740 in the trap portion 714 are shown, any suitable number may be used. Base contacts 750 may be configured to provide an electrical connection with trap contacts 742 when trap portion 714 is removably mounted to base portion 712. Circuit board 748 may include electronic circuitry to receive ordinary household current from conductive prongs 718, respond to the position of switch 716 and provide power to base contacts 750, which, in turn, provide power to trap contacts 742 and illuminate LEDs 740 in trap portion 714 when trap portion 714 is mounted to base portion 712. In some embodiments, circuit board 748 includes an energy stabilizer such as a full wave rectifier circuit or any other circuit that provides steady voltage to one or more LEDs 740 when switch 716 is in a closed position and trap portion 714 is mounted to base portion 712, although it may also provide a varying voltage to one or more LEDs 740 to provide a flickering light, which some species of insects find attractive. For example, light flickering frequencies in the approximate range of 0.05 Hz (e.g., to mimic the breathing rate of large mammals) to 250 Hz (e.g., the highest flicker frequency known to attract male houseflies), may be desirable and the lighting element may be configured to flicker within this range. Circuit board 748 may provide power to one or more LEDs 740 to provide both UV and visible light, although it may be configured to provide power to only one or more UV LEDs 740 or to only one or more visible light LEDs 740, or to provide variable power to produce combinations of flickering UV and visible light. Circuit board 748 may also be configured to drive a transmitter or transceiver such as a piezoelectric speaker or other device that may be mounted in base portion 712 to emit an insect-attracting sound. For example, the transmitter or transceiver may emit an insect-attracting sound having a frequency in the range of approximately 0.5 Hz (e.g., the heart rate of large mammals) to 240 KHz (e.g., the highest frequency detectable by insects). In some embodiments, the frequency is in the range of approximately 5 Hz to 100 KHz. In some embodiments, the frequency is in the range of approximately 35 Hz to 50 Khz. It is desirable for such insect-attracting sound to be detectable by an insect for approximately a 2 meter radius from trap 710. It is desirable for such insect-attracting sound to be undetectable by a human beyond approximately a 1 meter radius from trap 710.
In some embodiments, base portion 712 includes a slot 722 and protrusions 724 in top surface 720, which are configured to engage with trap portion 714 to secure it in place during use, although any other form of attachment may be substituted that allows trap portion 714 to be securely but removably mounted to base portion 712.
In the operation of insect trap insect trap 710, conductive prongs 718 are inserted into a wall electrical socket, switch 716 is moved to a closed position, and trap portion 714 is mounted to base portion 712. One or more LEDs 740 emit light, represented by arrows, preferably UV and visible light, which transmit light into rear enclosure 746, and onto reflective-coated inside surface 738 of rear housing 736 and rear surface 752 of divider 730. In some embodiments, light is not manipulated in base portion 712 and is emitted directly into trap portion 714. Reflective-coated inside surface 738 of rear housing 736 may be a concave shape and configured to reflect UV and/or visible light from one or more LEDs 740 to distribute the light evenly onto rear surface 752 of divider 730, although the shape of inside surface 738 of rear housing 736 may have a convex shape or a saddle shape or a combination of shapes, or may also have ribs (not shown) or other features to more evenly distribute the light. Alternatively, an optical enhancer such as an anamorphic lens (not shown) or any other lens or combination of lenses configured to distribute UV and/or visible light (e.g., evenly, according to specific patterns, at a focal point, etc.) onto rear surface 752 of divider 730, may be mounted to rear housing 736 proximate to or above LEDs 740 or may be mounted to LEDs 740, and may replace or augment the role of reflective-coated inside surface 738 of rear housing 736. Alternatively, the UV and/or visible light from one or more LEDs 740 may directly strike the rear surface 752 of divider 730 at an oblique angle (e.g., an acute angle from approximately 0° to 90°) and may be spread across divider 730, and may replace or augment the role of reflective-coated inside surface 738 of rear housing 736, or of the lens or lenses mounted to rear housing 736 or to LEDs 740. The light may transmit through divider 730 and adhesive coating 732 on front surface 734, and into front enclosure 744. The light may be further evenly distributed by the light-diffusing properties of divider 730, adhesive coating 732 on front surface 734, or both. A portion of the light entering front enclosure 744 continues through one or more openings 728 in front housing 726 and is emitted into the area where trap 710 is installed. Insects may be attracted to the UV and/or visible light transmitted through adhesive coating 732 and/or through one or more openings 728 in front housing 726, and fly or crawl into one or more openings 728 and onto adhesive coating 732, where they become trapped in the adhesive. The user may observe trapped insects by looking through one or more openings 728 in front housing 726. When a sufficient number of insects have been trapped, the user may easily remove and discard the entire used trap portion 714 without touching trapped insects, insect debris or adhesive, which remain out of reach inside trap portion 714, and replace it with a new trap portion 714. The new trap portion 714 may have fresh adhesive-coated surfaces and light-directing surfaces, ensuring that the insect trap 710 will continue to efficiently and effectively attract and trap insects.
It should be appreciated that a benefit of trap 710 is the manipulation of light within trap portion 714. In some embodiments, light manipulation occurs solely within trap portion 714. Light manipulation may include reflection, refraction, polarization and/or diffusion and is achieved by engaging with a manipulative element or surface (e.g., inside surface 738, divider 730 and adhesive coating 732). In some embodiments, light manipulation produces an even distribution of light on an adhesive surface or adhesive coating. In some embodiments, light is manipulated to produce a predetermined pattern on the adhesive coating or within trap portion 714, for example, an even distribution, an even distribution with hot spots of higher intensity, hot spot patterns, and/or combinations thereof.
Any suitable adhesive material may be used as part of an adhesive surface for trapping an insect. In some embodiments, pressure sensitive adhesives such as acrylics, butyl rubber, natural rubber, nitriles, silicones, styrene block copolymers, styrene-ethylene/propylene, styrene-isoprene-styrene, vinyl ethers may be used. Generally, the thickness of such adhesives will be in the range of approximately 0.01 mm to 1 mm. In some embodiments, the adhesive thickness is in the range of approximately 0.05 mm to 0.2 mm, with a thickness of approximately 0.1 mm being most often used.
An insect trap 710 of this configuration may accommodate a variety of different trap portions 714 that may be removably mounted to base portion 712, each trap portion 714 being uniquely configured to attract and trap a specific species or multiple species of insects. For example, the overall size and shape of trap portion 714, the size, shape, and orientation of openings 728 in front housing 726 of trap portion 714, and the wavelength and intensity of the LEDs 740 may be uniquely configured to attract and trap a specific species or multiple species of insects. For example, in some embodiments, trap portion 714 is approximately 20 mm to 600 mm wide, 20 mm to 600 mm high and 5 mm to 150 mm deep. In some embodiments, trap portion 714 is approximately 20 mm to 200 mm wide, 20 mm to 200 mm high and 5 mm to 80 mm deep. In some embodiments, trap portion 714 is approximately 20 mm to 130 mm wide, 20 mm to 130 mm high and 5 mm to 50 mm deep.
In some embodiments, base portion 712 is approximately 20 mm to 600 mm wide, 10 mm to 150 mm high and 10 mm to 150 mm deep. In some embodiments, base portion 712 is 20 mm to 200 mm wide, 10 mm to 100 mm high and 10 mm to 80 mm deep. In some embodiments, base portion 712 is 20 mm to 130 mm wide, 10 mm to 50 mm high and 10 mm to 50 mm deep.
As provided herein, openings 728 may be a variety of shapes and/or sizes. For example, openings 728 may be circular, square, rectangular, polygonal and/or elliptical in shape. Alternatively, openings 728 may be slots having straight, curved or undulating shapes or patterns. When openings 728 are circular, openings 728 may be approximately 0.5 mm to 30 mm in diameter. In some embodiments, circular openings 728 are approximately 0.5 mm to 20 mm in diameter. In some embodiments, circular openings 728 are approximately 0.5 mm to 15 mm in diameter. When openings 728 are slot shaped, openings 728 may be approximately 2 mm to 30 mm wide and 5 mm to 500 mm long. In some embodiments, slot openings 728 are approximately 2 mm to 20 mm wide and 5 mm to 200 mm long. In some embodiments, slot openings 728 are approximately 2 mm to 15 mm wide and 5 mm to 100 mm long.
In some embodiments, openings 728 cover all or a portion of trap portion 714. For example, openings 728 may cover a range of approximately 1% to 75% of the surface area of trap portion 714. In some embodiments, openings 728 cover approximately 5% to 50% of the surface area of trap portion 714. In some embodiments, openings 728 cover approximately 10% to 30% of the surface area of trap portion 714.
Trap switch 820 is electrically connected to circuit board 822 and/or switch 816 to deactivate a lighting element such as UV and/or visible light LEDs 826 when trap portion 814 is removed from base portion 812, thereby preventing the user from looking directly at the UV and/or visible light from the LEDs 826. Alternatively, trap switch 820 may be electrically connected to circuit board 822 and/or switch 816 to deactivate only the UV LEDs 826 when trap portion 814 is removed from the portion 812.
In view of the many possible embodiments to which the principles of the present discussion may be applied, it should be recognized that the embodiments described herein with respect to the drawing figures are meant to be illustrative only and should not be taken as limiting the scope of the claims. For example, while angle measurements have been described as relative to the primary direction of light from the LEDs, for simplicity, the angles could also be relative to the vertical axis. In addition, for each of the embodiments, the front of the housing (or the entire housing or the entire trap portion) may be formed in a variety of decorative and/or functional shapes. For example, the housing may be shaped to resemble a flower or a plant, or a shell, or a company logo, or a sports team logo, or a football, or basketball, or soccer ball, or hockey puck, or a football helmet, or a hockey stick, or any other shape. Each of the example embodiments may include elements from other embodiments, even if not explicitly shown. Therefore, the techniques as described herein contemplate all such embodiments as may come within the scope of the following claims and equivalents thereof.
This application is a continuation of U.S. patent application Ser. No. 14/771,611 filed Aug. 31, 2015, which is a 371 filing of international application PCT/US2014/019175 filed Feb. 28, 2014, which claims the benefit of U.S. Provisional Applications No. 61/787,629, (filed Mar. 15, 2013) and U.S. Provisional Application No. 61/771,774, (filed Mar. 1, 2013), which applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2307163 | Shea | Jan 1943 | A |
2942090 | Diehl | Jun 1960 | A |
3023539 | Emerson, Jr. | Mar 1962 | A |
3346988 | Pickering | Oct 1967 | A |
3348332 | OConnell | Oct 1967 | A |
3729857 | Giordano | May 1973 | A |
3729858 | Bradshaw | May 1973 | A |
3768196 | Iannini | Oct 1973 | A |
3796001 | Jackson | Mar 1974 | A |
3823506 | Iannini | Jul 1974 | A |
3835577 | Soulos | Sep 1974 | A |
3894351 | Iannini | Jul 1975 | A |
3988292 | Klebanoff | Oct 1976 | A |
3998000 | Gilbert | Dec 1976 | A |
4086720 | Wiser | May 1978 | A |
4117624 | Phillips | Oct 1978 | A |
4121371 | Kaphengst | Oct 1978 | A |
4127961 | Phillips | Dec 1978 | A |
4141173 | Weimert | Feb 1979 | A |
4182069 | De Yoreo | Jan 1980 | A |
4212129 | Shumate | Jul 1980 | A |
D282390 | Ford et al. | Jan 1986 | S |
4654998 | Clay | Apr 1987 | A |
4686789 | Williams | Aug 1987 | A |
4700506 | Williams | Oct 1987 | A |
4709502 | Bierman | Dec 1987 | A |
4709503 | McQueen | Dec 1987 | A |
4714984 | Spector | Dec 1987 | A |
4735358 | Morita et al. | Apr 1988 | A |
4815231 | McQueen | Mar 1989 | A |
4852296 | Swanson | Aug 1989 | A |
4873786 | Franco | Oct 1989 | A |
4876822 | White | Oct 1989 | A |
4899485 | Schneidmiller | Feb 1990 | A |
4947578 | Anderson et al. | Aug 1990 | A |
4949501 | Larkin | Aug 1990 | A |
4951414 | Mewissen | Aug 1990 | A |
4953320 | Nelson | Sep 1990 | A |
5044112 | Williams | Sep 1991 | A |
D323014 | Demarest et al. | Jan 1992 | S |
5099598 | Carter | Mar 1992 | A |
D326702 | Demarest | Jun 1992 | S |
5142815 | Birdsong | Sep 1992 | A |
5184417 | Weldon | Feb 1993 | A |
5203816 | Townsend | Apr 1993 | A |
5231790 | Dryden et al. | Aug 1993 | A |
RE34402 | Williams | Oct 1993 | E |
5251397 | Exum et al. | Oct 1993 | A |
5311696 | Gauthier et al. | May 1994 | A |
5311697 | Cavanaugh et al. | May 1994 | A |
5327675 | Butler | Jul 1994 | A |
5335445 | Kuepper | Aug 1994 | A |
5352122 | Speyer et al. | Oct 1994 | A |
5353542 | Vaudry | Oct 1994 | A |
5365690 | Nelson et al. | Nov 1994 | A |
D357725 | Biasetti | Apr 1995 | S |
5425197 | Smith | Jun 1995 | A |
5477636 | Musket | Dec 1995 | A |
5505017 | Nelson et al. | Apr 1996 | A |
5513465 | Demarest et al. | May 1996 | A |
5522008 | Costello | May 1996 | A |
5528049 | Callahan | Jun 1996 | A |
5556192 | Wang | Sep 1996 | A |
5572825 | Gehret | Nov 1996 | A |
5588250 | Chiba et al. | Dec 1996 | A |
5595018 | Wilbanks | Jan 1997 | A |
5608987 | Meyer | Mar 1997 | A |
5651211 | Regan et al. | Jul 1997 | A |
5657576 | Nicosia | Aug 1997 | A |
5713153 | Cook et al. | Feb 1998 | A |
5722199 | Demarest | Mar 1998 | A |
5759561 | Angst et al. | Jun 1998 | A |
5771628 | Nobbs | Jun 1998 | A |
5799436 | Nolen et al. | Sep 1998 | A |
5886292 | Nishimoto | Mar 1999 | A |
5915940 | Gross et al. | Jun 1999 | A |
5915948 | Kunze | Jun 1999 | A |
5926614 | Steinel | Jul 1999 | A |
5950355 | Gilbert | Sep 1999 | A |
D415242 | Ohmura | Oct 1999 | S |
5974727 | Gilbert | Nov 1999 | A |
D418575 | Ohmura | Jan 2000 | S |
D422334 | Engelbrecht | Apr 2000 | S |
6050025 | Wilbanks | Apr 2000 | A |
6055766 | Nolen et al. | May 2000 | A |
6058646 | Bishoff et al. | May 2000 | A |
6108965 | Burrows et al. | Aug 2000 | A |
6134826 | Mah | Oct 2000 | A |
6138402 | Wotton | Oct 2000 | A |
6199316 | Coventry | Mar 2001 | B1 |
6203170 | Patrick et al. | Mar 2001 | B1 |
6361752 | Demarest et al. | Mar 2002 | B1 |
6375943 | Raw et al. | Apr 2002 | B1 |
D457591 | Christianson et al. | May 2002 | S |
6392549 | Wo | May 2002 | B1 |
6393759 | Brown et al. | May 2002 | B1 |
6397515 | Brown et al. | Jun 2002 | B1 |
6425202 | Lin et al. | Jul 2002 | B1 |
6478440 | Jaworski et al. | Nov 2002 | B1 |
6481152 | Gray | Nov 2002 | B1 |
D467295 | Andrews et al. | Dec 2002 | S |
6493986 | Nelson et al. | Dec 2002 | B1 |
6516559 | Simchoni et al. | Feb 2003 | B1 |
6546667 | Carter | Apr 2003 | B1 |
6560918 | Nelson | May 2003 | B2 |
6560919 | Burrows et al. | May 2003 | B2 |
6594946 | Nolan et al. | Jul 2003 | B2 |
6655078 | Winner et al. | Dec 2003 | B2 |
6718687 | Robison et al. | Apr 2004 | B2 |
6758009 | Warner | Jul 2004 | B1 |
6860061 | Nosse et al. | Mar 2005 | B2 |
6871443 | Lambert et al. | Mar 2005 | B2 |
6886292 | Studer | May 2005 | B2 |
6898896 | Mcbride et al. | May 2005 | B1 |
6910298 | Schneidmiller | Jun 2005 | B2 |
6951403 | Bennett, Jr. | Oct 2005 | B2 |
6959510 | Nelson et al. | Nov 2005 | B1 |
D521102 | Hoyes | May 2006 | S |
7036268 | Taylor | May 2006 | B2 |
7096621 | Nelson et al. | Aug 2006 | B2 |
D533930 | Keller, Jr. et al. | Dec 2006 | S |
7143542 | Taylor et al. | Dec 2006 | B2 |
7191560 | Harris | Mar 2007 | B2 |
7383660 | Greening | Jun 2008 | B2 |
7401436 | Chyun | Jul 2008 | B2 |
7412797 | Hoscox | Aug 2008 | B1 |
7503675 | Demaret et al. | Mar 2009 | B2 |
7543408 | Lin | Jun 2009 | B2 |
7591099 | Lang et al. | Sep 2009 | B2 |
7607255 | Hu | Oct 2009 | B2 |
7614180 | Dirand et al. | Nov 2009 | B2 |
D612039 | Ko et al. | Mar 2010 | S |
D612446 | Dalili | Mar 2010 | S |
D614278 | Schwartz et al. | Apr 2010 | S |
7784215 | Cohnstaedt et al. | Aug 2010 | B2 |
7788845 | Nelson et al. | Sep 2010 | B2 |
7832140 | Wilbanks | Nov 2010 | B2 |
D629500 | Koenig et al. | Dec 2010 | S |
7856752 | Eilerson | Dec 2010 | B1 |
7932482 | Norwood et al. | Apr 2011 | B2 |
7937887 | Child | May 2011 | B2 |
7988984 | Hockaday | Aug 2011 | B2 |
8016207 | Kvietok et al. | Sep 2011 | B2 |
8079175 | Calkins et al. | Dec 2011 | B2 |
8099900 | Rivera | Jan 2012 | B2 |
8104223 | Rodriguez | Jan 2012 | B1 |
8109036 | Wilbanks | Feb 2012 | B1 |
8135265 | Tollens et al. | Mar 2012 | B2 |
8210448 | Kvietok et al. | Jul 2012 | B2 |
8211419 | Siljander et al. | Jul 2012 | B2 |
8245438 | Kelders | Aug 2012 | B2 |
D669151 | Frisch | Oct 2012 | S |
8281514 | Fleming | Oct 2012 | B2 |
8291638 | Larsen | Oct 2012 | B2 |
8316578 | Faham et al. | Nov 2012 | B2 |
8341873 | Frisch | Jan 2013 | B2 |
8375625 | Larsen | Feb 2013 | B2 |
8387306 | Cink | Mar 2013 | B2 |
8402691 | Coventry | Mar 2013 | B2 |
8572890 | Lark et al. | Nov 2013 | B1 |
8701335 | Larsen | Apr 2014 | B2 |
8707614 | Larsen | Apr 2014 | B2 |
8709337 | Gruenbacher et al. | Apr 2014 | B2 |
8740110 | Gruenbacher et al. | Jun 2014 | B2 |
8793928 | Larsen | Aug 2014 | B2 |
8845118 | Formico et al. | Sep 2014 | B2 |
8852501 | Hedman | Oct 2014 | B2 |
8935877 | Gotschi | Jan 2015 | B2 |
9027276 | Willcox et al. | May 2015 | B2 |
9089121 | Diclaro | Jul 2015 | B2 |
D736341 | Lieberwirth et al. | Aug 2015 | S |
9327046 | Turner et al. | May 2016 | B2 |
9398765 | Maloney | Jul 2016 | B2 |
D780284 | Lieberwirth | Feb 2017 | S |
D780285 | Lieberwirth | Feb 2017 | S |
9853677 | Tramoni | Dec 2017 | B2 |
9949472 | Willcox et al. | Apr 2018 | B2 |
D829302 | Rocha et al. | Sep 2018 | S |
10143191 | Studer | Dec 2018 | B2 |
10188091 | Horne | Jan 2019 | B2 |
D849878 | Lieberwirth | May 2019 | S |
D850572 | Lieberwirth | Jun 2019 | S |
10327435 | Studer et al. | Jun 2019 | B2 |
10568314 | Sandford | Feb 2020 | B2 |
D890291 | Rocha et al. | Jul 2020 | S |
10798933 | Studer | Oct 2020 | B2 |
10888082 | Nagata | Jan 2021 | B2 |
10973217 | Studer | Apr 2021 | B2 |
20010042337 | Lambert et al. | Nov 2001 | A1 |
20020020105 | Sharpe | Feb 2002 | A1 |
20020032980 | Nelson et al. | Mar 2002 | A1 |
20020073611 | Greening | Jun 2002 | A1 |
20020078620 | Nelson et al. | Jun 2002 | A1 |
20020139040 | Burrows et al. | Oct 2002 | A1 |
20030000126 | Lenz | Jan 2003 | A1 |
20030033747 | Crawley et al. | Feb 2003 | A1 |
20030041506 | Coventry | Mar 2003 | A1 |
20030051391 | Lin | Mar 2003 | A1 |
20030056426 | Nelson | Mar 2003 | A1 |
20030070346 | Winner et al. | Apr 2003 | A1 |
20030079398 | Holmes | May 2003 | A1 |
20030079658 | Torrey et al. | May 2003 | A1 |
20030217503 | Robison | Nov 2003 | A1 |
20040016173 | Tully et al. | Jan 2004 | A1 |
20040025412 | Simchoni et al. | Feb 2004 | A1 |
20040128902 | Kollars | Jul 2004 | A1 |
20040139648 | Durand et al. | Jul 2004 | A1 |
20040200129 | Studer et al. | Oct 2004 | A1 |
20040218380 | Taylor et al. | Nov 2004 | A1 |
20040237381 | Durand et al. | Dec 2004 | A1 |
20040237382 | Durand et al. | Dec 2004 | A1 |
20050019361 | Durand | Jan 2005 | A1 |
20050066570 | Mosher et al. | Mar 2005 | A1 |
20050126068 | Welch | Jun 2005 | A1 |
20050126069 | Taylor et al. | Jun 2005 | A1 |
20050205916 | Conway | Sep 2005 | A1 |
20050210735 | Harmer et al. | Sep 2005 | A1 |
20050274058 | Miller | Dec 2005 | A1 |
20060080888 | Greening | Apr 2006 | A1 |
20060107583 | Wu | May 2006 | A1 |
20060150472 | Harris | Jul 2006 | A1 |
20060209530 | Schaak | Sep 2006 | A1 |
20060218851 | Weiss | Oct 2006 | A1 |
20060237439 | Norwood et al. | Oct 2006 | A1 |
20060260183 | Hockaday | Nov 2006 | A1 |
20060283075 | Feldhege et al. | Dec 2006 | A1 |
20070011940 | Chen et al. | Jan 2007 | A1 |
20070012718 | Schramm et al. | Jan 2007 | A1 |
20070039236 | Geier et al. | Feb 2007 | A1 |
20070056208 | Chen et al. | Mar 2007 | A1 |
20070068068 | Weiss | Mar 2007 | A1 |
20070107298 | Miao et al. | May 2007 | A1 |
20070124987 | Brown et al. | Jun 2007 | A1 |
20070183932 | Adair et al. | Aug 2007 | A1 |
20070194144 | Davis et al. | Aug 2007 | A1 |
20080001551 | Abbondanzio et al. | Jan 2008 | A1 |
20080134568 | Cowan et al. | Jun 2008 | A1 |
20080141578 | Chen et al. | Jun 2008 | A1 |
20080141579 | Caprotti et al. | Jun 2008 | A1 |
20080196296 | Studer et al. | Aug 2008 | A1 |
20080229652 | Willcox et al. | Sep 2008 | A1 |
20080236028 | McBride et al. | Oct 2008 | A1 |
20080257075 | Ropiak et al. | Oct 2008 | A1 |
20090025275 | Cohnstaedt et al. | Jan 2009 | A1 |
20090038207 | Lin | Feb 2009 | A1 |
20090100743 | Prater | Apr 2009 | A1 |
20090145019 | Nolen et al. | Jun 2009 | A1 |
20090223115 | Lang et al. | Sep 2009 | A1 |
20090288333 | Johnston et al. | Nov 2009 | A1 |
20100024278 | Somchoni-Barak et al. | Feb 2010 | A1 |
20100071254 | Calkins et al. | Mar 2010 | A1 |
20100181319 | Deflorian et al. | Jul 2010 | A1 |
20100229459 | Simchoni-Barak et al. | Sep 2010 | A1 |
20100236133 | Frisch | Sep 2010 | A1 |
20100026360 | Engelbrecht et al. | Oct 2010 | A1 |
20100263260 | Engelbrecht | Oct 2010 | A1 |
20100287816 | Abelbeck | Nov 2010 | A1 |
20110030267 | Nolen et al. | Feb 2011 | A1 |
20110041384 | Willcox et al. | Feb 2011 | A1 |
20110041385 | Faham et al. | Feb 2011 | A1 |
20110078942 | Larsen | Apr 2011 | A1 |
20110138678 | Smith | Jun 2011 | A1 |
20110214340 | Klein | Sep 2011 | A1 |
20120124890 | Hainze | May 2012 | A1 |
20120167450 | Frisch | Jul 2012 | A1 |
20120186136 | Schneidmiller | Jul 2012 | A1 |
20120186137 | Schneidmiller et al. | Jul 2012 | A1 |
20120204475 | Schneidmiller et al. | Aug 2012 | A1 |
20120246998 | Vasudeva et al. | Oct 2012 | A1 |
20120266519 | Wright | Oct 2012 | A1 |
20120294828 | Zhang et al. | Nov 2012 | A1 |
20130097918 | Coventry | Apr 2013 | A1 |
20130145680 | Soltis et al. | Jun 2013 | A1 |
20130152451 | Larsen | Jun 2013 | A1 |
20130180161 | Vasudeva et al. | Jul 2013 | A1 |
20130212926 | Mcgavin | Aug 2013 | A1 |
20130312314 | Greening et al. | Aug 2013 | A1 |
20130318854 | Zhang et al. | Dec 2013 | A1 |
20140013651 | Moss | Jan 2014 | A1 |
20140026467 | Kaye | Jan 2014 | A1 |
20140075824 | Roulston et al. | Mar 2014 | A1 |
20140134371 | Hoffmann et al. | May 2014 | A1 |
20140137462 | Rocha | May 2014 | A1 |
20140165452 | Rocha | Jun 2014 | A1 |
20150201603 | Willcox et al. | Jul 2015 | A1 |
20160000060 | Sandford | Jan 2016 | A1 |
20160000061 | Boyd | Jan 2016 | A1 |
20160262367 | Sandford | Sep 2016 | A1 |
20160345569 | Freudenberg et al. | Dec 2016 | A1 |
20170006847 | Mcgowan et al. | Jan 2017 | A1 |
20170035039 | Sandford | Feb 2017 | A1 |
20170295772 | Studer | Oct 2017 | A1 |
20170303523 | Sandford | Oct 2017 | A1 |
20180184635 | Studer et al. | Jul 2018 | A1 |
20180199562 | Willcox et al. | Jul 2018 | A1 |
20180310543 | Holmes | Nov 2018 | A1 |
20180368385 | Gilbert, II | Dec 2018 | A1 |
20190008133 | Llorente Alonso et al. | Jan 2019 | A1 |
20190045771 | Rocha et al. | Feb 2019 | A1 |
20190133105 | Leach et al. | May 2019 | A1 |
20190141978 | Smith | May 2019 | A1 |
20190174736 | Smith | Jun 2019 | A1 |
20190261616 | Studer | Aug 2019 | A1 |
20190350184 | Chang et al. | Nov 2019 | A1 |
20190357516 | Chang et al. | Nov 2019 | A1 |
20200113165 | Sandford et al. | Apr 2020 | A1 |
20200138004 | Sandford | May 2020 | A1 |
20200138006 | Sandford et al. | May 2020 | A1 |
20200146273 | Chang et al. | May 2020 | A1 |
20206138005 | Sandford et al. | May 2020 | |
20200214279 | Tsai et al. | Jul 2020 | A1 |
20200214280 | Sandford et al. | Jul 2020 | A1 |
20200245606 | Rocha et al. | Aug 2020 | A1 |
20210105991 | Furner | Apr 2021 | A1 |
Number | Date | Country |
---|---|---|
169968 | Dec 1951 | AT |
513518 | May 2014 | AT |
2009208773 | Sep 2014 | AU |
PI 9400882 | Oct 1995 | BR |
2447854 | Nov 2001 | CA |
2533004 | Sep 2013 | CA |
255022 | Jun 1948 | CH |
2086052 | Oct 1991 | CN |
2093515 | Jan 1992 | CN |
2098796 | Jan 1992 | CN |
2144926 | Nov 1993 | CN |
2267648 | Nov 1997 | CN |
2281653 | May 1998 | CN |
2315779 | Apr 1999 | CN |
2357509 | Jan 2000 | CN |
2410872 | Dec 2000 | CN |
2427068 | Apr 2001 | CN |
2439782 | Jul 2001 | CN |
2449483 | Sep 2001 | CN |
2452297 | Oct 2001 | CN |
1325264 | Dec 2001 | CN |
1395827 | Feb 2003 | CN |
2596758 | Jan 2004 | CN |
1111351 | Jun 2006 | CN |
2790173 | Jun 2006 | CN |
201067044 | Jun 2008 | CN |
201093261 | Jul 2008 | CN |
201107985 | Sep 2008 | CN |
201107993 | Sep 2008 | CN |
201163944 | Dec 2008 | CN |
201234518 | May 2009 | CN |
101743943 | Jun 2010 | CN |
201509526 | Jun 2010 | CN |
201577439 | Sep 2010 | CN |
201813749 | May 2011 | CN |
102246798 | Nov 2011 | CN |
202077503 | Dec 2011 | CN |
202112193 | Jan 2012 | CN |
202285958 | Jul 2012 | CN |
202551965 | Nov 2012 | CN |
202588119 | Dec 2012 | CN |
103168765 | Jun 2013 | CN |
203072705 | Jul 2013 | CN |
203505369 | Apr 2014 | CN |
203884506 | Oct 2014 | CN |
203952202 | Nov 2014 | CN |
204393146 | Jun 2015 | CN |
702467 | Feb 1941 | DE |
3225412 | Jan 1984 | DE |
8802934 | May 1988 | DE |
3840440 | Oct 1989 | DE |
29816743 | Jan 1999 | DE |
10236531 | Feb 2004 | DE |
WO9012501 | Nov 1990 | EA |
EP 0947134 | Oct 1999 | EP |
0976323 | Feb 2000 | EP |
1161865 | Dec 2001 | EP |
1213958 | Nov 2003 | EP |
1827092 | Dec 2010 | EP |
2807921 | Dec 2014 | EP |
1937908 81 | Jun 2016 | EP |
385129 | May 1908 | FR |
422209 | Mar 1911 | FR |
25121 | Dec 1922 | FR |
40788 | Aug 1932 | FR |
751672 | Sep 1933 | FR |
840852 | May 1939 | FR |
853213 | Mar 1940 | FR |
974742 | Feb 1951 | FR |
1098139 | Jul 1955 | FR |
1396573 | Apr 1965 | FR |
1425806 | Jan 1966 | FR |
2900793 | Mar 2011 | FR |
1297 | Aug 1912 | GB |
380380 | Sep 1932 | GB |
398636 | Sep 1933 | GB |
2171882 | Sep 1986 | GB |
2373705 | Oct 2002 | GB |
2381181 | Apr 2003 | GB |
2420957 | Jun 2006 | GB |
2456585 | Jul 2009 | GB |
2457103 | Aug 2015 | GB |
2545631 | Jun 2017 | GB |
2587831 | Apr 2021 | GB |
2011CH01965 | Nov 1965 | IN |
201482 | Feb 2007 | IN |
197003 | Jan 2008 | IN |
173469 | Sep 2012 | IN |
55-170987 | May 1979 | JP |
S6455137 | Mar 1989 | JP |
H0543832 | Feb 1993 | JP |
H06245676 | Sep 1994 | JP |
H077457 | Jan 1995 | JP |
H7-7457 | Feb 1995 | JP |
H07123894 | May 1995 | JP |
08047361 | Feb 1996 | JP |
H09506767 | Jul 1997 | JP |
H10229801 | Sep 1998 | JP |
11146751 | Jun 1999 | JP |
11-289951 | Oct 1999 | JP |
H11332446 | Dec 1999 | JP |
2000253793 | Sep 2000 | JP |
2000287600 | Oct 2000 | JP |
2000270749 | Oct 2000 | JP |
2000333582 | Dec 2000 | JP |
2001269105 | Oct 2001 | JP |
2001299179 | Oct 2001 | JP |
2002084958 | Mar 2002 | JP |
2002125560 | May 2002 | JP |
2002125561 | May 2002 | JP |
2002209496 | Jul 2002 | JP |
2002253101 | Sep 2002 | JP |
2003099744 | Jan 2003 | JP |
2003199471 | Jul 2003 | JP |
2004159626 | Jun 2004 | JP |
2004305162 | Nov 2004 | JP |
2005046100 | Feb 2005 | JP |
2005065630 | Mar 2005 | JP |
2005095149 | Apr 2005 | JP |
2005245312 | Sep 2005 | JP |
03746430 | Feb 2006 | JP |
2006149252 | Jun 2006 | JP |
2007074908 | Mar 2007 | JP |
2008154500 | Jul 2008 | JP |
04166358 | Oct 2008 | JP |
4549722 | Sep 2010 | JP |
2012045004 | Mar 2012 | JP |
2012115182 | Jun 2012 | JP |
2012239443 | Dec 2012 | JP |
05149183 | Feb 2013 | JP |
2014195466 | Oct 2014 | JP |
2008100721 | Nov 2008 | KR |
20100000899 | Jan 2010 | KR |
20100033336 | Mar 2010 | KR |
20100033336 | Mar 2010 | KR |
1020110050769 | Dec 2012 | KR |
20130049475 | May 2013 | KR |
20150112755 | Oct 2015 | KR |
2360413 | Jul 2009 | RU |
WO-7900574 | Aug 1979 | WO |
8200567 | Mar 1982 | WO |
WO 9217060 | Oct 1992 | WO |
9615664 | May 1996 | WO |
WO 9934671 | Jul 1999 | WO |
WO 00003588 | Jan 2000 | WO |
WO200122813 | Apr 2001 | WO |
WO0168154 | Sep 2001 | WO |
WO0212127 | Feb 2002 | WO |
0220224 | Mar 2002 | WO |
WO 01089295 | Sep 2002 | WO |
WO 03032722 | Apr 2003 | WO |
WO 2004068944 | Aug 2004 | WO |
WO2004071935 | Aug 2004 | WO |
WO2005053389 | Jun 2005 | WO |
2005082139 | Sep 2005 | WO |
WO 2008096352 | Aug 2008 | WO |
WO-2008096352 | Aug 2008 | WO |
WO 2009040528 | Apr 2009 | WO |
WO 2009075839 | Jun 2009 | WO |
2011016361 | Feb 2011 | WO |
WO2011094219 | Aug 2011 | WO |
WO 2014134371 | Sep 2014 | WO |
WO 2015081033 | Jun 2015 | WO |
WO 2015164849 | Oct 2015 | WO |
2018025426 | Feb 2018 | WO |
2019112831 | Jun 2019 | WO |
2019112833 | Jun 2019 | WO |
2020079414 | Apr 2020 | WO |
2020136173 | Jul 2020 | WO |
2020163364 | Aug 2020 | WO |
Entry |
---|
Plug-in Stiky Fly Trap, Olson Products Inc., document created on Jan. 6, 2012; Available web site: http://www.olsonproducts.com/three_3.pdf; downloaded on Oct. 14, 2017. (Year: 2012). |
Translation of KR 10-2010-0033336 (Year: 2010). |
The Courier-Journal, Louisville Ky,.newspaper advertisement, Jul. 16, 1997, p. 231. |
AOSION International (Shenzhen) Co. Ltd. website: http://aosion.en.alibaba.com/product/60164539799-802805511/Aosion_electronic_ultrasonic_pest_mosquito_repelle_killer.html?spm=a2700.8304367.prsea43447.162.55cc9aecFS3w2g. |
Plug-in Stiky Fly Trap, Olson Products Inc., PO Box 1043, Medina OH 44258, www.olsonproducts.com. |
Enforcer® Over Nite Flea and Insect Trap, website: http://www.enforcer.com/products/flea-tick/over-nite-flea-insect-trap/. |
On-line article in the Atlanta Journal Constitution, Jul. 9, 1993 by Leigh Ann Miller describing a new product, the Enforcer® Over Nite Flea and Insect Trap, 1 page. |
Fly Web USA, Silent fly control, website http://flywebua.com/. |
Supplementary European Search Report and Opinion, dated Oct. 24, 2016, 8 pgs., Application No. EP 14757204. |
International Search Report and Written Opinion dated Jun. 17, 2014, Appl. No. PCT/US2014/019175, which is the priority to case No. 14215. |
International Search Report and Written Opinion dated Feb. 6, 2015, Appl. No. PCT/US2014/067196, case No. 14216, 14 pgs. |
International Search Report and Written Opinion dated Feb. 6, 2015, Appl. No. PCT/US2015/027684, case No. 14217, 15 pgs. |
International Search Report and Written Opinion dated Feb. 6, 2015, Appl. No. PCT/US2016/013007, case No. 14218, 19 pgs. |
All Office Actions; U.S. Appl. No. 15/163,748, filed May 25, 2016. |
All Office Actions; U.S. Appl. No. 15/333,209, filed Oct. 25, 2016. |
All Office Actions; U.S. Appl. No. 15/646,128, filed Jul. 11, 2017. |
All Office Actions; U.S. Appl. No. 16/716,534, filed Dec. 17, 2019. |
All Office Actions; U.S. Appl. No. 16/716,545, filed Dec. 17, 2019. |
All Office Actions; U.S. Appl. No. 16/738,161, filed Jan. 9, 2020. |
All Office Actions; U.S. Appl. No. 16/738,199, filed Jan. 9, 2020. |
All Office Actions; U.S. Appl. No. 16/823,427, filed Mar. 19, 2020. |
Extended European Search Report and Search Opinion; Application No. 18182519.1; dated Nov. 28, 2018; 6 pages. |
U.S. Appl. No. 29/685,836, filed Apr. 1, 2019, to first inventor et al. |
U.S. Appl. No. 29/685,834, filed Apr. 1, 2019, to first inventor et al. |
Number | Date | Country | |
---|---|---|---|
20180235202 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
61787629 | Mar 2013 | US | |
61771774 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14771611 | US | |
Child | 15960648 | US |