Humans grow corn for food and energy applications. Insects eat and damage corn plants and thereby undermine these human efforts. Agricultural insect pests causing major destruction of corn are the fall armyworm (FAW, Spodoptera frugiperda) and European corn borer (ECB, Ostrinia nubilalis).
Current in-plant transgenic control of these pests is achieved through plant expression of a crystal (Cry) delta endotoxin gene coding for the Cry1Fa protein from Bacillus thuringiensis. Cry1Fa is the protein toxin currently in the Herculex™ brand of Dow AgroSciences transgenic corn seeds (Herculex, Herculex-Extra, and Herculex-RW) that are resistant to FAW and ECB insect pests. This protein works by binding to specific receptor(s) located in the midgut of insects, and forms pores within the gut cells. The formation of these pores prevents insects from regulating osmotic balance which results in their death.
However, some are concerned that insects might be able to develop resistance to the action of Cry1Fa through genetic alterations of the receptors within their gut that bind Cry 1Fa. Insects that produce receptors with a reduced ability to bind Cry1Fa can be resistant to the activity of Cry1Fa, and thus survive on plants that express this protein.
With a single Cry toxin continuously present in the plant during growth conditions, there is concern that insects could develop resistance to the activity of this protein through genetic alterations of the receptor that binds Cry1Fa toxin in the insect gut. Reductions in toxin binding due to these alterations in the receptor would lead to reduced toxicity of the Cry1Fa possibly leading to eventual decreased effectiveness of the protein when expressed in a crop.
The subject invention relates in part to stacking certain Cry genes along with Cry1Fa to result in products that are more durable and less prone towards insects developing resistance towards the activity of any of the toxins (such as Cry1Fa) by itself. Embodiments of the Cry1F stacking partners include Cry2Aa and/or Cry1I—for targeting fall armyworm (FAW; Spodoptera frugiperda), and Cry1E—for targeting European cornborer (ECB; Ostrinia nubilalis).
The subject invention includes the use of at least one of the stacking partner toxins with Cry1Fa toxins as a pair. Some preferred pairs for targeting FAW (fall armyworm; Spodoptera frugiperda) are a Cry1Fa protein plus a Cry1Ea protein. Some preferred pairs for targeting ECB (European cornborer; Ostrinia nubilalis) comprise a Cry1Fa protein plus a Cry1I and/or a Cry2Aa protein.
The subject invention also relates in part to triple stacks or “pyramids” of three (or more) toxins, with Cry1Fa and a stacking partner toxin being the base pair. One preferred pyramid provides two modes of action against two pests—the FAW and the ECB. This type of “2 MOA” pyramid includes: Cry1Fa plus Cry2Aa plus Cry lAb (a preferred embodiment for controlling ECB), and Cry1Fa plus Cry1Ea (a preferred embodiment for controlling FAW). By “separate modes of action” it is meant that the proteins do not cause cross-resistance with each other.
In some preferred pyramid embodiments, the selected toxins provide three separate modes of action (active ingredients that do not result in cross-resistance) against ECB. Preferred pyramid combinations are Cry1Fa plus a second IRM toxin plus a third IRM toxin. Examples of such are as follows.
ECB pyramids of the subject invention include a Cry1Fa toxin plus a Cry2Aa toxin as the second IRM toxin and a third IRM toxin selected from the group consisting of Cry1Be, Cry1Ab, DIG-3, and Cry1I toxins.
ECB pyramids of the subject invention include a Cry1Fa toxin plus a Cry1I toxin as the second IRM toxin and a third IRM toxin selected from the group consisting of Cry1Ab, Cry1Be, DIG-3, and Cry2Aa toxins.
These various toxins (and others) are listed in the attached Appendix A. Those GENBANK numbers can also be used to obtain the sequences for any of the genes and proteins disclosed or mentioned herein.
Patents can also be used to obtain relevant sequences. For example, U.S. Pat. No. 5,188,960 and U.S. Pat. No. 5,827,514 describe Cry1Fa core toxin containing proteins suitable for use in carrying out the present invention. U.S. Pat. No. 6,218,188 describes plant-optimized DNA sequences encoding Cry1Fa core toxin-containing proteins that are suitable for use in the present invention. US 2010-00269223 relates to DIG-3 proteins.
The subject invention also relates generally to the use of three insecticidal proteins (Cry proteins in some preferred embodiments) that do not compete with each other/do not result in cross-resistance yet are active against a single target pest.
Plants (and acreage planted with such plants) that produce any of the subject pairs, or three (or more), toxins are included within the scope of the subject invention. Additional toxins/genes can also be added, but these particular triple stacks would, according to the subject invention, advantageously and surprisingly provide three modes of action (non-cross-resistant activity) against FAW and/or ECB. This can help to reduce or eliminate the requirement for refuge acreage (e.g., less than 40%, less than 20%, less than 10%, less than 5%, or even 0% refuge). A field thus planted of over 10 acres is thus included within the subject invention.
The subject polynucleotide(s) are preferably in a genetic construct under control of (operably linked to/comprising) a non-Bacillus-thuringiensis promoter. The subject polynucleotides can comprise plant codon usage for enhanced expression in a plant.
To counter act the ability of insects to develop resistance to Cry1Fa, we identified Cry toxins that non-competitively (with Cry1Fa) bind to FAW and/or ECB gut cell preparations. Cry1Fa does not to displace binding of Cry proteins identified herein in the insect gut of FAW and ECB larvae—Cry proteins such as Cry2Aa. The ability of these Cry toxins to be toxic to FAW and/or ECB larvae, yet not fully interact with the same sites as Cry1Fa, shows that their toxicity will not be affected by insects having developed genetic alterations of their Cry1Fa receptor as a mechanism to become resistant to the toxicity of Cry1Fa.
Thus insects having developed resistance to Cry1Fa through a reduction in the ability of its gut receptors to bind Cry1Fa would still be susceptible to the toxicity of Cry2Aa proteins, for example, which bind alternative sites. We have obtained biochemical data that supports this. Having combinations of these proteins expressed in transgenic plants thus provides a useful and valuable mechanism to reduce the probability for the development of insect resistance in the field and thus lead towards a reduction in the requirement for refugia. Other Cry proteins have been studied for their activity against other major insect pests, both sensitive, and those resistant to Cry1Fa (rFAW and rECB). As shown in Table 1, Cry1I and Cry2Aa are active against both resistant and susceptible ECB larvae. Cry1Ea is active against both resistant and susceptible FAW. Binding data for these Cry toxins against these insect pests can be obtained. In any case, the data herein described below shows the toxins interacting at separate target site(s) within the insect gut compared to Cry1Fa and thus would make excellent stacking partners.
Stacking Cry1Fa expressing crops with one or more additional Cry genes, such as those described herein result in an effective management strategy to prevent the ability of insects to develop tolerance to the activity of transgenic plants expressing these protein toxins. Since we show that these Cry proteins interact at different and/or overlapping sites compared to Cry1Fa, if resistance were to occur through alterations in the affinity of the insect gut receptors that bind to the Cry toxins, the alteration would have to occur in at least two different receptors simultaneously to allow the insects to survive on plants expressing the multiple proteins. The probability of this occurring is extremely remote, thus increasing the durability of the transgenic product to ward of insects being able to develop tolerance to the proteins.
We radio-iodinated trypsin truncated forms of the Cry protein toxins and used radioreceptor binding assay techniques to measure their binding interaction with putative receptor proteins located within the insect gut membranes. The gut membranes were prepared as brush border membrane vesicles (BBMV) by the method of Wolfersberger. Iodination of the toxins were conducted using either iodo beads or iodogen treated tubes from Pierce Chemicals. Specific activity of the radiolabeled toxin was approximately 1-4 μCi/μg protein. Binding studies were carried out essentially by the procedures of Liang.
The data presented herein shows the toxins interacting at separate target site within the insect gut compared to Cry1Fa and thus would make excellent stacking partners.
The subject invention can be used with a variety of plants. Examples include corn (maize), soybeans, and cotton.
Genes and toxins useful according to the subject invention include not only the full length sequences disclosed but also fragments of these sequences, variants, mutants, and fusion proteins which retain the characteristic pesticidal activity of the toxins specifically exemplified herein. As used herein, the terms “variants” or “variations” of genes refer to nucleotide sequences which encode the same toxins or which encode equivalent toxins having pesticidal activity. As used herein, the term “equivalent toxins” refers to toxins having the same or essentially the same biological activity against the target pests as the claimed toxins.
As used therein, the boundaries represent approximately 95% (e.g. Cry1Fa's), 78% (e.g. Cry1F's), and 45% (Cry1's) sequence identity, per “Revision of the Nomenclature for the Bacillus thuringiensis Pesticidal Crystal Proteins,” N. Crickmore, D. R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum, and D. H. Dean. Microbiology and Molecular Biology Reviews (1998) Vol 62: 807-813. These cut offs can also be applied to the core proteins only (for Cry1F and Cry1Fa core proteins, for example). See related Crickmore et al. website at lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/.
Fragments and equivalents which retain the pesticidal activity of the exemplified toxins would be within the scope of the subject invention. Also, because of the redundancy of the genetic code, a variety of different DNA sequences can encode the amino acid sequences disclosed herein. It is well within the skill of a person trained in the art to create these alternative DNA sequences encoding the same, or essentially the same, toxins. These variant DNA sequences are within the scope of the subject invention. As used herein, reference to “essentially the same” sequence refers to sequences which have amino acid substitutions, deletions, additions, or insertions which do not materially affect pesticidal activity. Fragments of genes encoding proteins that retain pesticidal activity are also included in this definition.
A further method for identifying the genes encoding the toxins and gene portions useful according to the subject invention is through the use of oligonucleotide probes. These probes are detectable nucleotide sequences. These sequences may be detectable by virtue of an appropriate label or may be made inherently fluorescent as described in International Application No. WO93/16094. As is well known in the art, if the probe molecule and nucleic acid sample hybridize by forming a strong bond between the two molecules, it can be reasonably assumed that the probe and sample have substantial homology. Preferably, hybridization is conducted under stringent conditions by techniques well-known in the art, as described, for example, in Keller, G. H., M. M. Manak (1987) DNA Probes, Stockton Press, New York, N.Y., pp. 169-170. Some examples of salt concentrations and temperature combinations are as follows (in order of increasing stringency): 2×SSPE or SSC at room temperature; 1×SSPE or SSC at 42° C.; 0.1×SSPE or SSC at 42° C.; 0.1×SSPE or SSC at 65° C. Detection of the probe provides a means for determining in a known manner whether hybridization has occurred. Such a probe analysis provides a rapid method for identifying toxin-encoding genes of the subject invention. The nucleotide segments which are used as probes according to the invention can be synthesized using a DNA synthesizer and standard procedures. These nucleotide sequences can also be used as PCR primers to amplify genes of the subject invention.
Certain proteins of the subject invention have been specifically exemplified herein. Since these proteins are merely exemplary of the proteins of the subject invention, it should be readily apparent that the subject invention comprises variant or equivalent proteins (and nucleotide sequences coding for equivalent proteins) having the same or similar pesticidal activity of the exemplified protein. Equivalent proteins will have amino acid homology with an exemplified protein. This amino acid homology will typically be greater than 75%, preferably be greater than 90%, and most preferably be greater than 95%. The amino acid homology will be highest in critical regions of the protein which account for biological activity or are involved in the determination of three-dimensional configuration which ultimately is responsible for the biological activity. In this regard, certain amino acid substitutions are acceptable and can be expected if these substitutions are in regions which are not critical to activity or are conservative amino acid substitutions which do not affect the three-dimensional configuration of the molecule. For example, amino acids may be placed in the following classes: non-polar, uncharged polar, basic, and acidic. Conservative substitutions whereby an amino acid of one class is replaced with another amino acid of the same type fall within the scope of the subject invention so long as the substitution does not materially alter the biological activity of the compound. Following is a listing of examples of amino acids belonging to each class. In some instances, non-conservative substitutions can also be made. The critical factor is that these substitutions must not significantly detract from the biological activity of the protein.
Insect Resistance Management (IRM) Strategies. Roush et al., for example, outlines two-toxin strategies, also called “pyramiding” or “stacking,” for management of insecticidal transgenic crops. (The Royal Society. Phil. Trans. R. Soc. Lond. B. (1998) 353, 1777-1786).
On their website, the United States Environmental Protection Agency (epa.gov/oppbppd1/biopesticides/pips/bt_corn_refuge—2006.htm) publishes the following requirements for providing non-transgenic (i.e., non-B.t.) refuges (a section of non-Bt crops/corn) for use with transgenic crops producing a single Bt protein active against target pests.
In addition, the National Corn Growers Association, on their website (ncga.com/insect-resistance-management-fact-sheet-bt-corn) also provides similar guidance regarding the refuge requirements. For example:
As stated by Roush et al. (on pages 1780 and 1784 right column, for example), stacking or pyramiding of two different proteins each effective against the target pests and with little or no cross-resistance can allow for use of a smaller refuge. Roush suggests that for a successful stack, a refuge size of less than 10% refuge, can provide comparable resistance management to about 50% refuge for a single (non-pyramided) trait. For currently available pyramided Bt corn products, the U.S. Environmental Protection Agency requires significantly less (generally 5%) structured refuge of non-Bt corn be planted than for single trait products (generally 20%).
There are various ways of providing the IRM effects of a refuge, including various geometric planting patterns in the fields (as mentioned above) and in-bag seed mixtures, as discussed further by Roush et al. (supra), and U.S. Pat. No. 6,551,962.
The above percentages, or similar refuge ratios, can be used for the subject double or triple stacks or pyramids. For triple stacks with three sites of action against a single target pest, a goal would be zero refuge (or less than 5% refuge, for example). This is particularly true for commercial acreage—of over 10 acres for example.
All patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety to the extent they are not inconsistent with the explicit teachings of this specification.
Unless specifically indicated or implied, the terms “a”, “an”, and “the” signify “at least one” as used herein.
Following are examples that illustrate procedures for practicing the invention. These examples should not be construed as limiting. All percentages are by weight and all solvent mixture proportions are by volume unless otherwise noted. All temperatures are in degrees Celsius.
The subject Cry proteins were studied for their activity against other major insect pests, both sensitive, and those resistant to Cry1Fa (rFAW and rECB). As shown in Table 1, Cry1I and Cry2Aa are active against both resistant and susceptible ECB larvae. Cry1Ea is active against both resistant and susceptible FAW. (For a general discussion of this pest, see e.g. Tabashnik, PNAS (2008), vol. 105 no. 49, 19029-19030.)
List of delta-endotoxins—from Crickmore et al. website (cited in application)
Accession Number is to NCBI entry (if available)
P. lentimorbus
semadara
P. popilliae
popilliae
P. lentimorbus
semadara
P. lentimorbus
semadara
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US10/60812 | 12/16/2010 | WO | 00 | 8/30/2012 |
Number | Date | Country | |
---|---|---|---|
61284278 | Dec 2009 | US |