The present invention relates to an insert for use in a food preparation machine, such as a portioned capsule machine for preparing liquid food, more particularly, infant milk or gums. The invention further relates to a tool, container, food-containing capsule or capsule-holder comprising such insert.
An intelligently designed machine may greatly facilitate the preparation of liquid food such as infant milk in a safe environment and may considerably reduce the preparation time. A solution consists in providing a capsule containing ingredients; such capsule being designed for fitting into a dedicated machine for mixing liquid with the ingredients and delivering the liquid food from the capsule into a receptacle such as a baby bottle and the like.
WO2010/128028 relates to a capsule and device for preparing a nutritional product; wherein the device comprises a fluid interface with a liquid injector and a gas injector for injecting, respectively, liquid then gas into the capsule; wherein the gas injector is spatially distant from the liquid injector or liquid inlet in the capsule. Gas, in particular compressed air, is injected in the capsule to empty the capsule from residual liquid and/or food. The separation of the gas injector from the liquid injector enables to filter the liquid for removing contaminants such as microorganisms or solid particles. The capsule may thus be designed with a filter unit comprising a liquid inlet and a gas inlet both communicating with an outlet nozzle.
A problem may be that liquid may accidentally be injected through the gas inlet. In such case, the liquid may spread over the fluid interface and may even enter into the gas injector. On the short run, it creates liquid spillage in and out the machine and, on the long run, it may also create hygiene issues as well as may damage the machine.
In particular, rinsing and/or descaling operations of the machine may create liquid spillage and/or hygiene issues.
Also, if the fluid injection side of the capsule or container is damaged, such as, the gas inlet becoming opened, liquid can flow through the gas inlet and create spillage and/or hygienic issues.
This problem may thereby occur in different configurations of the use of the machine such as when rinsing or descaling the machine or when preparing liquid food such as from a capsule or another container filled with food ingredients.
It is an objective of the present invention to remedy this problem with a solution that ensures that, in all configurations, liquid cannot enter in the gas injector and/or accidentally spread all over the fluid interface.
The invention is defined in the appended claims.
More particularly, the invention relates to an insert for use in a food preparation machine, the insert being adapted for being engaged by a fluid supplying interface of the machine; such interface comprising a liquid injector and a gas injector; both being transversally distant one another along the interface;
said insert comprising a fluid interface side and a fluid supply side;
the fluid interface side comprising a liquid inlet designed for fitting with the liquid injector,
the fluid supply side comprising a liquid outlet transversally distant from the liquid inlet and,
a liquid passage providing communication from the liquid inlet to the liquid outlet,
wherein the insert comprises a gas injector area between the liquid inlet and the liquid outlet,
wherein the insert comprises a liquid separation structure arranged for closing the liquid communication from the liquid guiding passage to the gas injector area.
In a mode, the liquid separating structure delimits gas flow means, in particular, a gas passage between a gas inlet at the fluid interface side and a gas outlet at the fluid supply side, such gas outlet being fluidically distinct from the liquid outlet. Therefore, liquid can be delivered from the machine through the insert without interacting through the insert with the gas flow means and the gas injector.
The liquid passage may comprise at least one deviation channel axially circumventing the gas injector area, such channel being delimited at least partially by said separation structure. Furthermore, the liquid separation structure is geometrically arranged for being non-perforable by the gas injector. In particular, the liquid separation structure extends both axially and transversally and is sufficiently distant from the gas injector, e.g., a gas needle, when the insert is in engagement with the fluid supply interface of the machine such that the leak-tight integrity of the separation structure is not affected, e.g., not perforated.
In a more precise embodiment, the passage comprises two deviation channels for axially circumventing the gas injection area on each side of the separation structure.
In a possible construction, the passage or channel(s) is/are at least partially open towards the fluid interface side. Such construction presents the advantage to require fewer pieces for the insert and the insert can be more easily produced by moulding such as by plastic injection or thermoforming.
The separation structure further extends transversally by a closing wall in the gas injector area. The closing wall can be arranged transversally to prevent gas flow from the fluid supply side to the fluid delivery side.
The insert is further designed such that it comprises, at the fluid interface side, at least one circumferentially closed sealing edge or surface surrounding altogether the liquid inlet, liquid outlet and liquid passage there between.
The closed sealing surface can be formed by at least one circumferentially closed sealing edge of the insert at the fluid interface side.
Furthermore, the liquid outlet preferably forms at least one protruding nozzle arranged for providing a liquid jet. In particular, the nozzle is arranged for providing a liquid jet in a direction normal or slightly inclined to the plane of extension of the fluid supply side. The jet is preferably focused within a cone angle of less than 20 degrees, most preferably less than 10 degrees.
The insert can be made of a single piece or, alternatively, of several assembled pieces. The pieces may be formed of liquid impervious, relatively rigid materials such as plastic or bio-plastic or a composite or laminate of polymer and cellulose or, polymer and aluminium. For instance, the materials are essentially made of food-grade polymer chosen amongst the group of PP, PA, PE, PA/PP, PVC, PS, PEEK, PLA, starch-based material and combinations thereof.
In a first mode, the invention relates to a rinsing and/or descaling tool comprising or consisting of an insert of the invention. For this, the insert is dimensioned to fit into the capsule holder of the machine in such a manner that its fluid interface side is engaged by the fluid supplying interface of the machine during rinsing and/or descaling operation.
In a second mode, the invention further relates to a container comprising an insert of the invention. The insert may be connected or connectable to a container designed for holding food ingredients. The container may be re-usable. For example, it can be a container for receiving food ingredients from a bulk package (e.g., a can). The container may be designed for receiving a capsule and/or a flexible pod or sachet containing food ingredients.
In a third mode, the invention relates to a single-use capsule containing a predetermined dose of food ingredients for preparing a food liquid wherein it comprises an insert of the invention. The insert may be a part of the single-use capsule. For instance, the insert may form the lid of the capsule comprising a cup-shaped body containing food ingredients. The insert may be sealed to the body such as by ultrasonic or heat welding. The lid may be further closed by a sealing membrane such as a perforable or peelable membrane. In another alternative the capsule is wrapped in a secondary package which is designed to protect the ingredients against humidity ingress and/or oxidation and/or light.
In a fourth mode, the invention relates to a capsule-holder comprising an insert of the invention. The capsule holder is originally designed for receiving a capsule containing food ingredients. The insert may be removable from the capsule holder or permanently attached, e.g., be an integral part of it.
The invention further relates to a filter unit comprising or consisting of an insert according to the invention. The filter can be formed as a casing containing a micro-porous filter membrane or another filter medium anywhere placed between the liquid inlet and liquid outlet.
The filter unit may be used in conjunction with a capsule or separately. It may for instance be a unit placed above an open container filled with food ingredients thereby making a filter interface between the machine and container. The filter may contain a filter membrane as described in WO2010/128028 or any other filtering media.
In a mode, the invention relates to a rinsing and/or descaling device comprising or consisting of an insert of the invention.
The term “food” refers to food, beverages and/or other nutritional products for human consumption.
The term “liquid food” means any food composition having a generally liquid texture but not necessarily fully liquid (e.g. possibly containing solid particles in suspension in the liquid).
The “food ingredients” means a liquid concentrate, powder, agglomerates, granules, crystals, a gel, leaves or leaf fragments, and combinations thereof for preparing the liquid food in combination with liquid such as water. In particular, the food ingredients cover infant formula, growing-up formula, gums, adult nutrition formula, dairy based ingredients, a culinary composition or any suitable food including proteins, lipids, carbohydrates, micronutrients, optionally fibers and combinations thereof.
The invention further relates to the use of an insert in a food preparation machine as described in the present application. The invention further relates to the combination of an insert and a food preparation machine.
a represents a single-use capsule with an insert of the invention;
b represents a capsule holder with an insert and a single-use capsule positioned in the capsule holder;
c represents a container for receiving food ingredients with an insert of the invention.
A food preparation machine 1 is illustrated on
The housing further comprises a fluid supplying interface 5. The interface may comprise a plate 6 made of or covered partially or fully by rubber or silicone material. The fluid supplying interface 5 comprises a liquid injector 7 and a gas injector 8. The liquid injector is required for feeding an appropriate amount of liquid in the capsule or container so that liquid can mix with the food ingredients for preparing a liquid food portion such as a portion of infant milk. The liquid injector may comprise a hollow needle protruding outwardly from the plate to be able to perforate, if necessary, a sealing foil of the capsule or container. The liquid injector is thus supplied with liquid by a liquid reservoir 10. Liquid is supplied to the injector after being warmed in a heater (not shown) and is pressurized by a pump 11. The gas injector 8 is arranged to supply gas into the capsule or container in order to empty it from the liquid food, in particular, once the liquid supply is stopped. Gas it typically compressed gas provided by an air pump or a compressed-gas cartridge in the machine (not shown). The gas injector may also comprise a hollow needle protruding from the plate or be a simple hole. The liquid and gas injectors are axially distant one another at the fluid supplying interface. Such distance is preferred to be able to have the liquid injector be located close to the front of the housing.
The fluid supply interface 5 can be moved from the capsule holder loading position to the liquid/gas feeding position by mechanical and/or motorized activating means (not shown).
The insert is shaped and dimensioned in order to define when in engagement with the fluid interface 5 of the machine, a gas injector area 25 (
In operation, when the insert is engaged by the fluid supplying interface of the machine as shown in
If necessary, during operation of the machine (such as during a rinsing or capsule emptying steps etc.), compressed gas can be flushed through the insert in the direction of the capsule holder. The gas flushing may perform different functions such as emptying liquid food residue,from the capsule or drying the surfaces of the capsule holder after the rinsing operation.
The inward and outward frames 90, 32 can be connected by a series of connecting walls 33. The outward frame 32 may further extend outwardly by small positioning walls or studs 34. The frame 32 may further be designed on the lateral sides of the insert with a pair of curved walls 35 for facilitating handling of the insert, such as its insertion and removal from the capsule holder 3.
The insert of the invention may be provided with an optical identification means 36, such as a barcode. The optical identification means is preferably positioned on the front wall 37 of the front side “F” of the insert as opposed to its rear side “R” (
a represents a single-use capsule 4C comprising the insert 20 such as one lodged into a bulged seat 74 of the capsule. An optical identification means 36, e.g., a barcode, is located on the front side wall of the capsule such as described in co-pending EP10190899.4.
b represents a capsule holder 3 including a capsule 4D which is separate from the insert 20. The capsule contains a dose of food ingredients such as infant milk powder, growing-up milk powder or gums. It can be sealed or open. It may be made of flexible, rigid or semi-rigid packaging material. An optical identification means, e.g., barcode 36 may be located on the front side wall of the capsule holder or alternatively on the front side wall of the capsule 4D if the capsule holder has a window or clearance in alignment with the identification means when the capsule is operationally in place in the capsule holder.
c represents a container 4E with an insert 20. The insert 20 may be fixed or connected such as by a pivot to the container. It may also be fixed in a removable manner from the container such as by a press-fitting engagement in the bulged seat of the container. For example, the insert can be a filter unit for removing contaminants from the injected liquid supplied to the container. The container is adapted to be filled with food ingredients such as infant milk powder, growing-up milk powder or gum from a bulk package. The container can be sized and dimensioned to fit into the capsule holder 3. In an alternative it may be sized and dimensioned with guiding means to replace the capsule holder. An optical identification means, e.g., barcode 36 may be located on the front side wall of the container.
Number | Date | Country | Kind |
---|---|---|---|
11164347.4 | Apr 2011 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/056131 | 4/4/2012 | WO | 00 | 10/28/2013 |