1. Field of the Invention
The present invention relates to an apparatus and method for anchoring surgical suture to bone. More specifically, the present invention relates to arthroscopic apparatus and methods for anchoring suture to bone using a suture anchor having suture molded directly into the body of the suture anchor.
2. Description of the Related Art
When soft tissue tears away from bone, reattachment becomes necessary. Various fixation devices, including sutures, screws, staples, wedges, and plugs have been used in the past to secure soft tissue to bone. More recently, various types of threaded suture anchors have been developed.
Suture anchors and implants generally include a structure for attaching or securing the suture to the anchor. U.S. Pat. No. 4,632,100, for example, discloses and claims a threaded suture anchor with a complex press-fitted disc and knot structure which secures the suture to the anchor. In other suture anchors, such as those disclosed in U.S. Pat. No. 5,370,662, the suture is attached to the anchor by passing the suture through an eyelet at the back end of the anchor. Problems can arise if the structure for attaching the suture fails, allowing the suture to become detached from the anchor. Also, in some of the known devices, the suture is exposed to abrasion or cutting by sharp or rough areas along the walls of the bone canal into which the anchor is inserted.
In addition, the eyelet or, in the case of U.S. Pat. No. 4,632,100, the axial opening for receiving the disc to which the suture is knotted, is formed as part of the drive head of the known suture anchors, which weakens the drive head. Various other modifications in the drive head are often employed in connection with suture attachment. For example, recessed grooves may be formed on opposite sides of the drive head to receive and protect the suture from the abrasive areas of the suture anchor tunnel. In such cases, the drive head often is made of a larger diameter to recover the mechanical strength lost from the removal of material relating to the suture-attachment or suture-protection modification.
Accordingly, a need exists for a suture anchor or implant to which suture is secured effectively so as to prevent detachment of the suture. A need also exists for a soft tissue fixation device having a low profile configuration particularly suited for reattachment of tissue to the glenoid rim, for example.
The suture anchor of the present invention overcomes disadvantages of the prior art, such as those noted above, and achieves the foregoing objectives by providing a push in suture anchor having suture insert-molded into the suture anchor during the manufacturing process.
At least one length of the insert-molded suture extends from the proximal end of the suture anchor body. Both the suture anchor and suture preferably are made with biodegradable materials. According to one embodiment, irregularities are formed along the surface of the suture, especially where it is molded inside the suture body, to increase pullout strength of the suture from the anchor body. The surface irregularities can be formed by various methods including incorporating a thick fiber into the weave of the suture or by tying knots in the suture.
The suture anchor of the present invention has a central body, a distal end, and a proximal end. The body preferably has tapered ribs formed along the distal portion, terminating in a blunt or rounded proximal end. The proximal end of the suture anchor body preferably has a round, tapered drive head which is received in a recess of a hand driver.
The insert-molded suture preferably extends through the entire length of the anchor and exits at the proximal end of the anchor. In a preferred embodiment of the invention, the suture forms a loop outside the proximal end of the anchor. Advantageously, the suture exits the suture anchor along the central axis of the anchor, which prevents suture abrasion by the wall of the bone tunnel into which the anchor is inserted.
Other features and advantages of the present invention will become apparent from the following description of the invention, which refers to the accompanying drawings.
Referring to
The suture anchor body 6 preferably is formed of a bioabsorbable material, poly(l-lactide-co-d,l-lactide) 70:30 (PLDLA) being most preferred. Suture 4 can be any known type of suture selected according to the size of the anchor and the anticipated application. The suture 4 preferably is No. 2 polyester braided suture.
At least one length of the insert-molded suture 4 extends from the proximal end of the suture anchor body. Preferably, the suture extends from the suture anchor body in the form of a loop. Various methods of increasing the pull out strength of the suture from the anchor body are disclosed in U.S. Pat. No. 5,964,783 to Grafton et al. which issued on Oct. 12, 1999 and is assigned to the present applicant, the entire disclosure of which is incorporated herein by reference.
The proximal end 8 of the suture anchor body preferably is tapered for a snug fit into a hand driver described below, for example, with reference to
Referring to
The suture anchor is inserted into a hole formed in bone. The hole can be formed by punching or boring, for example. The ribs secure the anchor in the bone. The slots enhance attachment in the bone and support bony in-growth for increased pull out strength.
Advantageously, the hole formed in bone is made deep enough, and the suture anchor is advanced into the hole sufficiently, so that the proximal end of the anchor sits flush with or below the bone surface. Accordingly, the repair leaves a smooth bone surface, minimizing or eliminating abrasion or other damage to surrounding soft tissue. The anchor generally becomes encapsulated by fibrous tissue within six weeks after implantation.
Although PLDLA is the most preferred material for the suture anchor of the present invention, other bioabsorbable materials known in the art can be utilized. As used herein, bioabsorbable is considered to be interchangeable with biodegradable, resorbable and absorbable to mean that the device can be at least partially absorbed by the body over time. Preferably, the anchor material is selected so as to absorb or degrade substantially completely within 12–16 months of implantation.
The suture anchor of the present invention is particularly well suited for reattachment of the glenoid labrum or inferior glenohumeral ligament in patients with primary or recurrent anterior dislocation or subluxation of the shoulder in association with adequate post-operative immobilization. More specifically, the anchor also can be used for repair procedures such as capsulabral plication, as described below.
Referring to
Driver 40 includes a cannulated shaft 42 with a cannulated handle 44. A cleat 46 is provided on the handle for securing suture attached to the suture loop on the suture anchor and passed through the cannulated shaft and handle. The distal tip 48 of cannulated shaft 42 provides a recess 50 which receives the proximal end of suture anchor 2. The outer diameter of the distal end of the driver preferably is less than or equal to the maximum outer diameter of the suture anchor. Driver 40 also features a slot 42 which is continuous with recess 50.
The method of capsular plication proceeds using a 36-inch (91.4 cm) long #2 suture to plicate the capsulolabral complex. Both free ends of the suture are brought out an operative cannula. A spear with an included obturator is introduced through a skin incision or a clear cannula. The tip of the spear is positioned on bone and the obturator is removed.
A pilot hole is prepared in bone using either a punch or a drill depending on surgeon preference. With the manual punch, a mallet is used to advance the punch into bone until the punch handle meets the back of the spear and/or the shoulder on the distal part of the punch meets the bone surface. Alternatively, the drill can be attached with a Jacob chuck to a motorized drill and advanced until the stop on the drill bit meets the back of the spear.
After the pilot hole is created and the punch or drill is removed, the sterile-packaged implant 2 is opened to the sterile field using appropriate sterile technique. The implant is removed from the standard hand driver 20 and the suture is unloaded from the implant. A separate sterile packaged plication driver 40 is opened to the sterile field. One of the two legs of the plication suture is selected. This suture leg is the one on the medial side, or the one that passes under the tissue.
The selected suture leg is loaded through the implant eyelet. The implant 2 is positioned on plication driver 40 so that the open side of the eyelet 4 faces the open slot 52 on the driver. The suture leg will exit the slot 52 on the driver 40. The implant with driver is inserted into the prepared pilot hole by hand. A mallet then is used to advance the implant into the hole. The implant is advanced until a second laser line 54 on the distal tip of the driver is flush with the bone surface and a laser line 56 on the proximal part of the implant driver shaft is flush with the back of the spear handle.
The implant driver handle is pulled straight off the implant and the spear is removed. Additional implants are inserted dependent upon the size of the soft tissue defect. Suture passing and knot tying are carried out in the preferred fashion.
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art.
This application is a continuation-in-part of U.S. application Ser. No. 09/495,816, filed Feb. 2, 2000 now U.S. Pat. No. 6,517,564 and claims the benefit of U.S. Provisional Application Ser. No. 60/118,228, filed Feb. 2, 1999 and U.S. Provisional Application Ser. No. 60/125,781, filed Mar. 23, 1999, the disclosures of which are incorporated herein by reference. This application also claims the benefit of U.S. Provisional Application Ser. No. 60/271,414, filed Feb. 27, 2001.
Number | Name | Date | Kind |
---|---|---|---|
2065659 | Cullen | Dec 1936 | A |
4632100 | Somers et al. | Dec 1986 | A |
4738255 | Goble et al. | Apr 1988 | A |
5100417 | Cerier et al. | Mar 1992 | A |
5102421 | Anspach, Jr. | Apr 1992 | A |
5370662 | Stone et al. | Dec 1994 | A |
5417651 | Guena et al. | May 1995 | A |
5417712 | Whittaker et al. | May 1995 | A |
5569306 | Thal | Oct 1996 | A |
5578057 | Wenstrom, Jr. | Nov 1996 | A |
5591207 | Coleman | Jan 1997 | A |
5601557 | Hayhurst | Feb 1997 | A |
5643319 | Green et al. | Jul 1997 | A |
5690677 | Schmieding et al. | Nov 1997 | A |
5697950 | Fucci et al. | Dec 1997 | A |
5814051 | Wenstrom, Jr. | Sep 1998 | A |
5827291 | Fucci et al. | Oct 1998 | A |
5964783 | Grafton et al. | Oct 1999 | A |
5993459 | Larsen et al. | Nov 1999 | A |
6117162 | Schmieding et al. | Sep 2000 | A |
6146407 | Krebs | Nov 2000 | A |
6517564 | Grafton et al. | Feb 2003 | B1 |
6554852 | Oberlander | Apr 2003 | B1 |
6582453 | Tran et al. | Jun 2003 | B1 |
6641597 | Burkhart et al. | Nov 2003 | B2 |
6893448 | O'Quinn et al. | May 2005 | B2 |
20040106950 | Grafton et al. | Jun 2004 | A1 |
Number | Date | Country |
---|---|---|
632 999 | Jan 1995 | EP |
0 916 312 | May 1999 | EP |
0916312 | May 1999 | EP |
1 602 834 | Nov 1981 | GB |
Number | Date | Country | |
---|---|---|---|
20020087190 A1 | Jul 2002 | US |
Number | Date | Country | |
---|---|---|---|
60271414 | Feb 2001 | US | |
60125781 | Mar 1999 | US | |
60118228 | Feb 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09495816 | Feb 2000 | US |
Child | 10083568 | US |