Different kinds of removable memory cards may be used for different purposes. For example, a memory card may be inserted into a camera or a television to interface stored data between the card and the unit. The designs and layouts of these cards may have different formats.
The present application describes a special kind of memory card. In one embodiment, the memory card houses and interfaces with flash memory. The memory on the card may be used for interfacing with a video device.
In the figures:
The present application goes against the established teaching in the art and uses a card layout which has a pin-out and a special mechanical system that allows improved connection capability, and improved speed at which large files can be written to and written from flash memory, and also simplifies the scheme that is used to read the files during streaming. The card also includes special mechanical structures that facilitates its insertion and holding in place.
A number of different memory devices shown as 130, 131, 132, 133 are inside the media card. Each of the memory devices has its connectors showing through as connections of one of the connector groups. For example, the memory device 133 has connector layouts that connect to the connector 120. In the embodiment, four different memory devices are used, but it should be understood that any desired number of memory devices could be used. Also, while the card has room for 4 memory devices, a fewer number, such as 2 memory cards, could be placed in a reduced-memory configuration of the card.
The top plastic case 100 also includes supporting ribs such as 102 which maintain the structural integrity of the device. The top plastic case 102 may also include an indented portion 200 as shown in
In addition, both the top case 100 and the bottom case 110 include indented portions 104 therein on the at least one side. The indented portion 104 and 126 form a retention notch that retains the card within the mating connector once inserted. The mating connector can use a spring detent to prevent the card from being easily removed, or can include a depressable knob to allow the removal of the card from the connector.
In an embodiment, the media card has four separate memory parts, and each memory part can be separately read, and can also be read simultaneously with the reading by any of the other cards. In an embodiment, each of the memories includes a USB 2.0 port. The memories may be separate chips, or may be a single chip with four separate ports. Each of the pin outputs of the memory 130-133 correspond to the pin outputs for a USB device. That is, the distance between the pins 136 is the exact distance between connectors in a USB device. In this embodiment, the USB substrates may be approximately 24.8 mm in height, 2 mm pitch between pins on the device, and each connector pin being approximately 1.1 mm in width.
While the above describes using a USB pen out, it should be understood that other pinouts can similarly be used. When a USB pin out is used, the flash memory devices art devices may be chip on board or COB. Other instances may use a printed circuit board with a USB to flash controller chip, and a number of flash memory chips. The above describes the pins in each group being identical to the pin layout for a USB connector. However, the pins may alternatively be used for serial ATA or IEEE 1394 pin configurations. One embodiment may use for pins for USB port, and seven of the remaining pins for a serial ATA port. One power of this package is that the single package can support multiple interfaces on the same package.
In an embodiment, the contacts on the device 400 may be gold contacts 403. The bottom case portion 110 may simply have cutouts that are in cut out at the right location to receive the mating contacts there are through. In this way, the bottom case simply allows contact by some other device directly to the memory chips therein.
The connector may also use a push push device, where the card is inserted to the end of its travel stroke. After insertion, a spring force allows the card to back off a little from its loaded location. Under pressure, the user can press the device against fat forced to release the card, and allow the car to move out of the connector some distance and be pulled out. A spring detent may also be placed in the connector to hold against the indentation 104.
Beveled edges are also located at the pin end of the device, shown generally as 510, to make sure that the connectors do not land on the wrong end when inserted.
This device ensures many advantages. Specifically, or by using multiple different groups of connectors, this allows connection to multiple different chips substantially simultaneously. Since the connection can be to multiple different chips, the different chips can be accessed all together and in parallel, and hence these chips can have a throughput that is many times greater than the throughput of only a single chip. In addition, the structure of the device that allows connection to the chips inside the connector to thereby allow a less expensive and more reliable connector since the connection is directly to the chip, and not through a proxy connection. In addition, the pin output, having groups of relatively closely connected pins, separated by a space, may be extremely advantageous.
The general structure and techniques, and more specific embodiments which can be used to effect different ways of carrying out the more general goals are described herein.
Although only a few embodiments have been disclosed in detail above, other embodiments are possible and the inventors intend these to be encompassed within this specification. The specification describes specific examples to accomplish a more general goal that may be accomplished in another way. This disclosure is intended to be exemplary, and the claims are intended to cover any modification or alternative which might be predictable to a person having ordinary skill in the art. For example, other kinds of medical imaging systems could be used with this embodiment. Other differences between the scans could be used. Other compensations can be applied to the scans.
Also, the inventors intend that only those claims which use the words “means for” are intended to be interpreted under 35 USC 112, sixth paragraph. Moreover, no limitations from the specification are intended to be read into any claims, unless those limitations are expressly included in the claims. The computers described herein may be any kind of computer, either general purpose, or some specific purpose computer such as a workstation. The computer may be an Intel (e.g., Pentium or Core 2 duo) or AMD based computer, running Windows XP or Linux, or may be a Macintosh computer. The computer may also be a handheld computer, such as a PDA, cellphone, or laptop.
The programs may be written in C or Python, or Java, Brew or any other programming language. The programs may be resident on a storage medium, e.g., magnetic or optical, e.g. the computer hard drive, a removable disk or media such as a memory stick or SD media, wired or wireless network based or Bluetooth based Network Attached Storage (NAS), or other removable medium or other removable medium. The programs may also be run over a network, for example, with a server or other machine sending signals to the local machine, which allows the local machine to carry out the operations described herein.
Where a specific numerical value is mentioned herein, it should be considered that the value may be increased or decreased by 20%, while still staying within the teachings of the present application, unless some different range is specifically mentioned. Where a specified logical sense is used, the opposite logical sense is also intended to be encompassed.