This invention relates to surgical inserters such as impactors, for aiding in installing orthopedic prostheses, and, more particularly, to easily sterilizable inserters for installing acetabular implants in the acetabular socket.
Complicated mechanical devices have crevices and recesses that are difficult, if not almost impossible to clean with ease. Devices that are not properly cleaned and sterilized run the risk of disease transfer from patient to patient following the emergence of certain “prions” that are not killed by normal hospital sterilization and need to be physically removed by washing/rinsing.
Further, in surgical procedures in which access to the treatment site is limited, it is difficult to use current solutions without subjecting the patient to repeated abrasion and tissue trauma when inserting and extracting surgical instruments.
Further, the insertion of the implant is often problematic, and the orientation of the implant, particularly any fixing holes that might be pre-drilled in the implant is often critical to minimize recovery time of the patient. Still further, once the appropriate position of the implant is selected, it is often difficult to ensure that the position does not change upon insertion of the assembly through the incision.
Still further, a surgical inserter is needed having an interface which engages with the particular prosthesis that the surgeon selects for the particular needs of the patient. Thus, for the surgeon to be able to position and insert a variety of prostheses, he must very often have a corresponding number of inserters, given that the interface is not standardized.
What is needed therefore is an inserter that is easily adjustable, disassembleable, and cleanable. Further, what is needed is an inserter that enables the surgeon to better maneuver position and install an implant in a particular angular orientation. Still further, what is needed is an inserter wherein the interface alone, and not the entire inserter, may be changed out to enable the interfacing with the most appropriate prosthesis without the need for having a special inserter on hand for each particular interface.
An acetabular inserter aids a surgeon in controlling the installation of an acetabular cup prosthesis generally having a central, female aperture. The inserter has a housing which supports a drive train having, at a far end, an interchangeable prosthesis engaging interface (e.g., an interchangeable thread), and at the opposite end, a handle which facilitates turning of the drive train by the operator.
The inserter enables easy and controlled orientation of a prosthesis attached to its end, which is important because the prosthesis often has pre-drilled holes and thus, these must be properly positioned prior to fastening through these holes. Proper positioning may be dictated due to different length fasteners to engage with bone of varying thickness.
An objective of the invention is to be “easily cleaned” by quick and modular disassembly which enables access to all surfaces so that they can be cleaned, the reduction in number of small radius internal corners, crevices and small gaps and the absence of blind holes.
Another object of the invention is to provide an inserter which enables the implant to be locked in an angular orientation prior to installation of the implant.
Another object of the invention is to provide a dual mechanism that uses common components to lock the implant in place as well as to provide for easy disassembly for cleaning and sterilization.
Another object of the invention is to reduce the number of pieces and the risk that parts could be lost.
The attached drawings represent, by way of example, different embodiments of the subject of the invention.
Referring now to
The interface 16 is cut on a boss 22 which is releasably engageable with a linkage 24 which slides in an axial hole 26 in the housing 12. The interface 16 is preferably threaded. The piston 24 is connected by way of a first U-joint 30 to a lever 32 which slides in a pivoting sleeve 34 fixed to the housing 12 via a pivot 36. The lever 32 is connected via a second U-joint 40 to a second pivoting lever 42 which is fixed to pivot in a catch 44 on a pivot pin 46. The catch 44 is essentially a divot or a seat cut into the housing 12, against which the pivot pin 46 of the lever 42 is captured when a slide 50 is slid over the pin when engaged against the seat.
Referring now to
A polymeric inserter head 64 is molded over the end of the housing 12, to absorb the impact stresses incurred during use of the inserter. The head 64 is selected so as to have good frictional characteristics as well. Nevertheless, a metal, non-molded head may also be used with satisfactory results.
Referring now to
The “easily cleaned” objective of the invention enables access to all surfaces that they can be cleaned (parts covering another part can be moved or removed to expose all surfaces), the reduction in number of small radius internal corners, crevices and small gaps and the absence of blind holes.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring to
It is important to place the bends in the housing at critical locations to pass through the miniature incision without impinging on the skin 30 at 37 while still maintaining the same surgical protocol. The reason why the drive end 104 and the holding mechanism 120 need to be in line or on parallel axis is so that the applied force 130 results in an axial motion 140. This allows the surgeon to maintain the existing technique since inherently inserter 15 in
It should be noted that a second head (not shown) can be mounted onto the front of the device 10, the head formed so as to conform with a surface of an acetabular cup liner, in order to enable the device to seat a liner as well as the cup.
The attached drawings represent, by way of example, different embodiments of the subject of the invention.
In operation, the prosthesis first is placed over or threaded onto the collet 120 via a threaded hole 122. In a second step, the prosthesis 11 is oriented with respect to the form of the inserter 10, in order to minimally impact soft tissue. In a third step, the handle 160 of the inserter 10 is gripped and the prosthesis 11 placed through the incision 35. In a fourth step, the inserter 10 is used to impact the prosthesis 11 in place by impacting a rear portion of the handle 160 with a mallet, for example. Optionally, with the current design, it is envisioned that the prosthesis 11 be inserted into the incision 35 as a first step, potentially taking advantage of being able to more freely maneuver it into the incision and to roughly position it prior to inserting the collet 120 of the inserter 10 into a mating hole in the tool head. If this optional procedure is used, the knob 20 of the inserter may then be turned by the operator to actuate the opening of the collet 120 and thus the fixing on the end of the inserter 10. These optional steps substitute for the above mentioned four steps. In a fifth step, the knob 20 is turned in an opposite direction in order to release the prosthesis 11. In a final step, the inserter 10 is removed from the incision 35.
As noted above, in another preferred embodiment illustrated in
The “easily cleaned” objective of the invention 10 enables access to all surfaces that they can be cleaned (parts covering another part can be moved or removed to expose all surfaces), the reduction in number of small radius internal corners, crevices and small gaps and the absence of blind holes.
In another advantage, it is simple to select a desired orientation of the prosthesis device 11, which enables the device to be locked in an angular orientation prior to installation. Additionally, due to drawing of the prosthesis 11 against and in close contact with the inserter head 64, contact between the two is robust as it is made with minimal play or gaps there between, ensuring good support during impaction.
In an advantage, the inserter 10 is simple and easy to use, without complex and possibly confusing locks activated with the thumb. It is simple to select a desired orientation of the prosthesis 11.
In another advantage, due to the drawing of the prosthesis 2 against the impaction head 40, the connection between the prosthesis 11 is robust as the connection is made without any play or gaps therebetween, ensuring good support during impaction.
An objective is to provide an inserter 10 that is easy to disassemble and for which the disassembly is easy to learn.
Another object of the invention is to provide a dual mechanism that uses common components to lock the implant in place as well as to provide for easy disassembly for cleaning and sterilization.
Another object of the invention is to minimize the number of pieces and the risk that parts could be lost.
The object of the invention is to provide an inserter 10 which enables the implant to be locked in an angular orientation prior to installation of the implant.
While one or more preferred embodiments of the present invention have been described, it should be understood that various changes, adaptations and modifications may be made without departing from the spirit of the invention and the scope of the appended claims.
This application is a divisional of application Ser. No. 11/741,868, filed Apr. 30, 2007 now U.S. Pat. No. 7,857,816, which claims priority to U.S. provisional application Ser. Nos. 60/746,061, filed on May 1, 2006, and 60/822,239, filed on Aug. 13, 2006, the contents of which are fully incorporated herein by reference and relied upon.
Number | Name | Date | Kind |
---|---|---|---|
1942422 | Hanna | Jun 1931 | A |
4305394 | Bertuch, Jr. | Dec 1981 | A |
D272648 | Bolesky et al. | Feb 1984 | S |
D273806 | Bolesky et al. | May 1984 | S |
4475549 | Oh | Oct 1984 | A |
4520511 | Gianezio et al. | Jun 1985 | A |
4528980 | Kenna | Jul 1985 | A |
4587964 | Walker et al. | May 1986 | A |
4632111 | Roche | Dec 1986 | A |
4716894 | Lazzeri et al. | Jan 1988 | A |
4765328 | Keller et al. | Aug 1988 | A |
4904267 | Bruce et al. | Feb 1990 | A |
4919679 | Averill et al. | Apr 1990 | A |
4921493 | Webb, Jr. et al. | May 1990 | A |
5019105 | Wiley | May 1991 | A |
5037424 | Aboczsky | Aug 1991 | A |
5061270 | Aboczky | Oct 1991 | A |
5062854 | Noble et al. | Nov 1991 | A |
5089003 | Fallin et al. | Feb 1992 | A |
5116339 | Glock | May 1992 | A |
5124106 | Morr et al. | Jun 1992 | A |
5133766 | Halpern | Jul 1992 | A |
5169399 | Ryland et al. | Dec 1992 | A |
5190549 | Miller et al. | Mar 1993 | A |
5234432 | Brown | Aug 1993 | A |
5261915 | Durlacher et al. | Nov 1993 | A |
5324293 | Rehmann | Jun 1994 | A |
5342362 | Kenyon et al. | Aug 1994 | A |
5364403 | Petersen et al. | Nov 1994 | A |
5417696 | Kashuba et al. | May 1995 | A |
5443471 | Swajger | Aug 1995 | A |
5454815 | Geisser et al. | Oct 1995 | A |
5485887 | Mandanis | Jan 1996 | A |
5540697 | Rehmann et al. | Jul 1996 | A |
5584837 | Peterson | Dec 1996 | A |
5658294 | Sederholm | Aug 1997 | A |
5665091 | Noble et al. | Sep 1997 | A |
5683399 | Jones | Nov 1997 | A |
5707374 | Schmidt | Jan 1998 | A |
5720750 | Koller et al. | Feb 1998 | A |
5863295 | Averill et al. | Jan 1999 | A |
5913860 | Scholl | Jun 1999 | A |
5976148 | Charpenet et al. | Nov 1999 | A |
5993455 | Noble | Nov 1999 | A |
6063124 | Amstutz | May 2000 | A |
6120508 | Grunig et al. | Sep 2000 | A |
6197065 | Martin et al. | Mar 2001 | B1 |
6432141 | Stocks et al. | Aug 2002 | B1 |
6451058 | Tuke et al. | Sep 2002 | B2 |
6626913 | McKinnon et al. | Sep 2003 | B1 |
6663636 | Lin | Dec 2003 | B1 |
6811569 | Afriat et al. | Nov 2004 | B1 |
7090700 | Curtis | Aug 2006 | B2 |
7192449 | McQueen et al. | Mar 2007 | B1 |
7335207 | Smith | Feb 2008 | B1 |
7341593 | Auxepaules et al. | Mar 2008 | B2 |
7396357 | Tornier et al. | Jul 2008 | B2 |
7585301 | Santarella et al. | Sep 2009 | B2 |
7591821 | Kelman | Sep 2009 | B2 |
7604667 | DeSmet et al. | Oct 2009 | B2 |
7621921 | Parker | Nov 2009 | B2 |
7922726 | White | Apr 2011 | B2 |
20010051830 | Tuke et al. | Dec 2001 | A1 |
20020004660 | Henniges et al. | Jan 2002 | A1 |
20020116007 | Lewis | Aug 2002 | A1 |
20020177854 | Tuke et al. | Nov 2002 | A1 |
20020193797 | Johnson et al. | Dec 2002 | A1 |
20030009234 | Treacy et al. | Jan 2003 | A1 |
20030050645 | Parker et al. | Mar 2003 | A1 |
20030083668 | Rogers et al. | May 2003 | A1 |
20030088316 | Ganjianpour | May 2003 | A1 |
20030187512 | Frederick et al. | Oct 2003 | A1 |
20030220698 | Mears et al. | Nov 2003 | A1 |
20030229356 | Dye | Dec 2003 | A1 |
20040073225 | Subba Rao | Apr 2004 | A1 |
20040087951 | Khalili | May 2004 | A1 |
20040215200 | Tornier et al. | Oct 2004 | A1 |
20050033430 | Powers et al. | Feb 2005 | A1 |
20050038443 | Hedley et al. | Feb 2005 | A1 |
20050075736 | Collazo | Apr 2005 | A1 |
20050137603 | Belew et al. | Jun 2005 | A1 |
20050171548 | Kelman | Aug 2005 | A1 |
20050187562 | Grimm et al. | Aug 2005 | A1 |
20050222572 | Chana | Oct 2005 | A1 |
20050228395 | Auxepaules et al. | Oct 2005 | A1 |
20050234462 | Hershberger | Oct 2005 | A1 |
20050246031 | Frederick et al. | Nov 2005 | A1 |
20060052780 | Errico et al. | Mar 2006 | A1 |
20060149285 | Burgi et al. | Jul 2006 | A1 |
20070156155 | Parker | Jul 2007 | A1 |
20070167952 | Burgi et al. | Jul 2007 | A1 |
20070225725 | Heavener et al. | Sep 2007 | A1 |
20070270783 | Zumsteg et al. | Nov 2007 | A1 |
20070288096 | Surma | Dec 2007 | A1 |
20070293869 | Conte et al. | Dec 2007 | A1 |
20080004628 | White | Jan 2008 | A1 |
20080021481 | Burgi | Jan 2008 | A1 |
20080033444 | Bastian et al. | Feb 2008 | A1 |
20080077249 | Gradel | Mar 2008 | A1 |
20080146969 | Kurtz | Jun 2008 | A1 |
20080154261 | Burgi | Jun 2008 | A1 |
20080243127 | Lang et al. | Oct 2008 | A1 |
20080255565 | Fletcher | Oct 2008 | A1 |
20080255568 | Tornier et al. | Oct 2008 | A1 |
20080262503 | Muller | Oct 2008 | A1 |
20080275450 | Myers et al. | Nov 2008 | A1 |
20090112214 | Philippon et al. | Apr 2009 | A1 |
20090182334 | Brehm | Jul 2009 | A1 |
20090192515 | Lechot et al. | Jul 2009 | A1 |
20090240256 | Smith | Sep 2009 | A1 |
20090281545 | Stubbs | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
0453694 | Oct 1991 | EP |
0470912 | Dec 1992 | EP |
0535973 | Apr 1993 | EP |
357302 | Jul 1994 | EP |
638299 | Feb 1995 | EP |
1308140 | May 2003 | EP |
1190687 | Jul 2004 | EP |
1438936 | Jul 2004 | EP |
1447058 | Aug 2004 | EP |
9511641 | May 1995 | WO |
0012832 | Mar 2000 | WO |
0106964 | Feb 2001 | WO |
WO0106964 | Feb 2001 | WO |
2005044153 | May 2005 | WO |
2006061708 | Jun 2006 | WO |
2007098549 | Sep 2007 | WO |
2008128282 | Oct 2008 | WO |
2009136284 | Nov 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20100106159 A1 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
60746061 | May 2006 | US | |
60822239 | Aug 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11741868 | Apr 2007 | US |
Child | 12685019 | US |