This invention relates to surgical inserters for aiding in installing orthopedic prostheses, and, more particularly, to easily sterilizable inserters for installing acetabular implants in the acetabular socket.
Complicated mechanical devices have crevices and recesses that are difficult, if not almost impossible to clean with ease. Devices that are not properly cleaned and sterilized run the risk of disease transfer from patient to patient following the emergence of certain “prions” that are not killed by normal hospital sterilisation and need to be physically removed by washing/rinsing.
Further, in surgical procedures in which access to the treatment site is limited, it is difficult to use current solutions without subjecting the patient to repeated abrasion and tissue trauma when inserting and extracting surgical instruments.
Further, the insertion of the implant is often problematic, and the orientation of the implant, particularly any fixing holes that might be pre-drilled in the implant is often critical to minimize recovery time of the patient. Still further, once the appropriate position of the implant is selected, it is often difficult to ensure that the position does not change upon insertion of the assembly through the incision.
What is needed therefore is an inserter that is easily adjustable, disassemblable, and cleanable. Further, what is needed is an inserter that enables the surgeon to better maneuver position and install an implant in a particular angular orientation.
An acetabular inserter aids a surgeon in controlling the installation of an acetabular cup prosthesis generally having a central, female aperture. The inserter has a housing which encloses a drive train having, at a far end, a prosthesis engaging interface (e.g., a thread), and at the opposite end, a handle which facilitates turning of the drive train by the operator.
The inserter enables easy orientation of a prosthesis attached to its end, which is important because the prosthesis often has pre-drilled holes and thus, these must be properly positioned prior to fastening through these holes.
An objective of the invention is to be “easily cleaned” by quick and modular disassembly which enables access to all surfaces that they can be cleaned, the reduction in number of small radius internal corners, crevices and small gaps and the absence of blind holes.
Another object of the invention is to provide an inserter which enables the implant to be locked in an angular orientation prior to installation of the implant.
Another object of the invention is to provide a dual mechanism that uses common components to lock the implant in place as well as to provide for easy disassembly for cleaning and sterilization.
Another object of the invention is to minimise the number of pieces and the risk that parts could be lost.
The attached drawings represent, by way of example, different embodiments of the subject of the invention.
Referring now to
The interface 16 is cut on a boss 22 on a cylindrical piston 24 which slides in an axial hole 26 in the housing 12. The interface 16 is preferably threaded. The piston 24 is connected by way of a first U-joint 30 to a lever 32 which slides in a pivoting sleeve 34 fixed to the housing 12 via a pivot 36. The lever 32 is connected via a second U-joint 40 to a second pivoting lever 42 which is fixed to pivot in a catch 44 on a pivot pin 46. The catch 44 is essentially a divot or a seat cut into the housing 12, against which the pivot pin 46 of the lever 42 is captured when a slide 50 is slide over the pin when engaged against the seat.
A slideable sleeve 52 slides over the lever 42 and has a trunion 54 to which a rod 56 is pivotally attached. The rod 56 passes through a one-way catch 60 in the housing 12. The one-way catch 60 can be a captured split wedge sleeve 62 having an inner diameter that just matches the outer diameter of the rod 56 and which is captured in a recess having a matching conical surface that surrounds the sleeve so as to allow the rod 56 to slide into the housing 12, but to prevent the rod from sliding out of the housing unless an unlock lever (not shown) is activated, such lever merely lifting the sleeve 62 out of engagement with the conical surface so as not to lock and to permit the rod to back out of the housing. Any number of alternative one way lock devices may be used however, the selection of which being within the skill of a person of ordinary skill in this field.
Referring now to
A polymeric impactor head 64 is molded over the end of the housing 12, to absorb the impact stresses incurred during use as an impactor. The head 64 is selected so as to have good frictional characteristics as well. Nevertheless, a metal, non-molded head may also be used with satisfactory results.
Referring now to
The “easily cleaned” objective of the invention enables access to all surfaces that they can be cleaned (parts covering another part can be moved or removed to expose all surfaces), the reduction in number of small radius internal corners, crevices and small gaps and the absence of blind holes.
Referring now to
Referring to
It is important to place the bends in the housing at critical locations to pass through the miniature incision without impinging on the skin 30 at 37 while still maintaining the same surgical protocol. The reason why the drive end 104 and the holding mechanism 120 need to be in line or on parallel axis is so that the applied force 130 results in an axial motion 140. This allows the surgeon to maintain the existing technique since inherently inserter 15 in
It should be noted that a second head (not shown) can be mounted onto the front of the device 10, the head formed so as to conform with a surface of an acetabular cup liner, in order to enable the device to seat a liner as well as the cap.
The attached drawings represent, by way of example, different embodiments of the subject of the invention.
Referring now to
When the knob 20′ is turned in one direction, the prosthesis-engaging collet 120 locks the prosthesis 11 against rotational movement. This enables the surgeon to pre-set and lock the position of the prosthesis 11 prior to the installation thereof. Such selective locking of the prosthesis 11 is important because the prosthesis 11 often has pre-drilled holes 4 and thus, these must be properly positioned prior to fastening through these holes. Further, the collet action of the collet 120 eliminates the need of threading the acetabular prosthesis 11 onto the end of the inserter 10′ as the prosthesis can simply be placed over the collet and the collet expanded so as to grip internal threads 122 of the prosthesis 11. Note that to improve likelihood of alignment, the threads 124 on the jaws 126 may be replaced with longitudinally aligned dimples (not shown) having a profile that resembles threads but yet which minimizes the need for precise orientation of the internal threads of the prosthesis and the dimples on the jaws 126 of the collet 120.
Referring now to
Referring as well to
The shackle 152 is part of a u-joint 30′ of the drive train 14′ which is connected to the knob 20′ at an opposite end thereof. When the knob 20′ is turned by the operator, the drive train 14′ causes the actuation screw 146 to progress forward, and thus the tip 146a is able to move into a space 156 between the jaws 126 so as to progressively open the jaws until they are fully locked open. If the drive train 14′ is turned further, then the ends 150′ of the cross pin 150 contact an end 153 of the slot 152′ at which point further turning causes the collet 120 to draw inward, pulling the prosthesis 11 into snug contact with the face of the impaction head 140. When fully open, the space 156 formed between the jaws 126 just receives the tip 146a and thus has substantially cylindrical boundaries. The external surface of the prosthesis-engaging end of the jaws 126 may take any suitable form so as to help lock the prosthesis 11 in place. A simple form which is effective may be a simple thread-matching profile which could include a pitch or not, depending on whether it is desired that the prosthesis be able to be removed by unthreading, despite the collect 120 being in a substantially locked position.
In operation, the prosthesis first is placed over or threaded onto the collet 120 via a threaded hole 122. In a second step, the prosthesis 11 is oriented with respect to the form of the inserter 10′, in order to minimally impact soft tissue. In a third step, the handle 160 of the inserter 10′ is gripped and the prosthesis 11 placed through the incision 35. In a fourth step, the inserter 10′ is used to impact the prosthesis 11 in place by impacting a rear portion of the inserter with a mallet, for example. Optionally, with the current design, it is envisioned that the prosthesis 11 be inserted into the incision 35 as a first step, potentially taking advantage of being able to more freely maneuver it into the incision and roughly position it prior to inserting the collet 120 of the inserter 10′ into a mating hole—this optional procedure is used, the knob 20′ of the inserter may then be turned by the operator to actuate the opening of the collet 120 and thus the fixing on the end of the inserter 10′. These optional steps substitute for the above mentioned four steps. In a fifth step, the knob 20′ is turned in an opposite direction in order to release the prosthesis 11. In a final step, the inserter 10′ is removed from the incision 35.
Referring now to
The “easily cleaned” objective of the invention 10, 10′, 10″ enables access to all surfaces that they can be cleaned (parts covering another part can be moved or removed to expose all surfaces), the reduction in number of small radius internal corners, crevices and small gaps and the absence of blind holes.
In the embodiment shown, the device 10″ is disassembled for cleaning by simply urging back on the latch housing 180 against the action of the spring 190 using a knurled surface 214 designed for that purpose. The latch housing 180 is urged back until a cross pin 182 is cleared of the recess 184 so that the drive train 14″ can be pivoted away from the housing 12′ so as to be approximately aligned with a central shaft 216 of the drive train. In the approximately aligned position, a slide-fit connection between the forward and rearward assemblies 220, 222 of the drive train 14″ are separable, thus enabling essentially the entire rearward assembly of the drive train to be removed from the housing 12″ for cleaning. Note the drive train 14″ is immobilized during this urging of the latch housing 180 backwards due to the angled orientation of one component of the drive train about a corner or bend in the drive train.
In an advantage, the inserter 10′ is simple and easy to use, without complex and possibly confusing locks activated with the thumb.
In another advantage, it is simple to select a desired orientation of the prosthesis 11.
In another advantage, due to the drawing of the prothesis 2 against the impaction head 40, the connection between the prosthesis 11 is robust as the connection is made without any play or gaps therebetween, ensuring good support during impaction.
An objective is to provide an inserter 10, 10′, 10″ that is easy to dissemble and for which the disassembly is easy to learn.
Another object of the invention is to provide a dual mechanism that uses common components to lock the implant in place as well as to provide for easy disassembly for cleaning and sterilization.
Another object of the invention is to minimise the number of pieces and the risk that parts could be lost.
The object of the invention is to provide an inserter 10, 10′, 10″ which enables the implant to be locked in an angular orientation prior to installation of the implant.
Multiple variations and modifications are possible in the embodiments of the invention described here. Although certain illustrative embodiments of the invention have been shown and described here, a wide range of modifications, changes, and substitutions is contemplated in the foregoing disclosure. In some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, it is appropriate that the foregoing description be construed broadly and understood as being given by way of illustration and example only, the spirit and scope of the invention being limited only by the appended claims.
This application claims priority U.S. Ser. Nos. 60/518,768; 60/548,542; and 60/561,141, filed Nov. 10, 2003, Feb. 26, 2004, and Apr. 10, 2004, respectively; the contents of which are incorporated herein by reference thereto.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB04/03676 | 11/10/2004 | WO | 00 | 5/2/2006 |
Number | Date | Country | |
---|---|---|---|
60518768 | Nov 2003 | US | |
60548542 | Feb 2004 | US | |
60561141 | Apr 2004 | US |