This invention relates to surgical inserters for aiding in installing orthopedic prostheses, and, more particularly, to easily sterilizable inserters for installing acetabular implants in the acetabular socket.
Complicated mechanical devices have crevices and recesses that are difficult, if not almost impossible to clean with ease. Devices that are not properly cleaned and sterilized run the risk of disease transfer from patient to patient following the emergence of certain “prions” that are not killed by normal hospital sterilisation and need to be physically removed by washing/rinsing.
Further, in surgical procedures in which access to the treatment site is limited, it is difficult to use current solutions without subjecting the patient to repeated abrasion and tissue trauma when inserting and extracting surgical instruments.
Further, the insertion of the implant is often problematic, and the orientation of the implant, particularly any fixing holes that might be pre-drilled in the implant is often critical to minimize recovery time of the patient. Still further, once the appropriate position of the implant is selected, it is often difficult to ensure that the position does not change upon insertion of the assembly through the incision.
What is needed therefore is an inserter that is easily adjustable, disassemblable, and cleanable. Further, what is needed is an inserter that enables the surgeon to better maneuver position and install an implant in a particular angular orientation.
An acetabular inserter aids a surgeon in controlling the installation of an acetabular cup prosthesis generally having a central, female aperture. The inserter has a housing which encloses a drive train having, at a far end, a prosthesis engaging interface, and at the opposite end, a handle which facilitates turning of the drive train by the operator. The inserter enables easy orientation of a prosthesis attached to its end, which is important because the prosthesis often has pre-drilled holes and thus, these must be properly positioned prior to fastening through these holes.
An objective of the invention is to be “easily cleaned” by quick and modular disassembly which enables access to all surfaces that they can be cleaned, the reduction in number of small radius internal corners, crevices and small gaps and the absence of blind holes.
Another object of the invention is to provide an inserter which enables the implant to be locked in an angular orientation prior to installation of the implant.
Another object of the invention is to provide a dual mechanism that uses common components to lock the implant in place as well as to provide for easy disassembly for cleaning and sterilization.
Another object of the invention is to minimise the number of pieces and the risk that parts could be lost.
The attached drawings represent, by way of example, different embodiments of the subject of the invention.
Referring now to
The interface 16 is cut on a boss 22 on a cylindrical piston 24 which slides in an axial hole 26 in the housing 12. The interface 16 is preferably threaded. The piston 24 is connected by way of a first U-joint 30 to a lever 32 which slides in a pivoting sleeve 34 fixed to the housing 12 via a pivot 36. The lever 32 is connected via a second U-joint 40 to a second pivoting lever 42 which is fixed to pivot in a catch 44 on a pivot pin 46. The catch 44 is essentially a divot or a seat cut into the housing 12, against which the pivot pin 46 of the lever 42 is captured when a slide 50 is slide over the pin when engaged against the seat.
A slideable sleeve 52 slides over the lever 42 and has a trunion 54 to which a rod 56 is pivotally attached. The rod 56 passes through a one-way catch 60 in the housing 12. The one-way catch 60 can be a captured split wedge sleeve 62 having an inner diameter that just matches the outer diameter of the rod 56 and which is captured in a recess having a matching conical surface that surrounds the sleeve so as to allow the rod 56 to slide into the housing 12, but to prevent the rod from sliding out of the housing unless an unlock lever (not shown) is activated, such lever merely lifting the sleeve 62 out of engagement with the conical surface so as not to lock and to permit the rod to back out of the housing. Any number of alternative one way lock devices may be used however, the selection of which being within the skill of a person of ordinary skill in this field.
Referring now to
A polymeric impactor head 64 is molded over the end of the housing 12, to absorb the impact stresses incurred during use as an impactor. The head 64 is selected so as to have good frictional characteristics as well. Nevertheless, a metal, non-molded head may also be used with satisfactory results.
Referring now to
The “easily cleaned” objective of the invention enables access to all surfaces that they can be cleaned (parts covering another part can be moved or removed to expose all surfaces), the reduction in number of small radius internal corners, crevices and small gaps and the absence of blind holes.
Referring now to
Referring to
It is important to place the bends in the housing at critical locations to pass through the miniature incision without impinging on the skin 30 at 37 while still maintaining the same surgical protocol. The reason why the drive end 104 and the holding mechanism 120 need to be in line or on parallel axis is so that the applied force 130 results in an axial motion 140. This allows the surgeon to maintain the existing technique since inherently the prior art inserter 15 in
It should be noted that a second head (not shown) can be mounted onto the front of the device 10, the head formed so as to conform with a surface of an acetabular cup liner, in order to enable the device to seat a liner as well as the cup.
The attached drawings represent, by way of example, different embodiments of the subject of the invention.
Referring now to
Referring now to
Referring now to
It should be noted that a second head (not shown) can be mounted onto the front of the device 10, the head formed so as to conform with a surface of an acetabular cup liner, in order to enable the device to seat a liner as well as the cup.
Referring now to
When the drive train 14′ is drawn inwardly by squeezing the lever 42 towards the housing 12′, the prosthesis-engaging expandable collet device 120 locks the prosthesis 11 against rotational movement. This enables the surgeon to pre-set and lock the position of the prosthesis 11 prior to the installation thereof. Such selective locking of the prosthesis 11 is important because the prosthesis 11 often has pre-drilled holes 4 and thus, these must be properly positioned prior to fastening through these holes. Further, the expanding of the expandable collet device 120 eliminates the need of threading the acetabular prosthesis 11 onto the end of the inserter 10′ as the prosthesis can simply be placed over the expandable collet 126′ and the expandable collet expanded so as to grip internal threads 122 of the prosthesis 11. Note that to improve likelihood of alignment, the lip 128 on the fingers 127 may be replaced with longitudinally aligned dimples (not shown) having a profile that resembles threads but yet which minimizes the need for precise orientation of the internal threads of the prosthesis and the dimples on the fingers 127 of the expandable collet device 120.
In operation, the prosthesis first is placed over or threaded onto the expandable collet device 120 via a threaded or undercut hole 122. In a second step, the prosthesis 11 is oriented with respect to the form of the inserter 10′, in order to minimally impact soft tissue. In a third step, the handle 160 of the inserter 10′ is gripped and the prosthesis 11 placed through the incision 35. In a fourth step, the inserter 10′ is used to impact the prosthesis 11 in place by impacting a rear portion of the inserter with a mallet, for example. Optionally, with the current design, it is envisioned that the prosthesis 11 be inserted into the incision 35 as a first step, potentially taking advantage of being able to more freely maneuver it into the incision and roughly position it prior to inserting the expandable collet device 120 of the inserter 10′ into a mating hole—this optional procedure is used, the lever 46 may then be pressed towards the housing 12, thereby drawing the plunger 146a′ in between the fingers 127 thereby actuating the opening of the expandable collet device 120 and thus the fixing the prosthesis 11 on the end of the inserter 10′. These optional steps substitute for the above mentioned four steps. In a fifth step, the knob 20′ is turned in an opposite direction in order to release the prosthesis 11. In a final step, the inserter 10′ is removed from the incision 35. The “easily cleaned” objective of the invention 10, 10′, 10″ enables access to all surfaces that they can be cleaned (parts covering another part can be moved or removed to expose all surfaces), the reduction in number of small radius internal corners, crevices and small gaps and the absence of blind holes.
Referring now to
Referring now to
Referring now to
The inner recess has a ratchet pawl (not shown) that locks against one way ratchet teeth 67 so as to allow the rod 56 to slide into the housing 12, but to prevent the rod from sliding out of the housing unless an unlock lever 68 is activated, such lever merely rotating the teeth 60a′ of the pawl away from the teeth 67′ of the rod (as shown in
Referring now to
In an advantage, the multiple fingers 127 of the collet 126′ of
In another advantage, the locking action in which the plunger 146a′ is drawn into the housing 12, concurrently pulls the prosthesis 11 into engagement against the face 141a of the inserter head 141, thus further securing the prosthesis 11 and providing significantly better handling thereof.
In an advantage, the inserter 10′ is simple and easy to use, without complex and possibly confusing locks activated with the thumb.
In another advantage, it is simple to select a desired orientation of the prosthesis 11.
In another advantage, due to the drawing of the prosthesis 2 against the impaction head 40, the connection between the prosthesis 11 is robust as the connection is made without any play or gaps therebetween, ensuring good support during impaction.
An objective is to provide an inserter 10, 10′, 10″ that is easy to disassemble and for which the disassembly is easy to learn.
Another object of the invention is to provide a dual mechanism that uses common components to lock the implant in place as well as to provide for easy disassembly for cleaning and sterilization.
Another object of the invention is to minimise the number of pieces and the risk that parts could be lost.
The object of the invention is to provide an inserter 10, 10′, 10″ which enables the implant to be locked in an angular orientation prior to installation of the implant.
In an advantage, the inserter 10′ is simple and easy to use, without complex and possibly confusing locks activated with the thumb.
In another advantage, it is simple to select a desired orientation of the prosthesis 11.
In another advantage, due to the drawing of the prosthesis 2 against the impaction head 40, the connection between the prosthesis 11 is robust as the connection is made without any play or gaps therebetween, ensuring good support during impaction.
An objective is to provide an inserter 10, 10′, 10″ that is easy to disassemble and for which the disassembly is easy to learn.
Another object of the invention is to provide a dual mechanism that uses common components to lock the implant in place as well as to provide for easy disassembly for cleaning and sterilization.
Another object of the invention is to minimize the number of pieces and the risk that parts could be lost.
The object of the invention is to provide an inserter 10, 10′, 10″ which enables the implant to be locked in an angular orientation prior to installation of the implant.
The attached drawings represent, by way of example, different embodiments of the subject of the invention. Multiple variations and modifications are possible in the embodiments of the invention described here. Although certain illustrative embodiments of the invention have been shown and described here, a wide range of modifications, changes, and substitutions is contemplated in the foregoing disclosure. In some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, it is appropriate that the foregoing description be construed broadly and understood as being given by way of illustration and example only, the spirit and scope of the invention being limited only by the appended claims.
This application claims Foreign Priority to PCT application PCT/IB2004/003676, filed 10 Nov. 2004 and U.S. Provisional Application Ser. No. 60/634,467, filed Dec. 9, 2004.
Number | Name | Date | Kind |
---|---|---|---|
1942422 | Hanna | Jan 1934 | A |
4305394 | Bertuch | Dec 1981 | A |
4475549 | Oh | Oct 1984 | A |
4587964 | Walker et al. | May 1986 | A |
4632111 | Roche | Dec 1986 | A |
4716894 | Lazzeri et al. | Jan 1988 | A |
4765328 | Keller et al. | Aug 1988 | A |
4919679 | Averill et al. | Apr 1990 | A |
5037424 | Aboczsky | Aug 1991 | A |
5190549 | Miller et al. | Mar 1993 | A |
5324293 | Rehmann | Jun 1994 | A |
5364403 | Petersen et al. | Nov 1994 | A |
5417696 | Kashuba et al. | May 1995 | A |
5443471 | Swajger | Aug 1995 | A |
5540697 | Rehmann et al. | Jul 1996 | A |
5584837 | Petersen et al. | Dec 1996 | A |
5658294 | Sederholm | Aug 1997 | A |
5683399 | Jones | Nov 1997 | A |
5720750 | Koller et al. | Feb 1998 | A |
6063124 | Amstutz | May 2000 | A |
6451058 | Tuke et al. | Sep 2002 | B2 |
6626913 | McKinnon et al. | Sep 2003 | B1 |
7621921 | Parker | Nov 2009 | B2 |
20030050645 | Parker et al. | Mar 2003 | A1 |
20030229356 | Dye | Dec 2003 | A1 |
20050038443 | Hedley et al. | Feb 2005 | A1 |
20050187562 | Grimm et al. | Aug 2005 | A1 |
20050222572 | Chana | Oct 2005 | A1 |
20050228395 | Auxepaules et al. | Oct 2005 | A1 |
20070156155 | Parker | Jul 2007 | A1 |
20070167952 | Burgi et al. | Jul 2007 | A1 |
20070293869 | Conte et al. | Dec 2007 | A1 |
20080021481 | Burgi | Jan 2008 | A1 |
20080275450 | Myers et al. | Nov 2008 | A1 |
20090192515 | Lechot et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
470912 | Feb 1992 | EP |
WO0106964 | Feb 2001 | WO |
WO 2005044153 | May 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20060149285 A1 | Jul 2006 | US |
Number | Date | Country | |
---|---|---|---|
60634467 | Dec 2004 | US |