The present invention relates generally to devices, systems and methods for material fixation, and, more particularly, to insertion devices for fixation implants utilized to attach soft tissue to bone, for the purpose of the repair of many soft tissue injuries, such as in the reconstruction of the Anterior Cruciate Ligament (ACL).
The disclosed invention is an inserter, intended to be used in conjunction with a soft tissue or bone-to-bone fixation device that will allow a surgeon to repair many soft tissue injuries, such as an Anterior Cruciate Ligament (ACL) injury. The bone-to-bone fixation device, once loaded with a soft tissue graft, is deployed into a prepared bone tunnel using the invention described herein. The fixation implant is packaged sterile and preloaded onto the inserter. In a preferred embodiment, the disclosed inserter device may be utilized with a fixation implant of the type disclosed in commonly assigned U.S. patent application Ser. No. 11/923,526 (the '526 application), entitled Methods and Systems for Material Fixation, filed on Oct. 24, 2007, and herein expressly incorporated by reference in its entirety.
Current ACL repairs may be difficult to perform, require more steps, additional procedure time, extra drilling, external jigs or fixtures or multiple assistants. The device is an easy to use positioning and installation tool for a femoral implant of the type disclosed in the '526 application. The device is inserted through a single, simple drill hole and positioned into place. The device controls the degree to which the implant is deployed and prevents accidental disengagement from the implant before deployment has completed. The device also guides the components of the implant involved in active tendon compression at the aperture of the femoral tunnel. The implant is deployed simply by rotating a knob, thereby creating a femoral anchor point of high stiffness and fixation strength. When deployment has completed, the inserter is disengaged from the affixed implant by simply pulling a release mechanism.
The use of the device is straightforward, eliminating potential for confusion that may arise when using other femoral fixation technologies. No additional accessories or steps are required. The only required step in preparation for fixation is to locate and drill a single tunnel within the femur. The device is designed to be used by a single operator to minimize the time and cost required to perform the procedure.
More particularly, there is provided a device for positioning and deploying a fixation implant, which comprises a handle, an insertion shaft extending distally from the handle, an implant retention mechanism disposed on a distal end of the insertion shaft, an implant deployment control disposed on the handle, and an implant release control disposed on the handle. A suture cleat is also preferably disposed on the handle, on which suture may be wrapped. A safety mechanism is disposed on the device for preventing unintentional actuation of the deployment control. Preferably, the deployment control comprises a rotatable knob and the safety mechanism comprises a safety pin which is removable to permit rotation of the rotatable deployment knob.
The inventive insertion device further comprises a mechanism for limiting rotation of the deployment knob to only one direction, wherein because the deployment knob may only be rotated in one direction, the deployment knob may be advanced distally, but not retracted proximally. The implant retention mechanism comprises a ball detent mechanism. The ball detent mechanism comprises a detent ball, a detent ball retainer, and a ball detent rod. An insertion shaft spring is disposed on the ball detent rod.
The fixation implant comprises an implant screw for deploying the fixation implant. The implant screw comprises a head having a hole for engaging the detent ball. The implant release control comprises a knob which is movable proximally to disengage the implant retention mechanism from a fixation implant engaged therewith. A hex tube is disposed at the distal end of the insertion shaft. The implant retention mechanism is disposed on the hex tube and the hex tube has a recess for receiving a portion of the fixation implant.
The implant screw further comprises internal left-hand threads disposed on an interior surface in the head, defining the hole, so that the implant screw may be disengaged from the fixation implant. A shaft having external threads extends distally from the implant screw head.
In another aspect of the invention, there is provided a fixation implant for securing soft tissue to bone or bone to bone, wherein the fixation implant comprises an implant screw for deploying the fixation implant. The implant screw comprises a head having a hole for engaging a detent ball forming part of an implant retention mechanism on an insertion tool. The implant screw further comprises internal left-hand threads disposed on an interior surface in the head, defining said hole, so that the implant screw may be disengaged from the fixation implant, and a shaft having external threads, extending distally from the head.
In still another aspect of the invention, there is disclosed a method for inserting a deployable fixation implant into an opening in bone. This method comprises steps of retaining the fixation implant on a distal end of an insertion tool, positioning the insertion tool in a desired bone opening, disengaging a safety mechanism so that a deployment control on the insertion tool may be actuated to deploy the fixation implant, and actuating the deployment control to advance of component of the fixation implant distally, so that portions of the fixation implant are expanded radially to engage adjacent bone. The disengaging step comprises removing a safety pin from the insertion tool to thereby permit rotation of the deployment control, and the actuation step comprises rotating a knob of the deployment control. The inventive method further comprises a step of releasing the fixation implant from the insertion tool.
The invention, together with additional features and advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying illustrative drawing.
The device 10 of the present invention is an inserter, used for positioning and deployment of a fixation implant like that described in the '526 application. The user interface features of the inserter 10, depicted in
At the end of the insertion device 10, a sutured soft tissue graft (not shown) is loaded onto the implant (not shown), and the free suture strands (not shown) are secured to the suture cleats 22 to allow for suture management and easy insertion of the graft complex. The suture cleats 22 are designed to be easily and quickly wrapped with suture. After the suture has been attached to the cleats, the inserter is placed inside a femoral tunnel 24 in the femur 26 of a patient (
The device may come preloaded with the fixation implant attached to the inserter tip 40 (
Now referring more particularly to
The deployment knob 18 may be attached to the threaded ratchet shaft 48 by means of an alignment pin 58. As the deployment knob 18 rotates the threaded ratchet shaft 48 in a clockwise direction, it is translated linearly forward by a stationary translation nut 60. The translation nut 60 is fitted inside a cavity in the handle bottom 54 and the handle top 62. The deployment tube 64, which engages with and turns the implant screw, is affixed to the threaded ratchet shaft 48. The threaded ratchet shaft 48 and implant screw are threaded so that the turn to travel ratio are 1:1 between the two components. Therefore, as the threaded ratchet shaft 48 and deployment tube 64 rotate, the per-turn linear travel of the threaded ratchet shaft 48 is equal to the linear travel of the implant screw within the implant body.
The inserter tip 40 interfaces with the compression pads on the femoral implant to prevent implant rotation and assists in aligning and guiding the compression pads as they separate. The insertion shaft 16 is preferably a hollow cylindrical collar that is allowed to freely slide over the deployment tube 64. An anti-rotation washer 66 has a machined groove that aligns to a longitudinal rib in the handle top 62. The anti-rotation washer has a positive spring bias created by the insertion shaft spring 34. The insertion shaft spring 34 is constrained by a rib within the handle top 62. As the assembly of the inserter tip 40, insertion shaft 16, and anti-rotation washer 66 moves distally during the course of implant deployment, the insertion shaft spring 34 compresses, providing a reaction force that ensures the inserter tip 40 remains engaged with the implant.
The deployment tube 64 contains a hollow cylindrical center portion that allows the ball detent rod 32 to slide freely within. The ball detent rod 32 also fits within the detent ball retainer 30 that is fixed inside the tip of the deployment tube 64. The purpose of the detent ball retainer 30 is to retain the detent ball 28 within the deployment tube 64 and to constrain its motion inwards and outwards from the engaging hex face of the deployment tube 64. The inside engaging hex face of the deployment tube 64 is drilled in such a manner that the detent ball 28 is prevented from falling out of the assembly yet is still allowed to protrude enough for significant engagement with the implant screw.
The detent ball 28 is sandwiched above the detent ball retainer 30 and below the engaging hex face of the deployment tube 64. As the ball detent rod 32 slides into the detent ball retainer 30, it pushes the detent ball 28 from the engaging hex face of the deployment tube 64. In this state, the detent ball 28 protrudes a distance out of the engaging hex face of the deployment tube 64 and is prevented from retracting back into the engaging hex face by the support of the ball detent rod 32 underneath.
The ball detent rod 32 is connected to a spring shaft 68 which is equipped with an engagement spring 70 that translates a positive engagement force to the ball detent rod 32. The engagement spring 70 is confined within the deployment knob 18 and a deployment knob cover 72 which it is compressed by when the spring shaft 68 is retracted.
It is to be understood that the figures of the bone and anchors seen above are purely illustrative in nature, and are not intended to limit the application of the inventive embodiments to any particular physiological application or purpose. The invention is applicable to many different types of procedures involving, in particular, the attachment of connective or soft tissue to bone. All of the terms used herein are descriptive rather than limiting, and many changes, modifications, and substitutions may be made by one having ordinary skill in the art without departing from the spirit and scope of the invention, which is to be limited only in accordance with the following claims.
This application is a divisional application under 35 U.S.C. 120 of commonly assigned U.S. patent application Ser. No. 12/437,007 entitled Inserter for Soft Tissue or Bone-to-Bone Fixation Device and Methods, filed on May 7, 2009, issued as U.S. Pat. No. 8,858,565 on Oct. 14, 2014, which in turn claims the benefit under 35 U.S.C. 119(e) of the filing date of Provisional U.S. Application Ser. No. 61/051,671, entitled Inserter for Soft Tissue or Bone-to-Bone Fixation Device, filed on May 8, 2008. Each of the above referenced applications are expressly incorporated herein by reference, in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3708883 | Flander | Jan 1973 | A |
3832931 | Talan | Sep 1974 | A |
4311421 | Okada et al. | Jan 1982 | A |
4711232 | Fischer et al. | Dec 1987 | A |
4716893 | Fischer et al. | Jan 1988 | A |
4738255 | Goble et al. | Apr 1988 | A |
4744793 | Parr et al. | May 1988 | A |
4772286 | Goble et al. | Sep 1988 | A |
4778468 | Hunt et al. | Oct 1988 | A |
4828562 | Kenna | May 1989 | A |
4870957 | Goble et al. | Oct 1989 | A |
4955910 | Bolesky | Sep 1990 | A |
4957498 | Caspari et al. | Sep 1990 | A |
5004474 | Fronk et al. | Apr 1991 | A |
5037422 | Hayhurst et al. | Aug 1991 | A |
5085661 | Moss | Feb 1992 | A |
5139520 | Rosenberg | Aug 1992 | A |
5161916 | White et al. | Nov 1992 | A |
5176709 | Branemark | Jan 1993 | A |
5188636 | Fedotov | Feb 1993 | A |
5211647 | Schmieding | May 1993 | A |
5234430 | Huebner | Aug 1993 | A |
5236445 | Hayhurst et al. | Aug 1993 | A |
5258016 | DiPoto et al. | Nov 1993 | A |
5268001 | Nicholson et al. | Dec 1993 | A |
5281237 | Gimpelson | Jan 1994 | A |
5320626 | Schmieding | Jun 1994 | A |
5336240 | Metzler et al. | Aug 1994 | A |
5350383 | Schmieding et al. | Sep 1994 | A |
5354298 | Lee et al. | Oct 1994 | A |
5356435 | Thein | Oct 1994 | A |
5364398 | Chapman et al. | Nov 1994 | A |
5365807 | Darrah et al. | Nov 1994 | A |
5374269 | Rosenberg | Dec 1994 | A |
5383878 | Roger et al. | Jan 1995 | A |
5411523 | Goble | May 1995 | A |
5431651 | Goble | Jul 1995 | A |
5431666 | Sauer et al. | Jul 1995 | A |
5439467 | Benderev et al. | Aug 1995 | A |
5456685 | Huebner | Oct 1995 | A |
5464427 | Curtis et al. | Nov 1995 | A |
5466237 | Byrd et al. | Nov 1995 | A |
5474555 | Puno et al. | Dec 1995 | A |
5478341 | Cook et al. | Dec 1995 | A |
5480403 | Lee et al. | Jan 1996 | A |
5486197 | Le et al. | Jan 1996 | A |
5507750 | Goble et al. | Apr 1996 | A |
5534001 | Schlapfer | Jul 1996 | A |
5571104 | Li | Nov 1996 | A |
5571184 | DeSatnick | Nov 1996 | A |
5575819 | Amis | Nov 1996 | A |
5578048 | Pasqualucci et al. | Nov 1996 | A |
5598612 | Sheldon | Feb 1997 | A |
5601562 | Wolf et al. | Feb 1997 | A |
5603716 | Morgan et al. | Feb 1997 | A |
5618314 | Harwin et al. | Apr 1997 | A |
5632748 | Beck, Jr. et al. | May 1997 | A |
5645589 | Li | Jul 1997 | A |
5667513 | Torrie et al. | Sep 1997 | A |
5702215 | Li | Dec 1997 | A |
5702397 | Goble et al. | Dec 1997 | A |
5707395 | Li | Jan 1998 | A |
5713903 | Sander et al. | Feb 1998 | A |
5718706 | Roger | Feb 1998 | A |
5725529 | Nicholson et al. | Mar 1998 | A |
5725541 | Anspach et al. | Mar 1998 | A |
5728136 | Thal | Mar 1998 | A |
5741300 | Li | Apr 1998 | A |
5743912 | Lahille et al. | Apr 1998 | A |
5769894 | Ferragamo | Jun 1998 | A |
5782865 | Grotz | Jul 1998 | A |
5814073 | Bonutti | Sep 1998 | A |
5845645 | Bonutti | Dec 1998 | A |
5846254 | Schulze et al. | Dec 1998 | A |
5871504 | Eaton et al. | Feb 1999 | A |
5899938 | Sklar | May 1999 | A |
5902303 | Eckhof et al. | May 1999 | A |
5911721 | Nicholson et al. | Jun 1999 | A |
RE36289 | Le et al. | Aug 1999 | E |
5931869 | Boucher et al. | Aug 1999 | A |
5935129 | McDevitt et al. | Aug 1999 | A |
5941901 | Egan | Aug 1999 | A |
5957953 | Depoto et al. | Sep 1999 | A |
5961520 | Beck, Jr. et al. | Oct 1999 | A |
5964764 | West, Jr. et al. | Oct 1999 | A |
5968078 | Grotz | Oct 1999 | A |
5993459 | Larsen et al. | Nov 1999 | A |
6017346 | Grotz | Jan 2000 | A |
6086608 | Ek et al. | Jul 2000 | A |
6099530 | Simonian et al. | Aug 2000 | A |
6113609 | Adams | Sep 2000 | A |
6117173 | Taddia et al. | Sep 2000 | A |
6132433 | Whelan | Oct 2000 | A |
6146406 | Shiuzas et al. | Nov 2000 | A |
6152928 | Wenstrom, Jr. | Nov 2000 | A |
6179840 | Bowman | Jan 2001 | B1 |
6187008 | Hamman | Feb 2001 | B1 |
6190411 | Lo | Feb 2001 | B1 |
6214007 | Anderson | Apr 2001 | B1 |
6221107 | Steiner et al. | Apr 2001 | B1 |
6325804 | Wenstrom, Jr. et al. | Dec 2001 | B1 |
6328758 | Tornier et al. | Dec 2001 | B1 |
6355066 | Kim | Mar 2002 | B1 |
6379361 | Beck, Jr. et al. | Apr 2002 | B1 |
6387129 | Rieser et al. | May 2002 | B2 |
6461373 | Wyman et al. | Oct 2002 | B2 |
6482210 | Skiba et al. | Nov 2002 | B1 |
6517579 | Paulos et al. | Feb 2003 | B1 |
6533795 | Tran et al. | Mar 2003 | B1 |
6533816 | Sklar | Mar 2003 | B2 |
6551330 | Bain et al. | Apr 2003 | B1 |
6554862 | Hays et al. | Apr 2003 | B2 |
6562071 | Jarvinen | May 2003 | B2 |
6599295 | Tornier et al. | Jul 2003 | B1 |
6616694 | Hart | Sep 2003 | B1 |
6623524 | Schmieding | Sep 2003 | B2 |
6632245 | Kim | Oct 2003 | B2 |
6648890 | Culbert et al. | Nov 2003 | B2 |
6656183 | Colleran et al. | Dec 2003 | B2 |
6685706 | Padget et al. | Feb 2004 | B2 |
6716234 | Grafton et al. | Apr 2004 | B2 |
6730124 | Steiner | May 2004 | B2 |
6736829 | Li et al. | May 2004 | B1 |
6736847 | Seyr et al. | May 2004 | B2 |
6752831 | Sybert et al. | Jun 2004 | B2 |
6770073 | McDevitt et al. | Aug 2004 | B2 |
6770084 | Bain et al. | Aug 2004 | B1 |
6780188 | Clark et al. | Aug 2004 | B2 |
6796977 | Yap et al. | Sep 2004 | B2 |
6802862 | Roger et al. | Oct 2004 | B1 |
6833005 | Mantas et al. | Dec 2004 | B1 |
6887271 | Justin et al. | May 2005 | B2 |
6890354 | Steiner et al. | May 2005 | B2 |
6932841 | Sklar et al. | Aug 2005 | B2 |
6939379 | Sklar | Sep 2005 | B2 |
6942666 | Overaker et al. | Sep 2005 | B2 |
6942668 | Padget et al. | Sep 2005 | B2 |
6986781 | Smith | Jan 2006 | B2 |
7008451 | Justin et al. | Mar 2006 | B2 |
7037324 | Martinek | May 2006 | B2 |
7083638 | Foerster | Aug 2006 | B2 |
7201754 | Stewart et al. | Apr 2007 | B2 |
7309355 | Donnelly et al. | Dec 2007 | B2 |
7326247 | Schmieding et al. | Feb 2008 | B2 |
7556629 | Von Hoffmann et al. | Jul 2009 | B2 |
7556640 | Foerster | Jul 2009 | B2 |
8858565 | Hoof et al. | Oct 2014 | B1 |
20020115999 | McDevitt | Aug 2002 | A1 |
20020120280 | Wotton, III | Aug 2002 | A1 |
20020165611 | Enzerink et al. | Nov 2002 | A1 |
20030065391 | Re et al. | Apr 2003 | A1 |
20030083662 | Middleton | May 2003 | A1 |
20030109900 | Martinek | Jun 2003 | A1 |
20030135274 | Hays | Jul 2003 | A1 |
20030191478 | Kortenbach et al. | Oct 2003 | A1 |
20030199877 | Steiger et al. | Oct 2003 | A1 |
20030204204 | Bonutti | Oct 2003 | A1 |
20040024456 | Brown, Jr. et al. | Feb 2004 | A1 |
20040068267 | Harvie et al. | Apr 2004 | A1 |
20040068269 | Bonati et al. | Apr 2004 | A1 |
20040097943 | Hart | May 2004 | A1 |
20040097988 | Gittings et al. | May 2004 | A1 |
20040098050 | Foerster et al. | May 2004 | A1 |
20040098052 | West, Jr. et al. | May 2004 | A1 |
20040122435 | Green et al. | Jun 2004 | A1 |
20040153153 | Elson et al. | Aug 2004 | A1 |
20040180308 | Ebi et al. | Sep 2004 | A1 |
20040181240 | Tseng et al. | Sep 2004 | A1 |
20040199165 | Culbert et al. | Oct 2004 | A1 |
20040230194 | Urbanski et al. | Nov 2004 | A1 |
20040237362 | O'Connell | Dec 2004 | A1 |
20040267362 | Hwang et al. | Dec 2004 | A1 |
20050033289 | Warren et al. | Feb 2005 | A1 |
20050222576 | Kick et al. | Oct 2005 | A1 |
20050251260 | Gerber et al. | Nov 2005 | A1 |
20060095131 | Justin et al. | May 2006 | A1 |
20060155287 | Montgomery et al. | Jul 2006 | A1 |
20060189996 | Orbay et al. | Aug 2006 | A1 |
20070214916 | Lee | Sep 2007 | A1 |
20070270842 | Bankoski et al. | Nov 2007 | A1 |
20080119929 | Schmieding et al. | May 2008 | A1 |
20080188897 | Krebs et al. | Aug 2008 | A1 |
20080215061 | Schumacher et al. | Sep 2008 | A1 |
20090248089 | Jacofsky | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
2235354 | Oct 1999 | CA |
0232049 | Mar 1990 | EP |
0528573 | Aug 1992 | EP |
0688185 | Feb 1993 | EP |
1033115 | Sep 2000 | EP |
0762850 | Feb 2004 | EP |
0739185 | Sep 2004 | EP |
1011535 | Dec 2005 | EP |
2696925 | Apr 1994 | FR |
10155820 | Jun 1998 | JP |
8809157 | Dec 1988 | WO |
9216167 | Oct 1992 | WO |
9515726 | Jun 1995 | WO |
9812991 | Apr 1998 | WO |
9818409 | May 1998 | WO |
0130253 | May 2001 | WO |
02085256 | Oct 2002 | WO |
Entry |
---|
Caborn et al., A Biomechanical Comparison of Initial Soft Tissue Tibial Fixation Devices: The Intrafix Versus a Tapered 35-mm Bioabsorbable Interference Screw, The American Journal of Sports Medicine, 2004, vol. 32, No. 4. |
Charlton et al., Clinical Outcome of Anterior Cruciate Ligament Reconstruction with Quadrupled Hamstring Tendon Graft and Bioabsorbable Interference Screw Fixation, The American Journal of Sports Medicine, 2003, pp. 518-521, vol. 31, No. 4, Kerlan-Jobe Orthopaedic Clinic, Los Angeles. |
Morgan et al., Anatomic Graft Fixation Using a Retrograde Biointerference Screw for Endoscopic Anterior Cruciate Ligament Reconstruction: Single-Bundle and 2-Bundle Techniques, Techniques in Orthopaedics, 2005, pp. 297-302, vol. 20, No. 3, Lippincott Williams & Wilkins, Inc., Philadelphia. |
Robbe et al., Graft Fixation Alternatives in Anterior Cruciate Ligament Reconstruction, Spring 2002, pp. 21-28, vol. 15, Orthopaedic Surgery Department, University of Kentucky School of Medicine, Lexington, KY, U.S.A. |
Scheffler et al., Biomechanical Comparison of Hamstring and Patellar Tendon Graft Anterior Cruciate Ligament Reconstruction Techniques: The Impact of Fixation Level and Fixation Method Under Cyclic Loading, Arthroscopy: The Journal of Arthroscopic and Related Surgery, Mar. 2002, pp. 304-315, vol. 18, No. 3, Arthroscopy Association of North America. |
Simonian et al., Interference Screw Position and Hamstring Graft Location for Anterior Cruciate Ligament Reconstruction, The Journal of Arthroscopic and Related Surgery, Jul.-Aug. 1998, pp. 459-464, vol. 14, No. 5, The New York Hospital—Cornell University Medical College, New York, U.S.A. |
Wolf, Eugene M., Hamstring Anterior Cruciate Ligament, Reconstruction using Femoral Cross-pin Fixation, Operative Techniques in Sports Medicine, Oct. 1999, pp. 241-222, vol. 7, No. 4, W.B. Saunders Company, San Francisco, U.S.A. |
A Biomechanical Comparison of Femoral RetroScrew Placement in a Porcine Model, Arthrex Research and Development, 2007, Arthex, Inc. |
Scope This Out: A Technical Pearls Newsletter for Arthroscopists, Fall 1999, vol. 1, No. 3, Arthrex, Inc, U.S.A. |
Scope This Out: A Technical Pearls Newsletter for Arthroscopists, Summer 2001, vol. 3, No. 2, Arthrex, Inc, U.S.A. |
Scope This Out: A Technical Pearls Newsletter for Arthroscopists, Summer 2002, vol. 4, No. 2, Arthrex, Inc, U.S.A. |
Scope This Out: A Technical Pearls Newsletter for Arthroscopists, Summer 2002, vol. 5, No. 2, Arthrex, Inc, U.S.A. |
“U.S. Appl. No. 12/437,007, Appeal Brief filed May 6, 2014”, 26 pgs. |
“U.S. Appl. No. 12/437,007, Examiner Interview Summary dated Oct. 15, 2012”, 3 pgs. |
“U.S. Appl. No. 12/437,007, Final Office Action dated Aug. 23, 2013”, 18 pgs. |
“U.S. Appl. No. 12/437,007, Final Office Action dated Nov. 28, 2012”, 12 pgs. |
“U.S. Appl. No. 12/437,007, Non Final Office Action dated Dec. 18, 2012”, 12 pgs. |
“U.S. Appl. No. 12/437,007, Notice of Allowance dated Jun. 12, 2014”, 9 pgs. |
“U.S. Appl. No. 12/437,007, Preliminary Amendment filed Nov. 9, 2012”, 7 pgs. |
“U.S. Appl. No. 12/437,007, Response filed Jun. 18, 2013 to Non Final Office Action dated Dec. 18, 2012”, 11 pgs. |
“U.S. Appl. No. 12/437,007, Restriction Requirement dated Jun. 26, 2012”, 7 pgs. |
Number | Date | Country | |
---|---|---|---|
61051671 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12437007 | May 2009 | US |
Child | 14485487 | US |