The present invention relates generally to apparatus and methods for use in spinal disc arthroplasty, and more particularly, to apparatus and methods for use in the insertion of disc replacement implants into the intervertebral space between two adjacent vertebrae.
Whether due to injury, wear, or genetic defect, intervertebral disc degeneration is a problem suffered by many people. Typically, this spinal problem has been addressed by removing the disc material and replacing it with a spinal implant which fuses two adjacent vertebrae. Recently, however, there has been a significant amount of activity directed toward filling the intervertebral space with spinal implants that permit relatively natural movement of the two adjacent vertebrae with respect to each other. In other words, it is now becoming relatively common to utilize disc replacement implants which act like normal functioning spinal discs.
During a standard spinal disc arthroplasty, the damaged spinal disc material is removed and the two adjacent vertebrae are distracted to a distance sufficient to receive the spinal implant. Regardless of the type or size of implant utilized during spinal disc arthroplasty, one of the most difficult steps involves implanting the spinal implant in the intervertebral space. Often, a surgeon will struggle with properly inserting the spinal implant between two vertebrae. This is because inserting the implant requires moving the implant into the intervertebral space, while simultaneously distracting or spreading the two vertebrae. Heretofore, instruments utilized in this process have been rather cumbersome and difficult to manipulate, especially when implanting the aforementioned disc replacement implants.
For the foregoing reasons, there exists a need for an insertion guide for and a method of inserting a disc replacement implant into an intervertebral space.
In one preferred embodiment of the present invention, a spinal implant insertion guide includes at least one channel adapted for receiving and facilitating movement of at least two cooperating pieces of a spinal implant and a portion suitable for insertion into the intervertebral space between two vertebrae. The portion suitable for insertion into the intervertebral space is a projecting portion having a sloped height and a rounded end. This shape allows the portion to be easily inserted between the two vertebrae. After the projecting portion has been inserted between two vertebrae, the channel desirably extends into the intervertebral space, thereby allowing the implant to be implanted therein. The two pieces of the spinal implant may remain in cooperation with each other throughout movement in the at least one channel, however, slight movement of the pieces may be possible. There may be several embodiments relating to this aspect of the invention. For example, the channel may further include slots for positioning the pieces of the spinal implant in cooperation with one another. The insertion guide according to this embodiment of the present invention may also include a plunger for facilitating the movement of the spinal implant pieces. The portion suitable for insertion into the intervertebral space between two vertebrae may cause distraction of the two vertebrae upon insertion. In certain embodiments, the insertion guide may be packaged with the spinal implant preloaded therein. In other preferred embodiments, the spinal implant may be loaded into the insertion guide immediately before a surgical procedure. The insertion guide may be constructed of a broad range of biocompatible materials such as stainless steel. In certain preferred embodiments, the insertion guide is made of a polymeric material, thereby making it relatively inexpensive to construct and disposable.
Another preferred embodiment of the present invention includes a spinal implant insertion guide having at least one channel suitable for receiving and facilitating movement of a spinal implant, the at least one channel extending into an intervertebral space between two vertebrae. The insertion guide desirably includes a portion suitable for insertion into the intervertebral space, and a plunger for facilitating the movement of the spinal implant into the intervertebral space. This embodiment of the present invention may be configured to allow for the insertion of a spinal implant of unitary construction.
Yet another preferred embodiment of the present invention is a disposable spinal implant insertion guide including at least one channel suitable for receiving and facilitating movement of a spinal implant, the at least one channel extending into an intervertebral space between two vertebra, and a portion suitable for insertion into the intervertebral space. The disposable insertion guide according to this embodiment may be constructed from a broad range of materials including stainless steel or other metals. In one preferred embodiment, the insertion guide is made of a polymeric material.
Another preferred embodiment of the present invention provides a spinal insertion guide kit. The kit desirably includes at least two insertion guides, the at least two insertion guides being of different dimensions. Each guide includes at least one channel suitable for receiving and facilitating movement of at least two cooperating pieces of a spinal implant, the at least one channel extending into an intervertebral space between two vertebrae. Each guide also includes a portion suitable for insertion into the intervertebral space. The pieces of the spinal implant remain in cooperation throughout movement in the at least one channel. In certain embodiments according to this aspect of the present invention, the at least two insertion guides have different sized projecting portions suitable for insertion into the intervertebral space. In other embodiments according to this aspect of the present invention, the at least two insertion guides have different sized channels.
In another preferred embodiment of the present invention, a method of inserting an at least two piece spinal implant includes providing an insertion guide having at least one channel, inserting at least a portion of the insertion guide into an intervertebral space between two vertebrae, placing the at least two piece spinal implant into the at least one channel such that the spinal implant pieces cooperate with one another, and moving the spinal implant pieces together into the intervertebral space. The implant pieces preferably remain in cooperation throughout their insertion. The method according to this aspect of the present invention may also include distracting the vertebrae and/or preparing the vertebrae for receiving the spinal implant. The method may also include stabilizing the guide with respect to the vertebrae, with or without an external support. Finally, this method may also include providing and utilizing a plunger for facilitating the movement of the implant.
Yet another preferred embodiment of the present invention includes a method of implanting a spinal implant of unitary construction. The method according to this embodiment includes providing an insertion guide having at least one channel, inserting at least a portion of the insertion guide into an intervertebral space between two vertebrae, placing the spinal implant into the at least one channel, and moving the spinal implant into the intervertebral space by manipulating a plunger in the at least one channel.
Yet another embodiment of the present invention includes a method of implanting a multi-piece spinal implant. The method according to this embodiment includes providing an insertion guide having at least one channel, inserting at least a portion of the guide into an intervertebral space between two vertebrae, and moving the pieces through the at least one channel into the intervertebral space. During this movement of the pieces into the intervertebral space, the pieces are capable of slight movement with respect to each other.
A preferred method in accordance with the present invention may be a method of inserting a multi-piece spinal implant. This method may include the steps of providing an insertion guide defined by a channel having at least two slots therein, inserting at least a portion of the insertion guide into an intervertebral space between two vertebrae, placing each piece of the multi-piece spinal implant into the channel such that each implant piece engages at least one slot and the spinal implant pieces cooperate with on another, and moving the spinal implant pieces into the intervertebral space while maintaining the spinal implant pieces in cooperation with one another and allowing slight movement of the spinal implant pieces with respect to each other.
A preferred multi-piece spinal implant insertion guide in accordance with the present invention may include a channel including at least two slots, each of the at least two slots capable of engaging a different portion of a multi-piece spinal implant, and at least one extension suitable for insertion into an intervertebral space. Preferably, the guide should be configured so that the pieces of the multi-piece spinal implant remain in cooperation throughout movement in the channel and are capable of slight movement with respect to each other.
Yet another preferred multi-piece spinal implant insertion guide in accordance with the present invention may include a channel including at least two slots, each of the at least two slots capable of engaging a different portion of a multi-piece spinal implant, at least one extension suitable for insertion into an intervertebral space, and a plunger for facilitating movement of the spinal implant pieces. Preferably, the guide should be configured so that the pieces of the multi-piece spinal implant remain in cooperation throughout movement in the channel and are capable of slight movement with respect to each other.
The present invention will be better understood on reading the following detailed description of non-limiting embodiments thereof, and on examining the accompanying drawings, in which:
In describing the preferred embodiments of the subject matter illustrated and to be described with respect to the drawings, specific terminology will be used for the sake of clarity. However, the invention is not intended to be limited to the specific terminology and includes all technical equivalence which operates in a similar manner to accomplish a similar purpose.
Referring to the drawings, wherein like reference numerals represent like elements, there is shown in
Channel 20 is an opening within guide 10 configured and dimensioned to receive and allow sliding movement of spinal implant 7 from the proximal end 16 toward the distal end 18. As best shown in
Intervertebral extensions 22 and 24 are preferably narrower in height than the height of the first lateral wall 26 and second lateral wall 28, respectively. Extensions 22 and 24 extend beyond the portion of the first and second walls at which distal end wall 30 intersects them. As best shown in
Preferably, as shown in
As best shown in
Another aspect of the present invention is a method for inserting a spinal implant into an intervertebral space. The method according to this aspect of the invention includes the step of providing an insertion guide as discussed above. It is noted that the guide can be in accordance with any of the various embodiments disclosed herein, as the particular design may not cause the standard method step to significantly deviate. For the sake of ease in explaining the method, insertion guide 10 will be utilized below.
Initially, intervertebral extensions 22 and 24 of guide 10 are inserted between vertebrae 3 and 5. Depending upon the dimensions of extensions 22 and 24, the insertion of such may cause distraction of vertebrae 3 and 5 from one another. A surgeon may simply utilize his own bare hands to push extensions 22 and 24 into intervertebral space 2, or other tools such as hammers and mallets may be utilized, as for example in situations where vertebrae 3 and 5 are distracted during insertion of the guide. This distraction is accomplished by utilizing the rounded ends and/or sloped nature of the extensions to slowly insert guide 10 between vertebrae 3 and 5 to simultaneously distract the same. However, as mentioned above, extensions 22 and 24 need not be sized for such distraction and can be dimensioned to allow for a snug fit between vertebrae 3 and 5 without causing significant distraction.
In certain embodiments, vertebrae 3 and 5 may be prepared to receive an implant prior to the insertion of extensions 22 and 24. Depending upon the type of implant, this may include the removal of the deteriorated or damaged disc material, and/or the shaping of the bone to better receive the implant. For example, when utilizing implants that include keels, spikes or other protrusions, it may be necessary to cut channels or otherwise remove bone from vertebrae 3 and 5 to allow for proper implantation of the implant. It is also contemplated that once guide 10 is inserted between vertebrae 3 and 5, it may be supported by means other than the snug connection between the vertebrae. For example, an external support may be utilized to support guide 10 outside of the vertebrae. However, it is noted that often times, the fit of extensions 22, 24 between vertebrae 3 and 5 and the pressure exerted thereby is enough hold guide 10 in place.
Subsequent to guide 10 being inserted into intervertebral space 2, spinal implant 7 is preferably then placed into channel 20. It is also possible to pre-seat spinal implant 7 within channel 20, prior to guide 10 being inserted between the vertebrae. The latter design may be important in providing prepackaged, easily autoclaved or otherwise sterilized individual units. Regardless of when implant 7 is placed into channel 20, the inserted position of guide 10 allows for the implant to be moved into intervertebral space 2. For embodiments in which a spinal implant having two or more pieces is being implanted, it should be noted that the multiple pieces are placed into the insertion guide so that they cooperate with one another (e.g.—their articulating surfaces mate), and remain in this cooperation throughout their movement into the intervertebral space. It should also be noted that while pieces 8a and 8b of implant 7 are in cooperation with each other, these pieces may be capable of slightly moving with respect to each other. This slight motion may aid in the insertion of implant 7. For example, the slight motion may allow a surgeon to better manipulate pieces 8a and 8b to overcome hindrances caused by the adjacent vertebrae.
In a preferred embodiment, guide 10 is configured and dimensioned so as to allow for the above noted slight movement of pieces 8a and 8b of implant 7 with respect to each other. More particularly, channel 20 and slots 32a, 32b, 32c and 32d may be configured and dimensioned to allow for enough clearance so that slight canting of implant pieces 8a and 8b, or slight translation of the two implant pieces may be accomplished. In certain embodiments, the slots may simply be larger than the portions of pieces 8a and 8b being inserted therein. This would create a clearance that may allow for the two implant pieces to be moved with respect to one another. It is noted that any movement of pieces 8a and 8b with respect to each other should be such that the articulation surfaces of the two pieces remain in cooperation with each other. For example, the movement may be slight movement that is merely a portion of that which is allowed by the aforementioned articulation surfaces of pieces 8a and 8b. As mentioned above, allowing such slight movement may aid a surgeon during the implantation of implant 7. However, in certain cases, such movement may not be necessary.
The movement of spinal implant 7 into intervertebral space 2 is accomplished by applying a force to push the implant through channel 20 of the guide 10 and into the space. This force may be provided by utilizing a plunger 40, as described above. In these embodiments, plunger 40 is inserted into channel 20 subsequent to the placing of implant therein. Once again, in the prepackaged units mentioned above, plunger 40 may be packaged in an inserted position. Operation of handle 46 allows a surgeon to more easily push implant 7 into intervertebral space 2. In certain preferred embodiments, the sizing of plunger 40 should be such that the channel sized end 42 can fully situate implant 7 into intervertebral space 2, without handle 46 entering channel 20. Once implant 7 is moved into intervertebral space 2, guide 10 may be removed from its position between vertebrae 3 and 5. Thereafter, implant 7 may be seated in intervertebral space 2 in accordance with standard practices relating to the particular implant. For example, the individual pieces 8a and 8b of spinal implant 7 may both be cemented to adjacent vertebrae. However, it is also contemplated that various implants may have many different manners of being seated within an intervertebral space. For example, certain spinal implants may include flanges for facilitating connection with a bone screw or keels/spikes for implantation into the vertebral endplates. It is noted that in certain embodiments, end 42 of plunger 40 may be operatively connected to implant 7, or in other embodiments, may merely be capable of abutting the implant.
In certain embodiments, extensions 22 and 24 are sized so that insertion between vertebrae 3 and 5 causes distraction. However, this is not necessary. In embodiments in which the extensions are sized to facilitate distraction, the sloped configuration of extensions 22 and 24 allows for the increase of distraction of the vertebrae with respect to the further insertion of the extensions between the vertebrae. Upon implantation of implant 7, guide 10 may be removed. Similarly, guide 10 may be removed prior to the fixation of implant 7 to vertebrae 3 and 5, respectively. In embodiments in which extensions 22 and 24 are sized and configured to cause distraction of vertebrae 3 and 5, removal of guide 10 may cause the vertebrae to return to their non-distracted position, thereby clamping and/or seating implant 7 in place. For implants that utilize keels or spikes, this vertebrae movement may cause the projections to become seated in their respective vertebrae.
It is also contemplated that while the designs of both guide 10 and guide 110 include at least two slots for receiving and holding the spinal implant, designs are envisioned that do not require slots. For example, as shown in
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
This application is a divisional of U.S. application Ser. No. 11/204,062, filed on Aug. 15, 2005, now abandoned, which claims the benefit of the filing date of U.S. Provisional Patent Application No. 60/601,461 filed Aug. 13, 2004, the disclosures of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3486505 | Morrison | Dec 1969 | A |
4545374 | Jacobson | Oct 1985 | A |
5306309 | Wagner et al. | Apr 1994 | A |
5431658 | Moskovich | Jul 1995 | A |
5489307 | Kuslich et al. | Feb 1996 | A |
5571109 | Bertagnoli | Nov 1996 | A |
5676701 | Yuan et al. | Oct 1997 | A |
5797909 | Michelson | Aug 1998 | A |
5895428 | Berry | Apr 1999 | A |
5980522 | Koros et al. | Nov 1999 | A |
6042582 | Ray | Mar 2000 | A |
6063088 | Winslow | May 2000 | A |
6080155 | Michelson | Jun 2000 | A |
6083225 | Winslow et al. | Jul 2000 | A |
6086595 | Yonemura et al. | Jul 2000 | A |
6113602 | Sand | Sep 2000 | A |
6113638 | Williams et al. | Sep 2000 | A |
6156040 | Yonemura et al. | Dec 2000 | A |
6190387 | Zucherman et al. | Feb 2001 | B1 |
6210412 | Michelson | Apr 2001 | B1 |
6224599 | Baynham et al. | May 2001 | B1 |
6224607 | Michelson | May 2001 | B1 |
6261295 | Nicholson et al. | Jul 2001 | B1 |
6267763 | Castro | Jul 2001 | B1 |
6270498 | Michelson | Aug 2001 | B1 |
6371988 | Pafford et al. | Apr 2002 | B1 |
6413278 | Marchosky | Jul 2002 | B1 |
6478800 | Fraser et al. | Nov 2002 | B1 |
6520967 | Cauthen | Feb 2003 | B1 |
6565574 | Michelson | May 2003 | B2 |
6575981 | Boyd et al. | Jun 2003 | B1 |
6589247 | McGahan et al. | Jul 2003 | B2 |
6595995 | Zdeblick et al. | Jul 2003 | B2 |
6648895 | Burkus et al. | Nov 2003 | B2 |
6652533 | O'Neil | Nov 2003 | B2 |
6679887 | Nicholson et al. | Jan 2004 | B2 |
6682534 | Patel et al. | Jan 2004 | B2 |
6723096 | Dorchak et al. | Apr 2004 | B1 |
6730124 | Steiner | May 2004 | B2 |
6743234 | Burkus et al. | Jun 2004 | B2 |
6755839 | Van Hoeck et al. | Jun 2004 | B2 |
6770074 | Michelson | Aug 2004 | B2 |
6800093 | Nicholson et al. | Oct 2004 | B2 |
6814737 | Cauthen | Nov 2004 | B2 |
6824565 | Muhanna et al. | Nov 2004 | B2 |
6835208 | Marchosky | Dec 2004 | B2 |
6855148 | Foley et al. | Feb 2005 | B2 |
6875213 | Michelson | Apr 2005 | B2 |
6896680 | Michelson | May 2005 | B2 |
6966912 | Michelson | Nov 2005 | B2 |
7326250 | Beaurain et al. | Feb 2008 | B2 |
7575576 | Zubok et al. | Aug 2009 | B2 |
20020013588 | Landry et al. | Jan 2002 | A1 |
20020032483 | Nicholson et al. | Mar 2002 | A1 |
20020045944 | Muhanna et al. | Apr 2002 | A1 |
20020055745 | McKinley et al. | May 2002 | A1 |
20020116009 | Fraser et al. | Aug 2002 | A1 |
20020123753 | Michelson | Sep 2002 | A1 |
20020138145 | Marchosky | Sep 2002 | A1 |
20020143343 | Castro | Oct 2002 | A1 |
20020161366 | Robie et al. | Oct 2002 | A1 |
20020193802 | Zdeblick et al. | Dec 2002 | A1 |
20020198532 | Michelson | Dec 2002 | A1 |
20030028197 | Hanson et al. | Feb 2003 | A1 |
20030097181 | Castro et al. | May 2003 | A1 |
20030130662 | Michelson | Jul 2003 | A1 |
20030144736 | Sennett | Jul 2003 | A1 |
20030149438 | Nichols et al. | Aug 2003 | A1 |
20030195629 | Pafford et al. | Oct 2003 | A1 |
20030233147 | Nicholson et al. | Dec 2003 | A1 |
20030236526 | Van Hoeck et al. | Dec 2003 | A1 |
20040002758 | Landry et al. | Jan 2004 | A1 |
20040030387 | Landry et al. | Feb 2004 | A1 |
20040097932 | Ray et al. | May 2004 | A1 |
20040133278 | Marino et al. | Jul 2004 | A1 |
20040143332 | Krueger et al. | Jul 2004 | A1 |
20040153089 | Zdeblick et al. | Aug 2004 | A1 |
20040225295 | Zubok et al. | Nov 2004 | A1 |
20040243240 | Beaurain et al. | Dec 2004 | A1 |
20050043740 | Haid et al. | Feb 2005 | A1 |
20050043741 | Michelson | Feb 2005 | A1 |
20050075643 | Schwab et al. | Apr 2005 | A1 |
20050075644 | DiPoto et al. | Apr 2005 | A1 |
20050107881 | Alleyne et al. | May 2005 | A1 |
20050131416 | Jansen et al. | Jun 2005 | A1 |
20050131541 | Trieu | Jun 2005 | A1 |
20050143747 | Zubok et al. | Jun 2005 | A1 |
20050154463 | Trieu | Jul 2005 | A1 |
20050165408 | Puno et al. | Jul 2005 | A1 |
20050165486 | Trieu | Jul 2005 | A1 |
20050192671 | Bao et al. | Sep 2005 | A1 |
20060004377 | Keller | Jan 2006 | A1 |
20070156243 | Errico et al. | Jul 2007 | A1 |
20080046084 | Sledge | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
02089701 | Nov 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20110022175 A1 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
60601461 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11204062 | Aug 2005 | US |
Child | 12848474 | US |