Insertion instrument, adapter assemblies and protector assemblies for a flexible circular stapler

Abstract
An adapter assembly for connecting a handle assembly with a loading unit is provided. The adapter assembly includes a housing, an elongate body extending from the housing, and a trocar assembly supported within the elongate body and including a trocar member. The trocar member extends from the elongate body and is magnetized. Also provided are various assemblies for protecting the distal end of a surgical stapler during introduction of the surgical stapler within a patient.
Description
BACKGROUND
Technical Field

The present disclosure relates to surgical stapling devices. More particularly, the present disclosure relates to insertion instruments, adapter assemblies, and protector assemblies for powered flexible circular staplers.


Background of Related Art

Circular staplers are used to perform end to end anastomosis. During a typical surgical procedure, an anvil of the circular stapler is delivered to the surgical site while a staple cartridge of the circular stapler supported on an elongate shaft is inserted through an incision in, for example, the abdominal wall. Alternatively, the circular stapler may include a flexible shaft that permits introduction of the staple cartridge to the surgical site through a natural body orifice, e.g., mouth or anus. The circular staplers may be manual or powered, and may be modified for use with robotic surgical systems.


In order to better facilitate introduction and positioning of a flexible shaft of the circular staplers, it would be beneficial to have a circular stapler that includes an efficient mechanism for connecting the anvil assembly of the circular stapler to the elongate body of the circular stapler during a surgical procedure. It would also be beneficial to have an introducer that minimizes risk of damage to the patient and/or to the circular stapler during, for example, introduction of the circular stapler into a patient. It would further be beneficial to have a circular stapler that increases visualization of the surgical procedure. It would also be beneficial to have a circular stapler with an elongated body capable of accommodate a guide wire and/or that allows for injecting saline to an anastomosis site to, for example, test a seal and ease manipulation.


SUMMARY

An adapter assembly for connecting a handle assembly with a loading unit is provided. The adapter assembly includes a housing, an elongate body extending from the housing, and a trocar assembly supported within the elongate body and including a trocar member. The trocar member extends from the elongate body. wherein the trocar member is magnetized.


In embodiments, the adapter assembly includes an anvil assembly. The anvil assembly may include a center rod magnetized to compliment the trocar member such that the center rod is magnetically attracted to the trocar member. The anvil assembly may include a removable tip. The removable tip may be magnetized to compliment the trocar member such that the removable tip is magnetically attracted to the trocar member. The trocar assembly may include an electromagnet received about the trocar member for selectively magnetizing the trocar member. The adapter assembly may further include a light source.


Also provided is an insertion instrument for facilitating placement of an anvil assembly within a patient. The insertion instrument includes a handle assembly, an elongate body extending from the handle assembly, an electromagnet including a coil of wire received around a ferromagnetic member, the electromagnet being disposed on a distal end of the elongate body, and a light source disposed on a distal end of the elongate body. In embodiments, the insertion instrument includes a first switch assembly for selectively activating the electromagnet. The insertion instrument may include a second switch assembly for selectively activating the light source.


Another assembly for protecting the functional end of a surgical stapler during introduction of the surgical stapler within a patient is provided. The assembly includes a sleeve having proximal and distal ends and being receivable about an elongate body. The sleeve defines an inflatable cavity on the distal end configured to be disposed adjacent a distal end of the elongate body. The assembly also includes an insufflation port in fluid communication with the inflatable cavity for selectively inflating the inflatable cavity.


In embodiments, the sleeve further defines a weakened portion extending along the length of the sleeve. The sleeve may include a handle portion on the proximal end. The assembly may include a source of insufflation fluid. The source of insufflation fluid may include a syringe.


An assembly for protecting the functional end of a surgical stapler is also provided. The assembly includes a sleeve having proximal and distal ends, and a cap member secured to the distal end of the sleeve. The cap member may include a plurality of leaves connected to each other by a frangible connection. The frangible connection may include a weakened bridge.


In embodiments, the sleeve includes a handle portion on the proximal end. The sleeve may further define a weakened portion extending along the length of the sleeve. The assembly may also include a camera disposed on a distal end of the cap member. The assembly may include a steering assembly having a steering ring and a plurality of steering cables secured to the steering ring. The plurality of steering cables may extend the length of the sleeve.


Also provided is an assembly for protecting a distal end of circular stapling apparatus. The assembly includes an inflatable member having a first portion and a second portion, wherein the first portion is smaller than the second portion and is configured to be received within the distal end of a loading unit. The assembly also includes an insufflation port operably connected to the inflatable member for selectively inflating and deflating the inflatable member.


In embodiments, the inflatable member includes a snowman shape. Each of the first and second portions may be substantially spherical.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and, together with a general description of the disclosure given above, and the detailed description of the embodiment(s) given below, serve to explain the principles of the disclosure, wherein:



FIG. 1 is a side view of an exemplary handle assembly and an adapter assembly according to an embodiment of the present disclosure;



FIG. 2 is a side view of an anvil assembly according to an embodiment of the present disclosure;



FIG. 3 is a side view of an anvil assembly according to another embodiment of the present disclosure;



FIG. 4 is a side view of an adapter assembly according to another embodiment of the present disclosure;



FIG. 5 is a perspective view of an insertion instrument and anvil assembly according to an embodiment of the present disclosure;



FIG. 6 is an enlarged perspective side view of the distal end of the insertion instrument shown in FIG. 5;



FIG. 7 is a perspective side view of a protective assembly according to an embodiment of the present disclosure received about the adapter assembly shown in FIG. 1;



FIG. 8 is a perspective side view of a sleeve member of the protective assembly shown in FIG. 7;



FIG. 9A is an enlarged side view of the distal end of the sleeve member shown in FIG. 8, in a first or inflated condition;



FIG. 9B is an enlarged side view of the distal end of the sleeve member shown in FIG. 8, in a second or deflated condition;



FIG. 10 is a perspective side view of a protective assembly according to another embodiment of the present disclosure received about the adapter assembly shown in FIG. 1;



FIGS. 11A-11D are end views of cap members of the protective assembly shown in FIG. 10, having two (FIG. 11A), three (FIG. 11B), four (FIG. 11C), and five (FIG. 11D) leaves;



FIG. 12 is a perspective side view of the protective assembly shown in FIG. 10 received about the adapter assembly shown in FIG. 1 and received within a stump of an esophagus;



FIG. 13 is a perspective side view of the distal end of a protective assembly according to another embodiment of the present disclosure;



FIG. 14 is an end view of the distal end of the protective assembly shown in FIG. 13;



FIG. 15 is a cross-sectional side view of the protective assembly shown in FIG. 13;



FIG. 16 is a perspective side view of a protective assembly according to another embodiment of the present disclosure received about the adapter assembly shown in FIG. 1 which is secured to the exemplary handle assembly shown in FIG. 1;



FIG. 17 is a cross-sectional end view taken along line 17-17 in FIG. 16;



FIG. 18 is a side partial cross-sectional view of a protective assembly according to another embodiment of the present disclosure;



FIG. 19 is a perspective side view of a loading unit according to an embodiment of the present disclosure and a tubular organ received about a distal end of the loading unit;



FIG. 20 is a cross-sectional perspective side view of the loading unit shown in FIG. 19;



FIG. 21 is a cross-sectional perspective side view of the loading unit shown in FIG. 19 during an irrigation procedure;



FIG. 22 is a schematic illustration of a robotic surgical system including a robotic surgical assembly suitable for use with embodiments of the present disclosure.





DETAILED DESCRIPTION

Embodiments of the disclosure are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein the term “distal” refers to that portion of the adapter assembly or surgical device, or component thereof, farther from the user, while the term “proximal” refers to that portion of the adapter assembly or surgical device, or component thereof, closer to the user.


The embodiments of the present disclosure will be described in detail with respect to a powered handle assembly 10. Although shown and described as relates to the powered handle assembly 10, it is envisioned that the embodiments of the present disclosure may be modified for use with powered and non-powered handle assemblies having various configurations. For a detailed description of an exemplary powered circular stapler, please refer to commonly owned U.S. Pat. Appl. Publ. No. 2012/0253329 (“the '329 application”), the content of which is incorporated by reference herein in its entirety. Also, for a detailed description of an exemplary electromechanical powered handle assembly, please refer to commonly owned U.S. Pat. Appl. Publ. No. 2015/0157320 (“the '320 application), the content of which is incorporated by reference herein in its entirety.


With continued reference to FIG. 1, an adapter assembly according to an embodiment of the present disclosure is shown generally as adapter assembly 100. The adapter assembly 100 will only be described to the extent necessary to fully disclose the aspects of the present disclosure. For a detailed description of exemplary adapter assemblies, please refer to commonly owned U.S. Prov. Pat. Appl. Ser. No. 62/239,301, filed Oct. 9, 2015 and U.S. Prov. Pat. Appl. Ser. No. 62/251,300, filed Nov. 5, 2015, the contents of each of which are incorporated by reference herein in their entirety.


The adapter assembly 100 releasably connects to the powered handle assembly 10. The adapter assembly 100 includes a housing 102 operably connectable to the powered handle assembly 10, and an elongate body 104 extending from the housing 102. A loading unit 110 may be integrated with the adapter assembly 100, or may be releasably coupled to the adapter assembly 100 to permit reuse of the adapter assembly 100. The elongate body 104 is flexible to facilitate insertion of the loading unit 110 within the body.


A trocar member 106 extends from a distal end of the elongate body 104 for releasably engaging an anvil assembly, i.e., anvil assembly 120 (FIG. 2). As shown, a proximal portion 106a of the trocar member 106 includes a first magnetic polarity, i.e., south “S”, and a distal portion 106b of the trocar member 106 includes a second magnetic polarity, i.e., north “N”. As will become apparent from the below description, the polarities of the proximal and distal portions 106a, 106b of the trocar member 106 may be switched.


With reference to FIG. 2, the anvil assembly 120 is configured for releasable connection to the trocar member 106 (FIG. 1) of the adapter assembly 100 (FIG. 1). The anvil assembly 120 will only be described to the extent necessary to fully disclose the aspects of the present disclosure. For a detailed description of an exemplary anvil assembly, please refer to commonly owned U.S. Pat. No. 7,364,060 (“the '060 patent”). Another example of a tiltable anvil assembly is disclosed in commonly owned U.S. Pat. No. 8,540,132 (“the '132 patent”). The content of each of the '060 patent and the '132 patent are incorporated herein by reference in their entirety.


Briefly, the anvil assembly 120 includes a center rod assembly 122, and an anvil head assembly 124 secured to the center rod assembly 122. The head assembly 124 of the anvil assembly 120 may be rigidly secured to the center rod assembly 122. Alternatively, the head assembly 124 may be pivotally secured to the center rod assembly 122 to facilitate insertion of the anvil assembly 120 through a lumen of a patient. The center rod assembly 122 of the anvil assembly 120 includes a center rod 126. In one embodiment, the center rod 126 is magnetized. As shown in FIG. 2, the center rod 126 includes a proximal portion 126a with a first magnetic polarity, i.e., south “S”, and a distal portion 126b with a second magnetic polarity, i.e., north “N”.


As noted above, the trocar member 106 (FIG. 1) of the adapter assembly 100 (FIG. 1) is magnetized in a similar manner to the center rod 126 of the anvil assembly 120. In this manner, the proximal portion 126a of the center rod 126 of the anvil assembly 120 is attracted to the distal portion 106b of the trocar member 106.


During a surgical stapling procedure, the anvil assembly 120 may be introduced to a surgical site trans-orally, or in any other manner. After securing a first section of tissue to be stapled (not shown) to the anvil assembly 120, and after securing a second section of tissue to be stapled (not shown) about the loading unit 110 of the adapter assembly 100, the adapter assembly 100 is moved towards the anvil assembly 120. The magnetic attraction between the proximal portion 126a of the center rod 126 of the anvil assembly 120 and the distal portion 106b of the trocar member 106 facilitates alignment of the center rod 126 of the anvil assembly 120 with the trocar member 106 of the adapter assembly 100. This feature is particularly beneficial when the anvil assembly 120 is not visible to the clinician during connection of the anvil assembly 120 to the adapter assembly 100.


Turning to FIG. 3, in an alternative embodiment, the anvil assembly 120 includes a removable tip member 130 for facilitating receipt of the center rod 126 of the anvil assembly 120 through tissue (not shown). The removable tip member 130 includes a proximal portion 130a configured for piercing tissue and a distal end 130b configured for operable connection to the proximal end 126a of the center rod 126. The proximal portion 130a of the removable tip member 130 includes a first magnetic polarity, i.e., south “S”, and the distal portion 130b of the removable tip member 130 includes a second magnetic polarity, i.e., north “N”. When the removable tip member 130 is secured to the center rod 126 of the anvil assembly 120, in a manner similar to the magnetized center rod 126 described above, the magnetic attraction between the proximal portion 130a of the removable tip member 130 and the distal portion 106b (FIG. 1) of the trocar member 106 (FIG. 1) of the adapter assembly 100 (FIG. 1) facilitates approximation of the anvil assembly 120 to the adapter assembly 100.


Turning now to FIG. 4, an alternative embodiment of an adapter assembly according to the present disclosure is shown generally as adapter assembly 200. The adapter assembly 200 is substantially similar to adapter assembly 100 described hereinabove. The adapter assembly 200 includes a housing 202, an elongate body 204 extending from the housing 202, a trocar member 204 extending from the elongate body 204 for releasably securing an anvil assembly, e.g., anvil assembly 120 (FIG. 2), and a loading unit 210 disposed on a distal end of the elongate body 204.


With continued reference to FIG. 4, the adapter assembly 200 includes an electromagnet assembly 240. The electromagnet assembly 240 includes a wire coil or solenoid, 242 disposed within the loading unit 210 of the adapter assembly 200 and about the trocar member 206. The wire coil 242 is connected to a power source 244. The power source 244 may be disposed within the housing 202 of the adapter assembly 200, within the handle assembly 10 (FIG. 1), as a standalone power source, or in any other suitable configuration. A switch 246 for activating the electromagnet assembly 240 may be disposed on the housing 202 of the adapter assembly 200, as shown, or may be disposed on the handle assembly 10 (FIG. 1), or as an independent actuator i.e., foot pedal (not shown).


Activation of the electromagnet assembly 240 of the adapter assembly 200 magnetizes the trocar member 206. As described above with regards to the trocar member 106 of the adapter assembly 100, when the trocar member 206 of the adapter assembly 200 is magnetized, an anvil assembly that includes a magnetized portion, i.e., the center rod 126, the removable trocar tip 130, is attracted to the trocar member 206 to facilitate connection of the anvil assembly to the trocar member 206.


With reference now to FIGS. 5 and 6, an instrument for facilitating positioning of a magnetized anvil assembly, i.e., the anvil assembly 120, within a patient is shown generally as insertion instrument 300. The insertion instrument 300 includes a handle assembly 302, and an elongate body 304 extending from the handle assembly 302. The insertion instrument 300 also includes an electromagnet assembly 340 and a light assembly 350.


The electromagnet assembly 340 is similar to the electromagnet assembly 240 of the adapter assembly 200, and includes a wire coil 342 wrapped about a ferromagnetic material, i.e., rod member 348, a power source 344 connected to the wire coil 342, and an activation switch 346 for activating the electromagnet assembly 340.


The light assembly 350 includes at least one light source, for example, a circular array of light emitting diodes 352 mounted on a distal end of the elongate body 304, and a control switch for activating the light source 352 and for controlling the intensity of the light source 352. The light source 352 may be powered by the power source 344 of the electromagnet assembly 340. Alternatively, the light source 352 may be powered by an independent power source disposed within the handle assembly 302.


During positioning of the anvil assembly 120, activation of the electromagnet assembly 340 of the insertion instrument 300 creates a magnetic field that attracts the magnetized center rod 126 (FIG. 2) of the anvil assembly 120 to facilitate positioning of the anvil assembly 120 within the body cavity and through tissue “T”. Activation of the light source 352 of the light assembly 352 facilitates viewing of the anvil assembly 120 as the anvil assembly 120 is positioned through the tissue “T”. It is envisioned that the light source 352 may be placed behind the tissue “T” to illuminate the tissue “T”.


With reference now to FIG. 7, an assembly for protecting the elongate body 104 of the adapter assembly 100 and the loading unit 110 that is secured to the elongate body 104, and for minimizing damage to tissue of a patient during introduction of the adapter assembly 100 within the patient, is shown generally as protective assembly 400. The protective assembly 400 includes a sleeve member 402, and an insufflation port 404 operably connected to the sleeve member 402. The insufflation port 404 may include a luer connector or other suitable connection. The protective assembly 400 further includes a syringe 406 or other source of insufflation fluid, i.e., air canister, bellow pump, configured for operable connection with the insufflation port 404.


With additional reference to FIG. 8, the sleeve member 402 of the protective assembly 400 includes an elongate flexible body 410 configured to be received about the elongate body 104 (FIG. 7) of the adapter assembly 100 (FIG. 7) and the loading unit 110 (FIG. 7) that is secured to the elongate body 102 of the adapter assembly. The sleeve member 402 includes open proximal and distal ends 402a, 402b, and defines an inflatable annular cavity or donut 403 extending about the open distal end 402b in fluid communication with the insufflation port 404. As will be described in further detail below, the inflatable donut 403 is configured to be positioned adjacent the distal end of the elongate body 104 for protecting the adapter assembly 100 from damage during introduction of the adapter assembly 100 into a patient, and for protecting the tissue of the patient. The inflatable donut 403 is connected to the insufflation port 404 by one or more inflation channels 405 extending along the length of the elongate flexible body 410 of the sleeve member 402.


The open proximal end 402a of the sleeve member 402 includes a handle member or pull back handle 408 for facilitating receipt of the sleeve member 402 about the elongate body 104 of the adapter assembly 100, and for facilitating removal of the sleeve member 402 from about the elongate body 104. The sleeve member 402 may include a perforation or tear-line 412 extending along all or a portion of the length of the elongate flexible body 410. Alternatively, the sleeve member 402 may by formed of a sheet of material having a hook and loop type fastener (e.g., Velcro®), or zip lock connection, for maintaining the tubular structure.


During a surgical procedure, and prior to introduction of the elongate body 104 of the adapter assembly 100 into a patient, the sleeve member 402 of the protective assembly 400 is received about the elongate body 104. The sleeve member 402 of the protective assembly 400 may be received about the elongate body 102 when the sleeve member 402 is in an inflated configuration (FIG. 9A), or when sleeve member 402 is in a deflated configuration (FIG. 9B). The sleeve member 402 is retracted about the elongate body 402 until the inflatable annular cavity 403 is disposed adjacent the distal end of the elongate body 104. If the inflatable annular cavity 403 of the sleeve member 402 is not already inflated, the syringe 406 (FIG. 7) may be used to inflate the inflatable annular cavity 403.


During introduction of the elongate body 104 of the adapter assembly 100 into a patient, the sleeve member 402 of the protective assembly 400 protects the distal end of the elongate body 104 from damage, while also protecting the tissue through which the adapter assembly 100 is introduced. Once the adapter assembly 100 has been positioned within the patient, the inflatable annular cavity 403 of the sleeve member 402 of the protective assembly 400 may be deflated to facilitate removal of the sleeve member 402 from the elongate body 104 of the adapter assembly 100. As noted above, the sleeve member 402 may include perforation or tear-line 412 for facilitating removal of the sleeve member 402 from about the elongate body 104. Once the sleeve member 402 of the protective assembly 400 is removed from about the elongate body 104 of the adapter assembly 100, the adapter assembly 100 may be used in a traditional manner.


With reference now to FIGS. 10-12, another embodiment of an assembly for protecting the elongate body 104 of the adapter assembly 100 and the loading unit 110 that is secured to the elongate body 104, and for minimizing damage to tissue of a patient during introduction of the adapter assembly 100 within the patient, is shown generally as protective assembly 500. The protective assembly 500 includes a sleeve member 502, and a cap member 504 secured to a distal end of the sleeve member 502. The sleeve member 502 is configured to be received about the elongate body 104 of adapter assembly 100. The cap member 504 is configured to be releasably received about the loading unit 110 secured to the distal end of the elongate body 104 of the adapter assembly 100.


The sleeve member 502 of the protective assembly 500 is substantially similar to sleeve member 402 of the protective assembly 400 described above, and includes an elongate flexible body 506. As shown, the cap member 504 includes a substantially conical shape and may be transparent or translucent. The cap member 504 is formed of flexible plastic or other suitable material, and is divided into multiple leaves or sections 504a. For example, and as shown, the cap member 504 includes two leaves (FIG. 11A), three leaves (FIG. 11B), four leaves (FIG. 11C), or five leaves (FIG. 11D). The leaves 504a may be connected by a frangible connection 504b, e.g., weakened plastic bridges, which are configured to break during retraction of the sleeve member 502 relative to the elongate body 104 of the adapter assembly 100. The greater number of leaves 504a, the less room the cap member 504 will occupy radially as the protective assembly 500 is removed from about the elongate body 104 of the adapter assembly 100.


The elongate flexible body 506 of the sleeve member 502 may be constructed of a more flexible material than the cap member 504. The cap member 504 may be made more rigid by increasing the wall thickness of the leaves 504a or by using a stiffer material to construct the cap member 504.


As shown in FIG. 12, removal of the protective assembly 500 from about the elongate body 104 of the adapter assembly 100 requires pulling handle members 508 proximally and radially outward relative to the elongate body 104, as indicated by arrows “A”, to cause tearing of the sleeve member 502 along a tear-line 512 and to cause separation of the leaves 504a of the cap member 504. As the sleeve member 502 is separated along the tear-line 512 and the sleeve member 502 is retracted proximally relative to the elongate body 104, the leaves 504a of the cap member 504 separate to permit passage of the loading unit 110 therethrough. Once completely removed from about the elongate body 104 of the adapter assembly 100, the clinician may dispose of the protective assembly 500, and the adapter assembly 100 may be used in a traditional manner.


Turning to FIGS. 13-15, another embodiment of an assembly for protecting the elongate body 104 of the adapter assembly 100 and an attached loading unit 110, is shown generally as protective assembly 600. The protective assembly 600 includes a sleeve member 602, and a cap member 604 secured to a distal end of the sleeve member 602. The protective assembly 600 further includes a camera assembly 606 supported within the cap member 604. The camera assembly 606 may connect with a monitoring unit (not shown) wirelessly, or through a wire “W” (FIG. 15) extending along the length of the sleeve member 602.


The cap member 604 includes a plurality of leaves 604a. The camera assembly 606 is supported on a distal end of one of the leaves 604a. The camera assembly 606 may be removable to permit reuse. The camera assembly 606 permits viewing as the elongate body 104 of the adapter assembly 100 is introduced into a patient. The camera assembly 606 may include charge-coupled device (CCD) cameras, or other suitable cameras.


With reference now to FIGS. 16 and 17, an assembly for protecting the elongate body 104 of the adapter assembly 100 and a loading unit 110 attached to the elongate body 104, is shown generally as protective assembly 700. The protective assembly 700 is substantially similar to protective assemblies 400, 500, 600 described hereinabove. The protective assembly 700 includes a sleeve member 702, a cap member 704 integrally formed with or secured to a distal end of the sleeve member 702, and a steering assembly 706 supported on and extending through the sleeve member 702.


The steering assembly 706 includes a steering ring 708, and a plurality of steering cables 710 extending from the steering ring 708 and through the sleeve member 702. The steering cables 710 are each received through a lumen 705 of the sleeve member 702. As shown, the protective assembly 700 includes four (4) steering cables 710. However, it is envisioned that the protective assembly 700 may have more or less than four (4) steering cables 710.


During a surgical procedure, after the protective assembly 700 is received about the elongate body 104 of the adapter assembly 100, the steering ring 708 may be used to guide the elongate body 104 of the adapter assembly 100 within a patient. More particularly, rotation of the steering ring 708 of the protective assembly 700 about a longitudinal axis of the adapter assembly 100, as indicated by arrows “B” in FIG. 16, causes corresponding movement of the sleeve member 702 of the protective assembly 700 which moves the elongate body 104 of the adapter assembly 100. As the adapter assembly 100 is being introduced into a patient, rotation of the steering ring 708 relative to the adapter assembly 100 facilitates continued movement of the adapter assembly 100 to the desired position.


With reference now to FIG. 18, an assembly for protecting the loading unit 110 secured to the distal end of the elongate body 104 of the adapter assembly 100 is shown generally as protective assembly 800. The protective assembly 800 includes an inflatable member 802 configured for operable engagement of the loading unit 110, and an insufflation port 804 for effecting insufflation of the inflatable member 802. The insufflation port 804 may include a luer connector, or other suitable connection means, and is in fluid communication with the inflatable member 802 through an inflation tube 804a. The protective assembly 800 may further include a syringe, canister, bellow, or other suitable means for inflating the inflatable member 802.


The inflatable member 802 of the protective assembly has a first substantially spherical portion 802a, and a second substantially spherical portion 802b extending from the first substantially spherical portion 802a. The first substantially spherical portion 802a being greater in size or diameter than the second substantially spherical portion 802b when the inflatable member 802 is in an inflated condition. As shown in FIG. 18, when the inflatable member 802 is in the inflated condition, the second substantially spherical portion 802b is securely received within a cylindrical cavity 111 of the loading unit 110 which is secured to the distal end of the elongate body 104 of the adapter assembly 100. When the second substantially spherical portion 802b of the inflatable member 802 is received within the cylindrical cavity 111 of the loading unit 110, the first substantially spherical portion 802a covers a distal end of the loading unit 110. In this manner, the inflatable member 802 prevents contact of the distal end of the loading unit 110 with tissue as the adapter assembly 100 and the attached protective assembly 800 is introduced within a patient.


It is envisioned that the first substantially spherical portion 802a of the inflatable member 802 may be configured to match the contour of the loading unit 110. In this manner, the inflatable member 802 more closely aligns with the loading unit 110.


With reference now to FIGS. 19-21, an embodiment of a loading unit according to the present disclosure is shown generally as loading unit 910. The loading unit 910 is configured for operable connection to the distal end of the elongate body 104 (FIG. 1) of the adapter assembly 100 (FIG. 1). Briefly, the loading unit 910 includes a shell 912 and a cartridge assembly 914 mounted on a distal end of the shell 912. The shell 912 defines a lumen 915 extending therethrough for providing a pathway through the cartridge assembly 914. The lumen 915 may be used to, for example, provide irrigation fluids “I” (FIG. 21) to the tissue being stapled “T”. In addition, the lumen 915 may be used to receive, for example, guide wires, scopes “S” (FIG. 20), or other suitable instruments during a stapling procedure. A connector sleeve 916 may be received on a proximal end of the lumen 915 to facilitate receipt of a fluid and/or instrument into and through the lumen.


It is envisioned that the embodiments of the present disclosure may be modified for use with various electromechanical surgical instruments and/or electrosurgical instruments. It is further envisioned that these instruments may, for example, be configured to be detachably coupleable and controllable by a robotic surgical system.


With reference now to FIG. 22, an exemplary robotic surgical system is shown generally as robotic surgical system 1 and, may include a plurality of surgical robotic arms, e.g., surgical robotic arms 2, 3, each having an instrument drive unit, e.g., instrument drive unit 11, 12, and an end effector, e.g., surgical stapler 21, 22, removably attached thereto; a control device, e.g., control device 5; and an operating console, e.g., operating console 4, coupled with the control device 5. As shown, the robotic surgical system 1 is configured for use on a patient “P” lying on a surgical table “ST” to be treated in a minimally invasive manner by means of the surgical stapler 21, 22.


For a detailed description of the construction and operation of an examplary robotic surgical system, reference may be made to U.S. Patent Application Publication No. 2012/0116416, the entire contents of which are incorporated by reference herein.


Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments. It is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the present disclosure. As well, one skilled in the art will appreciate further features and advantages of the disclosure based on the above-described embodiments. Accordingly, the disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.

Claims
  • 1. An insertion instrument comprising: a handle assembly;an elongate body extending from the handle assembly;an electromagnet including a coil of wire received around a ferromagnetic member, the electromagnet being disposed on the distal end of the elongate body; anda light source disposed on a distal end of the elongate body.
  • 2. The insertion instrument of claim 1, further including a first switch assembly for selectively activating the electromagnet.
  • 3. The insertion instrument of claim 2, further including a second switch assembly for selectively activating the light source.
  • 4. The insertion instrument of claim 1, wherein the light source includes a circular array of light emitting diodes.
  • 5. The insertion instrument of claim 1, further including a power source.
  • 6. The insertion instrument of claim 5, wherein the power source is disposed within the handle assembly.
  • 7. The insertion instrument of claim 1, further including a knob for rotating the elongate body about a longitudinal axis of the elongate body.
  • 8. An insertion instrument for positioning a magnetized anvil assembly within a body cavity, the insertion instrument comprising: a handle assembly;an elongate body extending from the handle assembly;a selectively activatable electromagnet disposed on the distal end of the elongate body; anda light source disposed on a distal end of the elongate body.
  • 9. The insertion instrument of claim 8, further including a first switch assembly for selectively activating the electromagnet.
  • 10. The insertion instrument of claim 9, including a second switch assembly for selectively activating the light source.
  • 11. The insertion instrument of claim 8, wherein the light source includes a circular array of light emitting diodes.
  • 12. The insertion instrument of claim 8, further including a power source.
  • 13. The insertion instrument of claim 12, wherein the power source is disposed within the handle assembly.
  • 14. The insertion instrument of claim 8, further including a first switch assembly for selectively activating the light source.
  • 15. An insertion instrument for positioning a magnetized anvil assembly within a body cavity, the insertion instrument comprising: a handle assembly;an elongate body extending from the handle assembly;an electromagnet disposed on a distal end of the elongate body;a first switch assembly for selectively activating the electromagnet; anda light source disposed on the distal end of the elongate body.
  • 16. The insertion instrument of claim 15, further including a second switch assembly for selectively activating the light source.
  • 17. The insertion instrument of claim 15, wherein the light source includes a circular array of light emitting diodes.
  • 18. The insertion instrument of claim 15, further including a power source.
  • 19. The insertion instrument of claim 18, wherein the power source is disposed within the handle assembly.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/583,594, filed May 1, 2017, which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/334,145, filed May 10, 2016. Each of these disclosures is incorporated by reference herein in its entirety.

US Referenced Citations (501)
Number Name Date Kind
3193165 Akhalaya et al. Jul 1965 A
3388847 Kasulin et al. Jun 1968 A
3552626 Astafiev et al. Jan 1971 A
3638652 Kelley Feb 1972 A
3771526 Rudie Nov 1973 A
4198982 Fortner et al. Apr 1980 A
4207898 Becht Jun 1980 A
4289133 Rothfuss Sep 1981 A
4304236 Conta et al. Dec 1981 A
4319576 Rothfuss Mar 1982 A
4350160 Kolesov et al. Sep 1982 A
4351466 Noiles Sep 1982 A
4379457 Gravener et al. Apr 1983 A
4473077 Noiles et al. Sep 1984 A
4476863 Kanshin et al. Oct 1984 A
4485817 Swiggett Dec 1984 A
4488523 Shichman Dec 1984 A
4505272 Utyamyshev et al. Mar 1985 A
4505414 Filipi Mar 1985 A
4520817 Green Jun 1985 A
4550870 Krumme et al. Nov 1985 A
4573468 Conta et al. Mar 1986 A
4576167 Noiles Mar 1986 A
4592354 Rothfuss Jun 1986 A
4603693 Conta et al. Aug 1986 A
4606343 Conta et al. Aug 1986 A
4632290 Green et al. Dec 1986 A
4646745 Noiles Mar 1987 A
4665917 Clanton et al. May 1987 A
4667673 Li May 1987 A
4671445 Barker et al. Jun 1987 A
4700703 Resnick et al. Oct 1987 A
4703887 Clanton et al. Nov 1987 A
4708141 Inoue et al. Nov 1987 A
4717063 Ebihara Jan 1988 A
4752024 Green et al. Jun 1988 A
4754909 Barker et al. Jul 1988 A
4776506 Green Oct 1988 A
4817847 Redtenbacher et al. Apr 1989 A
4873977 Avant et al. Oct 1989 A
4893662 Gervasi Jan 1990 A
4903697 Resnick et al. Feb 1990 A
4907591 Vasconcellos et al. Mar 1990 A
4917114 Green et al. Apr 1990 A
4957499 Lipatov et al. Sep 1990 A
4962877 Hervas Oct 1990 A
5005749 Aranyi Apr 1991 A
5042707 Taheri Aug 1991 A
5047039 Avant et al. Sep 1991 A
5104025 Main et al. Apr 1992 A
5119983 Green et al. Jun 1992 A
5122156 Granger et al. Jun 1992 A
5139513 Segato Aug 1992 A
5158222 Green et al. Oct 1992 A
5188638 Tzakis Feb 1993 A
5193731 Aranyi Mar 1993 A
5197648 Gingold Mar 1993 A
5197649 Bessler et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5221036 Takase Jun 1993 A
5222963 Brinkerhoff et al. Jun 1993 A
5253793 Green et al. Oct 1993 A
5261920 Main et al. Nov 1993 A
5271543 Grant et al. Dec 1993 A
5271544 Fox et al. Dec 1993 A
5275322 Brinkerhoff et al. Jan 1994 A
5282810 Allen et al. Feb 1994 A
5285944 Green et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5292053 Bilotti et al. Mar 1994 A
5309927 Welch May 1994 A
5312024 Grant et al. May 1994 A
5314435 Green et al. May 1994 A
5314436 Wilk May 1994 A
5330486 Wilk Jul 1994 A
5333773 Main et al. Aug 1994 A
5344059 Green et al. Sep 1994 A
5346115 Perouse et al. Sep 1994 A
5348259 Blanco et al. Sep 1994 A
5350104 Main et al. Sep 1994 A
5355897 Pietrafitta et al. Oct 1994 A
5360154 Green Nov 1994 A
5368215 Green et al. Nov 1994 A
5392979 Green et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5403333 Kaster et al. Apr 1995 A
5404870 Brinkerhoff et al. Apr 1995 A
5411508 Bessler et al. May 1995 A
5425738 Gustafson et al. Jun 1995 A
5433721 Hooven et al. Jul 1995 A
5437684 Calabrese et al. Aug 1995 A
5439156 Grant et al. Aug 1995 A
5443198 Viola et al. Aug 1995 A
5447514 Gerry et al. Sep 1995 A
5454825 Van Leeuwen et al. Oct 1995 A
5464415 Chen Nov 1995 A
5470006 Rodak Nov 1995 A
5474223 Viola et al. Dec 1995 A
5497934 Brady et al. Mar 1996 A
5503635 Sauer et al. Apr 1996 A
5522534 Viola et al. Jun 1996 A
5533661 Main et al. Jul 1996 A
5588579 Schnut et al. Dec 1996 A
5609285 Grant et al. Mar 1997 A
5626591 Kockerling et al. May 1997 A
5632433 Grant et al. May 1997 A
5639008 Gallagher et al. Jun 1997 A
5641111 Ahrens et al. Jun 1997 A
5658300 Bito et al. Aug 1997 A
5669918 Balazs et al. Sep 1997 A
5685474 Seeber Nov 1997 A
5709335 Heck Jan 1998 A
5715987 Kelley et al. Feb 1998 A
5718360 Green et al. Feb 1998 A
5720755 Dakov Feb 1998 A
5732872 Bolduc et al. Mar 1998 A
5749896 Cook May 1998 A
5758814 Gallagher et al. Jun 1998 A
5799857 Robertson et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5833698 Hinchliffe et al. Nov 1998 A
5836503 Ehrenfels et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5855312 Toledano Jan 1999 A
5860581 Robertson et al. Jan 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5881943 Heck et al. Mar 1999 A
5915616 Viola et al. Jun 1999 A
5947363 Bolduc et al. Sep 1999 A
5951576 Wakabayashi Sep 1999 A
5957363 Heck Sep 1999 A
5993468 Rygaard Nov 1999 A
6024748 Manzo et al. Feb 2000 A
6050472 Shibata Apr 2000 A
6053390 Green et al. Apr 2000 A
6068636 Chen May 2000 A
6083241 Longo et al. Jul 2000 A
6102271 Longo et al. Aug 2000 A
6117148 Ravo et al. Sep 2000 A
6119913 Adams et al. Sep 2000 A
6126058 Adams et al. Oct 2000 A
6142933 Longo et al. Nov 2000 A
6149667 Hovland et al. Nov 2000 A
6176413 Heck et al. Jan 2001 B1
6179195 Adams et al. Jan 2001 B1
6193129 Bittner et al. Feb 2001 B1
6203553 Robertson et al. Mar 2001 B1
6209773 Bolduc et al. Apr 2001 B1
6241140 Adams et al. Jun 2001 B1
6253984 Heck et al. Jul 2001 B1
6258107 Balazs et al. Jul 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6269997 Balazs et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6279809 Nicolo Aug 2001 B1
6302311 Adams et al. Oct 2001 B1
6338737 Toledano Jan 2002 B1
6343731 Adams et al. Feb 2002 B1
6387105 Gifford, III et al. May 2002 B1
6398795 McAlister et al. Jun 2002 B1
6402008 Lucas Jun 2002 B1
6439446 Perry et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6450390 Heck et al. Sep 2002 B2
6478210 Adams et al. Nov 2002 B2
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6494877 Odell et al. Dec 2002 B2
6503259 Huxel et al. Jan 2003 B2
6517566 Hovland et al. Feb 2003 B1
6520398 Nicolo Feb 2003 B2
6533157 Whitman Mar 2003 B1
6551334 Blatter et al. Apr 2003 B2
6578751 Hartwick Jun 2003 B2
6585144 Adams et al. Jul 2003 B2
6588643 Bolduc et al. Jul 2003 B2
6592596 Geitz Jul 2003 B1
6601749 Sullivan et al. Aug 2003 B2
6605078 Adams Aug 2003 B2
6605098 Nobis et al. Aug 2003 B2
6626921 Blatter et al. Sep 2003 B2
6629630 Adams Oct 2003 B2
6631837 Heck Oct 2003 B1
6632227 Adams Oct 2003 B2
6632237 Ben-David et al. Oct 2003 B2
6652542 Blatter et al. Nov 2003 B2
6659327 Heck et al. Dec 2003 B2
6676671 Robertson et al. Jan 2004 B2
6681979 Whitman Jan 2004 B2
6685079 Sharma et al. Feb 2004 B2
6695198 Adams et al. Feb 2004 B2
6695199 Whitman Feb 2004 B2
6698643 Whitman Mar 2004 B2
6716222 McAlister et al. Apr 2004 B2
6716233 Whitman Apr 2004 B1
6726697 Nicholas et al. Apr 2004 B2
6742692 Hartwick Jun 2004 B2
6743244 Blatter et al. Jun 2004 B2
6763993 Bolduc et al. Jul 2004 B2
6769590 Vresh et al. Aug 2004 B2
6769594 Orban, III Aug 2004 B2
6820791 Adams Nov 2004 B2
6821282 Perry et al. Nov 2004 B2
6827246 Sullivan et al. Dec 2004 B2
6840423 Adams et al. Jan 2005 B2
6843403 Whitman Jan 2005 B2
6846308 Whitman et al. Jan 2005 B2
6852122 Rush Feb 2005 B2
6866178 Adams et al. Mar 2005 B2
6872214 Sonnenschein et al. Mar 2005 B2
6874669 Adams et al. Apr 2005 B2
6884250 Monassevitch et al. Apr 2005 B2
6905504 Vargas Jun 2005 B1
6938814 Sharma et al. Sep 2005 B2
6942675 Vargas Sep 2005 B1
6945444 Gresham et al. Sep 2005 B2
6953138 Dworak et al. Oct 2005 B1
6957758 Aranyi Oct 2005 B2
6959851 Heinrich Nov 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6981941 Whitman et al. Jan 2006 B2
6981979 Nicolo Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
7059331 Adams et al. Jun 2006 B2
7059510 Orban, III Jun 2006 B2
7077856 Whitman Jul 2006 B2
7080769 Vresh et al. Jul 2006 B2
7086267 Dworak et al. Aug 2006 B2
7114642 Whitman Oct 2006 B2
7118528 Piskun Oct 2006 B1
7122044 Bolduc et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7141055 Abrams et al. Nov 2006 B2
7168604 Milliman et al. Jan 2007 B2
7179267 Nolan et al. Feb 2007 B2
7182239 Myers Feb 2007 B1
7195142 Orban, III Mar 2007 B2
7207168 Doepker et al. Apr 2007 B2
7220237 Gannoe et al. May 2007 B2
7234624 Gresham et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
RE39841 Bilotti et al. Sep 2007 E
7285125 Viola Oct 2007 B2
7303106 Milliman et al. Dec 2007 B2
7303107 Milliman et al. Dec 2007 B2
7309341 Ortiz et al. Dec 2007 B2
7322994 Nicholas et al. Jan 2008 B2
7325713 Aranyi Feb 2008 B2
7334718 McAlister et al. Feb 2008 B2
7335212 Edoga et al. Feb 2008 B2
7364060 Milliman Apr 2008 B2
7398908 Holsten et al. Jul 2008 B2
7399305 Csiky et al. Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7401722 Hur Jul 2008 B2
7407075 Holsten et al. Aug 2008 B2
7410086 Ortiz et al. Aug 2008 B2
7422137 Manzo Sep 2008 B2
7422138 Bilotti et al. Sep 2008 B2
7431191 Milliman Oct 2008 B2
7438718 Milliman et al. Oct 2008 B2
7455676 Holsten et al. Nov 2008 B2
7455682 Viola Nov 2008 B2
7481347 Roy Jan 2009 B2
7494038 Milliman Feb 2009 B2
7506791 Omaits et al. Mar 2009 B2
7516877 Aranyi Apr 2009 B2
7527185 Harari et al. May 2009 B2
7537602 Whitman May 2009 B2
7540839 Butler et al. Jun 2009 B2
7546939 Adams et al. Jun 2009 B2
7546940 Milliman et al. Jun 2009 B2
7547312 Bauman et al. Jun 2009 B2
7556186 Milliman Jul 2009 B2
7559451 Sharma et al. Jul 2009 B2
7585306 Abbott et al. Sep 2009 B2
7588174 Holsten et al. Sep 2009 B2
7600663 Green Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7635385 Milliman et al. Dec 2009 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7686201 Csiky Mar 2010 B2
7694864 Okada et al. Apr 2010 B2
7699204 Viola Apr 2010 B2
7708181 Cole et al. May 2010 B2
7717313 Criscuolo et al. May 2010 B2
7721932 Cole et al. May 2010 B2
7726539 Holsten et al. Jun 2010 B2
7743958 Orban, III Jun 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7770776 Chen et al. Aug 2010 B2
7771440 Ortiz et al. Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7793813 Bettuchi Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837080 Schwemberger Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7845536 Viola et al. Dec 2010 B2
7845538 Whitman Dec 2010 B2
7857187 Milliman Dec 2010 B2
7886951 Hessler Feb 2011 B2
7896215 Adams et al. Mar 2011 B2
7900806 Chen et al. Mar 2011 B2
7909039 Hur Mar 2011 B2
7909219 Cole et al. Mar 2011 B2
7909222 Cole et al. Mar 2011 B2
7909223 Cole et al. Mar 2011 B2
7913892 Cole et al. Mar 2011 B2
7918377 Measamer et al. Apr 2011 B2
7922062 Cole et al. Apr 2011 B2
7922743 Heinrich et al. Apr 2011 B2
7931183 Orban, III Apr 2011 B2
7938307 Bettuchi May 2011 B2
7942302 Roby et al. May 2011 B2
7951166 Orban, III et al. May 2011 B2
7959050 Smith et al. Jun 2011 B2
7967181 Viola et al. Jun 2011 B2
7975895 Milliman Jul 2011 B2
8002795 Beetel Aug 2011 B2
8006701 Bilotti et al. Aug 2011 B2
8006889 Adams et al. Aug 2011 B2
8011551 Marczyk et al. Sep 2011 B2
8011554 Milliman Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016858 Whitman Sep 2011 B2
8020741 Cole et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8028885 Smith et al. Oct 2011 B2
8038046 Smith et al. Oct 2011 B2
8043207 Adams Oct 2011 B2
8066167 Measamer et al. Nov 2011 B2
8066169 Viola Nov 2011 B2
8070035 Holsten et al. Dec 2011 B2
8070037 Csiky Dec 2011 B2
8096458 Hessler Jan 2012 B2
8109426 Milliman et al. Feb 2012 B2
8109427 Orban, III Feb 2012 B2
8113406 Holsten et al. Feb 2012 B2
8113407 Holsten et al. Feb 2012 B2
8123103 Milliman Feb 2012 B2
8128645 Sonnenschein et al. Mar 2012 B2
8132703 Milliman et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8146790 Milliman Apr 2012 B2
8146791 Bettuchi et al. Apr 2012 B2
8181838 Milliman et al. May 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8201720 Hessler Jun 2012 B2
8203782 Brueck et al. Jun 2012 B2
8211130 Viola Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225981 Criscuolo et al. Jul 2012 B2
8231041 Marczyk et al. Jul 2012 B2
8231042 Hessler et al. Jul 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8267301 Milliman et al. Sep 2012 B2
8272552 Holsten et al. Sep 2012 B2
8276802 Kostrzewski Oct 2012 B2
8281975 Criscuolo et al. Oct 2012 B2
8286845 Perry et al. Oct 2012 B2
8308045 Bettuchi et al. Nov 2012 B2
8312885 Bettuchi et al. Nov 2012 B2
8313014 Bettuchi Nov 2012 B2
8317073 Milliman et al. Nov 2012 B2
8317074 Ortiz et al. Nov 2012 B2
8322590 Patel et al. Dec 2012 B2
8328060 Jankowski et al. Dec 2012 B2
8328062 Viola Dec 2012 B2
8328063 Milliman et al. Dec 2012 B2
8343185 Milliman et al. Jan 2013 B2
8353438 Baxter, III et al. Jan 2013 B2
8353439 Baxter, III et al. Jan 2013 B2
8353930 Heinrich et al. Jan 2013 B2
8360295 Milliman et al. Jan 2013 B2
8365974 Milliman Feb 2013 B2
8403942 Milliman et al. Mar 2013 B2
8408441 Wenchell et al. Apr 2013 B2
8413870 Pastorelli et al. Apr 2013 B2
8413872 Patel Apr 2013 B2
8418905 Milliman Apr 2013 B2
8418909 Kostrzewski Apr 2013 B2
8424535 Hessler et al. Apr 2013 B2
8424741 McGuckin, Jr. et al. Apr 2013 B2
8430291 Heinrich et al. Apr 2013 B2
8430292 Patel et al. Apr 2013 B2
8453910 Bettuchi et al. Jun 2013 B2
8453911 Milliman et al. Jun 2013 B2
8485414 Criscuolo et al. Jul 2013 B2
8490853 Criscuolo et al. Jul 2013 B2
8511533 Viola et al. Aug 2013 B2
8551138 Orban, III et al. Oct 2013 B2
8567655 Nalagatla et al. Oct 2013 B2
8579178 Holsten et al. Nov 2013 B2
8590763 Milliman Nov 2013 B2
8590764 Hartwick et al. Nov 2013 B2
8608047 Holsten et al. Dec 2013 B2
8616428 Milliman et al. Dec 2013 B2
8616429 Viola Dec 2013 B2
8622275 Baxter, III et al. Jan 2014 B2
8631993 Kostrzewski Jan 2014 B2
8636187 Hueil et al. Jan 2014 B2
8640940 Ohdaira Feb 2014 B2
8662370 Takei Mar 2014 B2
8663258 Bettuchi et al. Mar 2014 B2
8672931 Goldboss et al. Mar 2014 B2
8678264 Racenet et al. Mar 2014 B2
8684248 Milliman Apr 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8684251 Rebuffat et al. Apr 2014 B2
8684252 Patel et al. Apr 2014 B2
8695864 Hausen Apr 2014 B1
8733611 Milliman May 2014 B2
10595871 Racenet et al. Mar 2020 B2
20030111507 Nunez Jun 2003 A1
20040073090 Butler et al. Apr 2004 A1
20050051597 Toledano Mar 2005 A1
20050107813 Gilete Garcia May 2005 A1
20060000869 Fontayne Jan 2006 A1
20060011698 Okada et al. Jan 2006 A1
20060020213 Whitman Jan 2006 A1
20060201989 Ojeda Sep 2006 A1
20070027473 Vresh et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070060952 Roby et al. Mar 2007 A1
20070075117 Milliman et al. Apr 2007 A1
20080300609 Tabet Dec 2008 A1
20090236392 Cole et al. Sep 2009 A1
20090236398 Cole et al. Sep 2009 A1
20090236401 Cole et al. Sep 2009 A1
20100019016 Edoga et al. Jan 2010 A1
20100051668 Milliman et al. Mar 2010 A1
20100084453 Hu Apr 2010 A1
20100147923 D'Agostino et al. Jun 2010 A1
20100163598 Belzer Jul 2010 A1
20100224668 Fontayne et al. Sep 2010 A1
20100230465 Smith et al. Sep 2010 A1
20100258611 Smith et al. Oct 2010 A1
20100264195 Bettuchi Oct 2010 A1
20100327041 Milliman et al. Dec 2010 A1
20110011916 Levine Jan 2011 A1
20110114697 Baxter, III et al. May 2011 A1
20110114700 Baxter, III et al. May 2011 A1
20110144640 Heinrich et al. Jun 2011 A1
20110147432 Heinrich et al. Jun 2011 A1
20110170281 Shih Jul 2011 A1
20110192882 Hess et al. Aug 2011 A1
20120145755 Kahn Jun 2012 A1
20120193395 Pastorelli et al. Aug 2012 A1
20120193398 Williams et al. Aug 2012 A1
20120232339 Csiky Sep 2012 A1
20120273548 Ma et al. Nov 2012 A1
20120325888 Qiao et al. Dec 2012 A1
20130015232 Smith et al. Jan 2013 A1
20130020372 Jankowski et al. Jan 2013 A1
20130020373 Smith et al. Jan 2013 A1
20130032628 Li et al. Feb 2013 A1
20130056516 Viola Mar 2013 A1
20130060258 Giacomantonio Mar 2013 A1
20130105544 Mozdzierz et al. May 2013 A1
20130105546 Milliman et al. May 2013 A1
20130105551 Zingman May 2013 A1
20130126580 Smith et al. May 2013 A1
20130153630 Miller et al. Jun 2013 A1
20130153631 Vasudevan et al. Jun 2013 A1
20130153633 Casasanta, Jr. et al. Jun 2013 A1
20130153634 Carter et al. Jun 2013 A1
20130153638 Carter et al. Jun 2013 A1
20130153639 Hodgkinson et al. Jun 2013 A1
20130175315 Milliman Jul 2013 A1
20130175318 Felder Jul 2013 A1
20130175319 Felder et al. Jul 2013 A1
20130175320 Mandakolathur Vasudevan et al. Jul 2013 A1
20130181035 Milliman Jul 2013 A1
20130181036 Olson et al. Jul 2013 A1
20130186930 Wenchell et al. Jul 2013 A1
20130193185 Patel Aug 2013 A1
20130193187 Milliman Aug 2013 A1
20130193190 Carter et al. Aug 2013 A1
20130193191 Stevenson et al. Aug 2013 A1
20130193192 Casasanta, Jr. et al. Aug 2013 A1
20130200131 Racenet et al. Aug 2013 A1
20130206816 Penna Aug 2013 A1
20130214027 Hessler et al. Aug 2013 A1
20130214028 Patel et al. Aug 2013 A1
20130228609 Kostrzewski Sep 2013 A1
20130240597 Milliman et al. Sep 2013 A1
20130240600 Bettuchi Sep 2013 A1
20130248581 Smith et al. Sep 2013 A1
20130277411 Hodgkinson et al. Oct 2013 A1
20130277412 Gresham et al. Oct 2013 A1
20130284792 Ma Oct 2013 A1
20130292449 Bettuchi et al. Nov 2013 A1
20130299553 Mozdzierz Nov 2013 A1
20130299554 Mozdzierz Nov 2013 A1
20130306701 Olson Nov 2013 A1
20130306707 Viola et al. Nov 2013 A1
20140008413 Williams Jan 2014 A1
20140012317 Orban et al. Jan 2014 A1
20150141976 Stulen May 2015 A1
Foreign Referenced Citations (37)
Number Date Country
908529 Aug 1972 CA
2805365 Aug 2013 CA
1057729 May 1959 DE
3301713 Jul 1984 DE
0152382 Aug 1985 EP
0173451 Mar 1986 EP
0190022 Aug 1986 EP
0282157 Sep 1988 EP
0503689 Sep 1992 EP
1354560 Oct 2003 EP
2138118 Dec 2009 EP
2168510 Mar 2010 EP
2238926 Oct 2010 EP
2524656 Nov 2012 EP
2799026 Nov 2014 EP
2954857 Dec 2015 EP
2992841 Mar 2016 EP
1136020 May 1957 FR
1461464 Feb 1966 FR
1588250 Apr 1970 FR
2443239 Jul 1980 FR
1185292 Mar 1970 GB
2016991 Sep 1979 GB
2070499 Sep 1981 GB
2004147969 May 2004 JP
2013138860 Jul 2013 JP
7711347 Apr 1979 NL
1509052 Sep 1989 SU
8706448 Nov 1987 WO
8900406 Jan 1989 WO
9006085 Jun 1990 WO
9835614 Aug 1998 WO
0154594 Aug 2001 WO
2006014881 Feb 2006 WO
2008107918 Sep 2008 WO
2011149876 Dec 2011 WO
2015073425 May 2015 WO
Non-Patent Literature Citations (3)
Entry
European Search Report dated Sep. 6, 2017, issued in EP Application No. 17170075.
European Search Report dated Dec. 11, 2017, issued in EP Application No. 17170075.
English translation of Chinese Office Action dated Apr. 28, 2021, corresponding to counterpart Chinese Application No. 201710325565.0; 6 pages.
Related Publications (1)
Number Date Country
20200214710 A1 Jul 2020 US
Provisional Applications (1)
Number Date Country
62334145 May 2016 US
Continuations (1)
Number Date Country
Parent 15583594 May 2017 US
Child 16827036 US