Insertion system for corneal implants

Information

  • Patent Grant
  • 8162953
  • Patent Number
    8,162,953
  • Date Filed
    Wednesday, March 28, 2007
    17 years ago
  • Date Issued
    Tuesday, April 24, 2012
    12 years ago
Abstract
Provided therein are apparatuses, systems and methods for storing and retrieving a corneal implant and for delivering the corneal implant in or on the cornea. In an embodiment, a insertion system comprises an inserter for delivering a corneal implant to a desired location in or on the cornea. The inserter has a holding space at its distal end for holding a corneal implant therein. A solution may substantially fill the holding space with the corneal implant to keep the implant hydrated and to hold the implant in the holding space by the surface tension of the solution. The corneal implant may be preloaded in the holding space of the inserter and stored in a storage container filled with storage fluid, e.g., saline, until use. To deliver the corneal implant, the inserter is positioned at the desired location, and the corneal implant released from the holding space of the inserter.
Description
FIELD OF THE INVENTION

The field of the invention relates generally to corneal implants, and more particular, to insertion systems for corneal implants.


BACKGROUND INFORMATION

As is well known, abnormalities in the human eye can lead to vision impairment. Some typical abnormalities include variations in the shape of the eye, which can lead to myopia (near-sightedness), hyperopia (far-sightedness) and astigmatism as well as variations in the tissue present throughout the eye, such as a reduction in the elasticity of the lens, which can lead to presbyopia. A variety of technologies have been developed to try and address these abnormalities, including corneal implants.


Corneal implants can correct vision impairment by altering the shape of the cornea. Corneal implants can be classified as an onlay or an inlay. An onlay is an implant that is placed over the cornea such that the outer layer of the cornea, e.g., the epithelium, can grow over and encompass the implant. An inlay is an implant that is surgically implanted into the cornea beneath a portion of the corneal tissue by, for example, cutting a flap in the cornea and inserting the inlay beneath the flap. Both inlays and outlays can alter the refractive power of the cornea by changing the shape of the anterior cornea, by having a different index of refraction than the cornea, or both. Since the cornea is the strongest refracting optical element in the human ocular system, altering the cornea's anterior surface is a particularly useful method for correcting vision impairments caused by refractive errors.


There is a need for improved apparatuses, systems and methods for storing a corneal implant prior to use and for retrieving the corneal implant from storage during a surgical procedure. There is also a need for improved apparatuses, systems and methods for delivering a corneal implant to the cornea and for precisely depositing the corneal implant at a desired location in or on the cornea without damaging the corneal implant.


SUMMARY

Provided herein are apparatuses, systems and methods for storing and retrieving a corneal implant and for delivering the corneal implant in or on the cornea.


In an embodiment, an insertion system comprises an inserter for delivering a corneal implant to a desired location in or on the cornea. The inserter comprises an elongated body having a distal end and a proximal end. The elongated body has a holding space at its distal end for holding the corneal implant to be delivered. The holding space is formed between a top distal portion and a bottom distal portion of the elongated body. In a preferred embodiment, a solution, e.g., saline, substantially fills the holding space with the corneal implant to keep the implant hydrated and to hold the implant in the holding space by the surface tension of the solution. The elongated body of the inserter may also have a curved portion that follows the curvature of the cornea and a clearance bend that provides clearance between the inserter and a facial feature, e.g., nose, of the patient.


In an embodiment, the corneal implant is preloaded in the holding space of the inserter and the preloaded inserter is stored in a storage container filled with storage fluid, e.g., saline, until use. In one embodiment, a cap is placed on the distal end of the inserter after the implant is preloaded. The cap encloses the holding space of the inserter to prevent the corneal implant from moving out of the holding space in the storage fluid during storage. By preloading the implant in the inserter, the surgeon does not have to separately retrieve the implant and place the implant in the inserter, which is difficult due to the small size and delicate nature of the implant.


A method of delivering a corneal implant according to an embodiment includes positioning an inserter with the corneal implant at a desired location in or on the cornea. At the desired location, the corneal implant is held down in the holding space of the inserter by a surgical tool, e.g., cannula. The surgical tool accesses the implant in the holding space through a slot in the inserter. While the corneal implant is held down by the surgical tool, the inserter is retracted to release the corneal implant from the inserter and deposit the corneal implant at the desired location. By holding down the implant at the desired location and retracting the inserter to release the implant, the surgeon is able to precisely deposit the implant at the desired location.


Other systems, methods, features and advantages of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims. It is also intended that the invention not be limited to the details of the example embodiments.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows a perspective view of an insertion system comprising an inserter and a cap according to an embodiment of the present invention.



FIG. 2 shows a perspective view of the cap placed on the inserter according to an embodiment of the present invention.



FIG. 3 shows a side view of the distal end of the inserter according to an embodiment of the present invention.



FIG. 4 shows a close-up perspective view of the distal end of the inserter according to an embodiment of the present invention.



FIG. 5A shows the inserter depositing a corneal implant on the cornea according to an embodiment of the present invention.



FIG. 5B shows a close-up of the inserter depositing the corneal implant on the cornea.



FIG. 5C shows the inserter depositing a corneal implant on an interior surface of the cornea exposed by forming a flap in the cornea according to an embodiment of the invention.



FIG. 5D shows the inserter depositing a corneal implant within a pocket formed in the cornea according to an embodiment of the present invention.



FIG. 6 shows the inserter and cap stored in a container filled with storage fluid according to an embodiment of the present invention.



FIG. 7 shows a perspective view of the inserter with a luer lock attached to the proximal end of the inserter according to an embodiment of the present invention.



FIG. 8 shows a perspective view of the inserter with a syringe connected to the proximal end of the inserter according to an embodiment of the present invention.



FIG. 9 shows a perspective view of an inserter according to another embodiment of the present invention.



FIG. 10 shows a back view of the distal end of the inserter according to an embodiment of the present invention.



FIG. 11 shows the inserter depositing a corneal implant on the cornea according to an embodiment of the present invention.





DETAILED DESCRIPTION


FIGS. 1-5 show an insertion system according to an embodiment that is particular suited for delivering a corneal implant, e.g., inlay, in or on the cornea. The insertion system is also suited for storing the implant prior to its use. The insertion system includes an inserter 100 having an elongated body, which may be made of titanium, stainless steel, plastic, or other biocompatible material. The inserter 100 comprises a distal portion having generally flat top and bottom surfaces. The distal portion of the inserter 100 includes a clearance bend 104 where the inserter is bent to provide clearance between the inserter and a patient's facial features (e.g., nose, cheeks, etc.) as explained further below. The distal portion of the inserter 100 also includes a curved portion 103 that is contoured to follow the shape of a patient's cornea as explained further below. The curved portion 103 is concaved on the bottom surface of the inserter 100.


The inserter 100 further includes a holding space 101 for holding a corneal implant 200 to be delivered by the inserter. Preferably, saline, BSS or other solution (not shown) is placed in the holding space 101 to hold the implant 200 therein due to surface tension of the saline. The saline stays in the holding space 101 due to capillary forces, thereby keeping the implant hydrated. The inserter also includes top and bottom inserter slots 102 and 110 as shown in FIG. 4. As explained below, the inserter slots 102 and 110 allow a surgeon to view the patient's cornea through the slots for precise placement of the implant 200. In addition, the top inserter slot 102 allows the surgeon to hold down the implant 200 in the holding space 101 at a desired position while the surgeon retracts the inserter 100 to release the implant 200. The surgeon may hold down the implant 200 with a surgical tool, such as a cannula, Sinskey hook or other tool that can fit through the top inserter slot 102. The top inserter slot 102 extends to the leading edge 111 of the inserter 100 so that the tool can hold down the implant 200 as the inserter 100 is retracted. The leading edge 111 of the inserter is preferably rounded to prevent damage to the cornea.


In the preferred embodiment, the width “w” of the holding space 101 is slightly larger than the diameter of the implant 200 to be delivered by the inserter 100 as shown in FIG. 3. In an exemplary embodiment, the implant 200 has a diameter of about 1.5 mm and the width “w” of the holding space 101 is between 1.6 and 1.7 mm. The rounded leading edge 111 of the inserter 100 follows the perimeter of the implant 200. The center length “1” of the holding space 101 is slightly larger than the diameter of the implant 200. As shown in FIG. 3, the center length “1” extends from the center of the leading edge 111 to the back wall 113 of the holding space 101. The geometry of the holding space 101 and the surface tension of the saline in the holding space 101 keep the implant 200 substantially centered in the inserter 100. The height of the holding space 101 may be several times larger than the center thickness of the implant 200 to ensure that enough saline is in the holding space 101 to keep the implant sufficiently hydrated.


The inserter 100 may be manufactured from a rod that is cut and bent to form the inserter 100. In one embodiment, a cylindrical titanium rod is cut and bent to form the inserter 100. In this embodiment, the proximal portion of the inserter 100 is generally cylindrical with angled portions that taper down to the distal portion of the inserter 100.


The inserter system further includes an inserter cap 300, which may be made of Teflon (PTFE). In an embodiment, the inserter cap 300 is generally cylindrical and can be fitted snugly on the distal end of the inserter 100 by engaging the sides of the inserter 100 as shown in FIG. 2.


In a preferred embodiment, the implant 200 is preloaded in the inserter 100 and packaged for later use by the surgeon during an implantation procedure. In this embodiment, the implant is 200 preloaded into the holding space 101 of the inserter 100 with the top surface of the implant 200 orientated to face the top surface of the inserter 100. The implant 200 may be preloaded by submerging both the implant 200 and the holding space 101 of the inserter 100 in a solution, e.g., saline, and inserting the implant 200 into the holding space 101 while they are both submerged. After the implant 700 is preloaded in the inserter 100, the inserter cap 300 is placed on the distal end of the inserter 100. The cap 300 may be placed on the inserter 100 while the holding space 101 is still submerged in the solution. The preloaded inserter 100 assembled with the inserter cap 300 is placed into a vial 400 or other storage container filled with saline 410 or other suitable solution as shown in FIG. 6. The inserter cap 300 prevents the implant 200 from moving out of the inserter 100 when placed in the vial 400 filled with saline 410. The vial 400 is capped and placed in an outer package 420, which is sterilized to store the insertion system until use.


An implantation procedure using an insertion system according to an embodiment will now be given. In this embodiment, the preloaded inserter 100 is removed from the outer package 420 and the vial 400 filled with saline 410. The saline within the space between the inserter cap 300 and the inserter 101 is then removed by placing a sterile surgical sponge (not shown) or other absorbent material on the open end on the inserter cap 300. The sponge draws out the saline from the interior of the cap 300 by capillary action through the opening between the cap 300 and the inserter 101. In the embodiment in which the cap 300 has a generally cylindrical shape, the opening is formed between the cylindrical cap 300 and the flat top and bottom surfaces of the inserter 100. The saline is removed from the spaced between the cap 300 and the inserter 100 while the cap 300 is still on the inserter 100. This is done to prevent the cap 300 from pulling the implant 200 out of the inserter 100 by capillary action when the cap 300 is removed from the inserter 100. After the saline is removed, the cap 300 is removed from the inserter 100. At this point, a small amount of saline or BSS may be applied to the holding space 101 of the inserter 100 to keep the implant 200 hydrated. The saline stays in the holding space 101 due to capillary forces, thereby keeping the implant 200 hydrated during the procedure. Further, the surface tension of the saline holds the implant 200 in the holding space 101 of the inserter 100 so that the implant 200 does not fall out of the inserter 100 during the procedure. This surface tension and the geometry of the holding space 101 keep the implant 200 centered in the inserter 100. To enable a surgeon to better hold the inserter 100, a handle 500 may be attached to the proximal end of the inserter 100 as shown in FIG. 5A. The handle may be similar to handles that attach to disposable blades. Further, the surgeon may determine the proper orientation of the implant based on features of the inserter 100. For example, when the top of the inserter 100, and hence the implant 200, are facing upward, the concaved bottom surface of the curved portion 103 of the inserter 100 is facing downward.


The surgeon may then implant the corneal implant 200 in the patient's cornea. To access the interior of the cornea, a flap may be cut into the cornea and lifted to expose the cornea's interior, e.g, stroma bed of the cornea. An example of this is shown in FIG. 5C, in which a flap 1120 is cut into the cornea 600 and pulled backed to expose the stroma bed 1100 of the cornea. The flap 1120 is attached to the cornea 600 by a flap hinge 1110. The flap 1120 may be cut using a laser, e.g., femtosecond laser, a mechanical keratome or manually. Several methods for forming flaps in corneal tissue, and other related information, are described in further detail in co-pending U.S. patent application Ser. No. 10/924,152, filed Aug. 23, 2004, entitled “Method for Keratophakia Surgery,” which is fully incorporated by reference herein. Once the interior is exposed, the surgeon positions the inserter 100 so that implant 200 is at the desired location on the cornea 600, e.g., the patient's pupil or visual axis as shown in FIG. 5A. Prior to positioning the inserter 100, the surgeon may use a surgical sponge to remove excess fluid on the outer surface of the inserter 100 being careful not to remove the saline from the holding space 101. The clearance bend 104 allows the inserter to clear the patient's facial features (e.g., nose) as the surgeon manipulates the inserter 100. To precisely position the implant 200 the surgeon may view the cornea 600 through the inserter slots 102 and 110 and the implant 200, which is transparent. When the implant 200 is at the desired location, the surgeon holds down the implant 200 on the cornea 600 using a surgical cannula, Sinskey Hook or other tool 610 such that implant 200 gently touches the stroma bed of the cornea 600 through the bottom slot 110. This tool 610 holds down the implant 200 through the top inserter slot 102 as shown in FIG. 5B. The surgeon then retracts the inserter 100 from the cornea 600 to release the implant 200 from the inserter 100 and deposit the implant 200 at the desired location. If the implant 200 is not precisely at the desired location, then the surgeon may gently move the implant 200 into position using a surgical sponge, rounded-tip tool, or other tool. In the example shown in FIG. 5C, the implant 200 is centered on the patient's pupil 1130. After the implant 200 is correctly positioned, the surgeon places the flap 1120 over the implant 200.


The implant 200 may be implanted concurrent with a LASIK procedure or post-LASIK. Since a flap is cut into the cornea during a LASIK procedure, the same flap may be used to implant the implant 200. If the implant 200 is implanted post-LASIK, then the LASIK flap may be re-opened or the inserter 100 may be advanced between the flap and the underlying corneal tissue to the desired position. In this example, the LASIK procedure may be used to correct distance vision while the implant is used to provide near vision. Additional details can be found, for example, in U.S. patent application Ser. No. 11/554,544, entitled “Small Diameter Inlays,” filed on Oct. 30, 2006, the specification of which is incorporated herein by reference.


The implant 200 may also be implanted through a closed flap instead of an open flap. In this embodiment, the distal portion of the inserter 100 may be inserted between the flap and the underlying corneal tissue and advanced between the flap and underlying corneal tissue to the desired position in the cornea. The distal portion of the inserter 100 preferably has a thin cross-section so that the inserter 100 does not induce corneal wound stretching. The curved portion 103 of the inserter 100 follows the curvature of the cornea allowing the inserter to more easily move between the flap and underlying corneal tissue while minimizing stress on the cornea. Further, the top surface of the inserter 100 preferably a downward slopping portion 115 that slopes downward to the leading edge 111 of the inserter 100 as shown in FIG. 3. In this embodiment, a surgical cannula or other tool may also be inserted between the flap and the underlying corneal tissue to hold down the implant 200 at the desired location and release the implant 200 from the inserter 100.


The implant 200 may also be implanted using different methods to access the interior of the cornea. For example, the interior of the cornea may be accessed through a lamellar pocket, channel, or pathway cut into the cornea. Additional details may be found, for example, in U.S. patent application Ser. No. 11/421,597, entitled “Ocular Tissue Separation Areas With Barrier Regions For Inlays Or Other Refractive Procedures,” filed on Jun. 1, 2006, the specification of which is incorporated herein by reference. Methods for creating pockets in the cornea are described in United States Patent Application Publication No. 2003/0014042, published Jan. 16, 2003, entitled “Method of Creating Stromal Pockets for Corneal Implants,” which is also fully incorporated by reference herein. For example, the inserter may be inserted into a channel or pocket cut into the cornea and advanced through the channel to position the implant at the desired location in the cornea. A second channel may also be cut into the cornea to provide access for the surgical cannula or other tool used to hold down the implant at the desired location. A pocket is a recess formed within the corneal tissue for receiving the corneal implant and may be accessed through a channel formed in the cornea. FIG. 5D shows an example of the inserter 100 placing the implant 200 within a pocket 700 in formed in the cornea 600 through an opening 710.


In another embodiment, the inserter 100 may include a channel running through the inserter 100 and extending from the proximal end of the inserter 100 to the holding space 101. The proximal end of the inserter 100 may be connected to a syringe filled with fluid, e.g., saline, for delivering fluid to the holding space 101 through the channel. In this embodiment, the channel may deliver fluid at the back of the holding space 101. This allows a surgeon to deliver a small amount of fluid into the holding space 101 to hydrate the implant 200 and/or gently push the implant 200 out of the holding space 101 for releasing the implant 200 from the inserter 100. For example, when the implant 200 is at the desired location on the cornea, the surgeon may deliver fluid through the channel to help release the implant 200 from the inserter 101. This may be done instead of or in conjunction with the tool used to hold down the implant 200. FIG. 7 shows an inserter 100 according one embodiment comprising a luer lock 810 at the proximal end of the inserter 100 that is configured to mate with a corresponding luer lock of a syringe or other fluid delivering device. FIG. 8 shows an embodiment in which a syringe 820 is connected to the proximal end of the inserter 100 via the luer lock 810 for delivering fluid through the channel.



FIGS. 9 and 10 show a distal portion of an inserter 900 according to another embodiment. In this embodiment, the inserter 900 comprises a cannula 910 or tube configured to hold the implant 1000 therein for delivery to the cornea. The cannula 910 preferably has a width slightly larger than the width of the implant 1000 to be delivered by the inserter 900. The cannula 910 also preferably has a height that is slightly larger than the thickness of the implant 1000. The distal end 920 of the cannula 910 is preferably shaped to hold the implant 1000 in an unstressed state. The cannula 910 may be slightly curved along its width and/or length to follow the curvature of the cornea. Fluid, e.g., saline or BSS, may be delivered to the implant 1000 through a channel in the inserter 900 to ensure that the implant 1000 is hydrated prior to use and/or to release the implant 1000 from the inserter 900.


The inserter 900 also includes a top inserter slot 930 through which a surgical cannula, Sinskey Hook or other tool can be used to hold down the implant 1000 at the desired location in the cornea. The inserter 900 also includes a bottom opening 940 through which the implant 1000 can contact the cornea when the implant is held down as shown in FIG. 10. Preferably, the edges and corners at the tip of the cannula 910 are smooth and rounded to prevent cutting by the cannula 910 and damage to the cornea or implant from the tip of the cannula. A handle may be attached to the proximal end of the inserter for easier handling by the surgeon. Further, a syringe or other fluid delivering device may be connected to the inserter 900 for delivering fluid to the implant through the channel in the inserter 900. FIG. 11 shows the entire inerter 910, which includes a clearance bend 945 and an elongated portion 950 with an optional luer lock 960 at the proximal end of the inserter 910 for connecting, e.g., a fluid delivering device to the inserter 910.


The implant 1000 may be implanted in the cornea using procedures similar to the ones discussed above. For example, a flap may be cut into the cornea and lifted to expose a stroma bed of the cornea. The surgeon may then position the implant 1000 at the desired location using the inserter 900. When the implant 1000 is at the desired position, the surgeon may use a surgical cannula or other tool to hold the implant 1000 through the top inserter slot 930. The surgeon may hold down the implant 1000 such that the bottom surface of the implant 1000 contacts the cornea through the bottom opening 940 of the inserter 900. While the implant 1000 is held down at the desired location, the surgeon retracts the inserter 900 to deposit the implant 1000 on the cornea. The surgeon may also deliver fluid to the implant 1000 through the channel in the inserter to release the implant 1000 from the inserter 900. After the implant 1000 is correctly positioned, the surgeon places the flap over the implant 1000. FIG. 11 shows an example of the inserter 900 positioned over the desired location of the cornea for depositing the implant 1000 at the desired location.


The implant 1000 may also be implanted using other procedures including implantation through a channel, pocket or pathway cut into the cornea for access to the desired position in the cornea. In these procedures, the inserter 900 may be moved to the desired position through the channel, pocket or pathway. The thin cross section of the inserter 900 minimizes stress on the cornea as the inserter 900 is advanced through the channel, pocket or pathway. A second channel may also be cut into the cornea to provide access for the surgical tool used to hold down the implant 1000 at the desired location.


The inserter systems described herein may to used to implant various types of corneal implant. For example, the inserter systems may be used to implant corneal implants deep within the cornea such as intraocular lenses or at lower depths such as inlays. The inserter systems may also be used to place an onlay on the surface of the cornea. Thus, the inserter systems may be used to implant corneal implants of various rigidity, sizes and properties at various depths in the cornea. The corneal implant may be an inlay, lens, or the like.


In the foregoing specification, the invention has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention. As another example, each feature of one embodiment can be mixed and matched with other features shown in other embodiments. As yet another example, the order of steps of method embodiments may be changed. Features and processes known to those of ordinary skill may similarly be incorporated as desired. Additionally and obviously, features may be added or subtracted as desired. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents.

Claims
  • 1. A corneal implant insertion system comprising: an elongated body having a distal end and a proximal end;a holding space at the distal end of the elongated body, wherein the holding space is defined between a top distal portion having a width and a bottom distal portion having a width, wherein the top distal portion is generally flat across its width and the bottom distal portion is generally flat across its width;a slot through the top distal portion of the elongated body, wherein the slot extends to a leading edge of the elongated body;a corneal implant retained within the holding space; anda fluid disposed in the holding space such that the corneal implant is retained within the holding space in an unstressed configuration due to the surface tension of the fluid.
  • 2. The insertion system of claim 1, wherein the holding space has a width that is between a diameter of the corneal implant and 20 percent larger than the diameter of the corneal implant.
  • 3. The insertion system of claim 1, wherein a top surface of the top distal portion of the elongated body slopes downward relative to the bottom distal portion to the leading edge.
  • 4. The insertion system of claim 1, wherein the leading edge is semicircular.
  • 5. The insertion system of claim 1, further comprising a bottom slot through the bottom distal portion of the elongated body.
  • 6. The insertion system of claim 5, wherein the bottom slot extends to the leading edge of the elongated body and is substantially aligned with the slot through the top distal portion.
  • 7. The insertion system of claim 1, wherein the elongated body is made from a single piece of material.
  • 8. The insertion system of claim 7, wherein the material comprises titanium.
  • 9. The insertion system of claim 1, wherein the elongated body has a bend near the distal end.
  • 10. The insertion system of claim 9, wherein the bend of the elongated body is contoured to follow the curvature of a patient's cornea.
  • 11. The insertion system of claim 9, wherein the bend is a first bend, and the elongated body also has a second bent portion proximal to the first bend.
  • 12. The insertion system of claim 1, wherein the corneal implant has a diameter of between 1 mm and 7 mm.
  • 13. The insertion system of claim 12, wherein the holding space has a width that is no more than 20 percent larger than a diameter of the corneal implant.
  • 14. The insertion system of claim 1, further comprising a cap placed on the distal end of the elongated body, wherein the cap substantially encloses the holding space of the elongated body.
  • 15. The insertion system of claim 14, further comprising a storage container at least partially filled with the fluid, wherein the cap and the holding space of the elongated body are submerged in the fluid.
  • 16. The insertion system of claim 15, wherein the fluid comprises saline.
  • 17. The system of claim 1 wherein the generally flat top distal portion and the generally flat bottom distal portion are substantially parallel.
  • 18. The system of claim 17 wherein the corneal implant has an anterior surface and a posterior surface, and wherein the corneal implant is held in the holding space such that the anterior surface is adjacent the top distal portion and the posterior surface is adjacent the bottom distal portion.
  • 19. The system of claim 1 wherein the holding space is also defined by a first side wall and a second side wall, wherein the first and second side walls have slots therein.
  • 20. The system of claim 1 further comprising an implant removal tool adapted to fit through the slot and engage the corneal implant in order to remove the corneal implant from the holding space.
US Referenced Citations (345)
Number Name Date Kind
2714721 Stone, Jr. Aug 1955 A
3168100 Rich Feb 1965 A
3343657 Speshyock Sep 1967 A
3379200 Pennell Apr 1968 A
3482906 Volk Dec 1969 A
3743337 Crary Jul 1973 A
3770113 Thomas Nov 1973 A
3879076 Barnett Apr 1975 A
3950315 Cleaver Apr 1976 A
3996627 Deeg et al. Dec 1976 A
4030480 Meyer Jun 1977 A
4037604 Newkirk Jul 1977 A
4039827 Zdrok et al. Aug 1977 A
4065816 Sawyer Jan 1978 A
4071272 Drdlik Jan 1978 A
4136406 Norris Jan 1979 A
4157718 Baehr Jun 1979 A
4184491 McGannon Jan 1980 A
4194814 Fischer et al. Mar 1980 A
4238524 LaLiberte et al. Dec 1980 A
4257521 Poler Mar 1981 A
4268133 Fischer et al. May 1981 A
4326306 Poler Apr 1982 A
4357940 Muller Nov 1982 A
4392569 Shoup Jul 1983 A
4418991 Breger Dec 1983 A
4423809 Mazzocco Jan 1984 A
4428746 Mendez Jan 1984 A
4452235 Reynolds Jun 1984 A
4466705 Michelson Aug 1984 A
4490860 Rainin Jan 1985 A
4504982 Burk Mar 1985 A
4521210 Wong Jun 1985 A
4525044 Bauman Jun 1985 A
4545478 Waldman Oct 1985 A
4554115 Neefe Nov 1985 A
4554918 White Nov 1985 A
4565198 Koeniger Jan 1986 A
4580882 Nuchman et al. Apr 1986 A
4586929 Binder May 1986 A
4604087 Joseph Aug 1986 A
4607617 Choyce Aug 1986 A
4616910 Klein Oct 1986 A
4618227 Bayshore Oct 1986 A
4619256 Horn Oct 1986 A
4624664 Peluso et al. Nov 1986 A
4624669 Grendahl Nov 1986 A
4640595 Volk Feb 1987 A
4646720 Peyman et al. Mar 1987 A
4655774 Choyce Apr 1987 A
4662370 Hoffmann et al. May 1987 A
4663358 Hyon et al. May 1987 A
4671276 Reynolds Jun 1987 A
4676792 Praeger Jun 1987 A
4697697 Graham et al. Oct 1987 A
4702244 Mazzocco Oct 1987 A
4709697 Muller Dec 1987 A
4721124 Tuerkheimer et al. Jan 1988 A
4726367 Shoemaker Feb 1988 A
4750901 Molteno Jun 1988 A
4762496 Maloney et al. Aug 1988 A
4766895 Reynolds Aug 1988 A
4769033 Nordan Sep 1988 A
4772283 White Sep 1988 A
4778462 Grendahl Oct 1988 A
4798609 Grendahl Jan 1989 A
4806382 Goldberg et al. Feb 1989 A
4836201 Patton et al. Jun 1989 A
4840175 Peyman Jun 1989 A
4842599 Bronstein Jun 1989 A
4844242 Chen et al. Jul 1989 A
4851003 Lindstrom Jul 1989 A
4860885 Kaufman et al. Aug 1989 A
4886488 White Dec 1989 A
4888016 Langerman Dec 1989 A
4897981 Beck Feb 1990 A
4911715 Kelman Mar 1990 A
4919130 Stoy et al. Apr 1990 A
4923467 Thompson May 1990 A
4934363 Smith et al. Jun 1990 A
4936825 Ungerleider Jun 1990 A
4946436 Smith Aug 1990 A
4955903 Sulc et al. Sep 1990 A
4968296 Ritch et al. Nov 1990 A
4971732 Wichterle Nov 1990 A
4976719 Siepser Dec 1990 A
5019084 Aysta et al. May 1991 A
5019098 Mercier May 1991 A
5022414 Muller Jun 1991 A
5030230 White Jul 1991 A
5041081 Odrich Aug 1991 A
5063942 Kilmer et al. Nov 1991 A
5071276 Nielsen et al. Dec 1991 A
5073163 Lippman Dec 1991 A
5092837 Ritch et al. Mar 1992 A
5098444 Feaster Mar 1992 A
5108428 Capecchi et al. Apr 1992 A
5112350 Civerchia et al. May 1992 A
5123905 Kelman Jun 1992 A
5123921 Werblin et al. Jun 1992 A
5139518 White Aug 1992 A
5171213 Price, Jr. Dec 1992 A
5173723 Volk Dec 1992 A
5178604 Baerveldt et al. Jan 1993 A
5180362 Worst et al. Jan 1993 A
5181053 Brown Jan 1993 A
5188125 Kilmer et al. Feb 1993 A
5190552 Kelman Mar 1993 A
5192317 Kalb Mar 1993 A
5196026 Barrett et al. Mar 1993 A
5211660 Grasso May 1993 A
5225858 Portney Jul 1993 A
5229797 Futhey et al. Jul 1993 A
5244799 Anderson Sep 1993 A
5258042 Mehta Nov 1993 A
5270744 Portney Dec 1993 A
5273750 Homiger et al. Dec 1993 A
5282851 Jacob-LaBarre Feb 1994 A
5300020 L 'Esperance, Jr. Apr 1994 A
5300116 Chirila et al. Apr 1994 A
5312413 Eaton et al. May 1994 A
5318044 Kilmer et al. Jun 1994 A
5318046 Rozakis Jun 1994 A
5318047 Davenport et al. Jun 1994 A
5336261 Barrett et al. Aug 1994 A
5338291 Speckman et al. Aug 1994 A
5344448 Schneider et al. Sep 1994 A
5346464 Camras Sep 1994 A
5370607 Memmen Dec 1994 A
5372577 Ungerleider Dec 1994 A
5385582 Ommaya Jan 1995 A
5391201 Barrett et al. Feb 1995 A
5397300 Baerveldt et al. Mar 1995 A
5405384 Silvestrini Apr 1995 A
5428412 Stoyan Jun 1995 A
5433701 Rubinstein Jul 1995 A
5454796 Krupin Oct 1995 A
5458819 Chirila et al. Oct 1995 A
5467149 Morrison et al. Nov 1995 A
5474562 Orchowski et al. Dec 1995 A
5476445 Baerveldt et al. Dec 1995 A
5489301 Barber Feb 1996 A
5493350 Seidner Feb 1996 A
5502518 Lieberman Mar 1996 A
5512220 Roffman et al. Apr 1996 A
5520631 Nordquist et al. May 1996 A
5521656 Portney May 1996 A
5530491 Baude et al. Jun 1996 A
5533997 Ruiz Jul 1996 A
5570142 Lieberman Oct 1996 A
5591185 Kilmer et al. Jan 1997 A
5598234 Blum et al. Jan 1997 A
5616148 Eagles et al. Apr 1997 A
5620450 Eagles et al. Apr 1997 A
5628794 Lindstrom May 1997 A
5630810 Machat May 1997 A
5634943 Villain et al. Jun 1997 A
5643276 Zaleski Jul 1997 A
5657108 Portney Aug 1997 A
5682223 Menezes et al. Oct 1997 A
5684560 Roffman et al. Nov 1997 A
5715031 Roffman et al. Feb 1998 A
5716633 Civerchia Feb 1998 A
5722948 Gross Mar 1998 A
5722971 Peyman Mar 1998 A
5728155 Anello et al. Mar 1998 A
5752928 de Roulhac et al. May 1998 A
5755785 Rowsey et al. May 1998 A
5766181 Chambers et al. Jun 1998 A
5772667 Blake Jun 1998 A
5779711 Kritzinger et al. Jul 1998 A
5785674 Mateen Jul 1998 A
5800442 Wolf et al. Sep 1998 A
5800529 Brauker et al. Sep 1998 A
5805260 Roffman et al. Sep 1998 A
5810833 Brady et al. Sep 1998 A
5817115 Nigam Oct 1998 A
5824086 Silvestrini Oct 1998 A
5847802 Menezes et al. Dec 1998 A
5855604 Lee Jan 1999 A
5860984 Chambers et al. Jan 1999 A
5872613 Blum et al. Feb 1999 A
5873889 Chin Feb 1999 A
5876439 Lee Mar 1999 A
5888243 Silverstrini Mar 1999 A
5913898 Feingold Jun 1999 A
5919185 Peyman Jul 1999 A
5928245 Wolf et al. Jul 1999 A
5929968 Cotie et al. Jul 1999 A
5929969 Roffman Jul 1999 A
5941583 Raimondi Aug 1999 A
5944752 Silvestrini Aug 1999 A
5945498 Hopken et al. Aug 1999 A
5964748 Peyman Oct 1999 A
5964776 Peyman Oct 1999 A
5968065 Chin Oct 1999 A
5976150 Copeland Nov 1999 A
5976168 Chin Nov 1999 A
5980549 Chin Nov 1999 A
6007510 Nigam Dec 1999 A
6010510 Brown et al. Jan 2000 A
6024448 Wu et al. Feb 2000 A
6033395 Peyman Mar 2000 A
6036714 Chin Mar 2000 A
6050999 Paraschac et al. Apr 2000 A
6055990 Thompson May 2000 A
6066170 Lee May 2000 A
6068642 Johnson et al. May 2000 A
6079826 Appleton et al. Jun 2000 A
6083231 Van Noy et al. Jul 2000 A
6086202 Chateau et al. Jul 2000 A
6090141 Lindstrom Jul 2000 A
6102946 Nigam Aug 2000 A
6110166 Juhasz et al. Aug 2000 A
6120148 Fiala et al. Sep 2000 A
6125294 Scholl et al. Sep 2000 A
6129733 Brady et al. Oct 2000 A
6139560 Kremer Oct 2000 A
6142969 Nigam Nov 2000 A
6143001 Brown et al. Nov 2000 A
6159241 Lee et al. Dec 2000 A
6171324 Cote et al. Jan 2001 B1
6175754 Scholl et al. Jan 2001 B1
RE37071 Gabrielian et al. Feb 2001 E
6183513 Guenthner et al. Feb 2001 B1
6197019 Peyman Mar 2001 B1
6197057 Peyman et al. Mar 2001 B1
6197058 Portney Mar 2001 B1
6203538 Peyman Mar 2001 B1
6203549 Waldock Mar 2001 B1
6203557 Chin Mar 2001 B1
6206919 Lee Mar 2001 B1
6210005 Portney Apr 2001 B1
6214015 Reich et al. Apr 2001 B1
6214044 Silverstrini Apr 2001 B1
6217571 Peyman Apr 2001 B1
6221067 Peyman Apr 2001 B1
6228114 Lee May 2001 B1
6248111 Glick et al. Jun 2001 B1
6250757 Roffman et al. Jun 2001 B1
6251114 Farmer et al. Jun 2001 B1
6264648 Peyman Jul 2001 B1
6264670 Chin Jul 2001 B1
6264692 Woffinden et al. Jul 2001 B1
6267768 Deacon et al. Jul 2001 B1
6271281 Liao et al. Aug 2001 B1
6277137 Chin Aug 2001 B1
6280449 Blake Aug 2001 B1
6280470 Peyman Aug 2001 B1
6283595 Breger Sep 2001 B1
6302877 Ruiz Oct 2001 B1
6325509 Hodur et al. Dec 2001 B1
6325792 Swinger et al. Dec 2001 B1
6361560 Nigam Mar 2002 B1
6364483 Grossinger et al. Apr 2002 B1
6371960 Heyman et al. Apr 2002 B2
6391230 Sarbadhikari May 2002 B1
6398277 McDonald Jun 2002 B1
6398789 Capetan Jun 2002 B1
6428572 Nagai Aug 2002 B2
6435681 Portney Aug 2002 B2
6436092 Peyman Aug 2002 B1
6447519 Brady et al. Sep 2002 B1
6447520 Ott et al. Sep 2002 B1
6458141 Peyman Oct 2002 B1
6461384 Hoffmann et al. Oct 2002 B1
6471708 Green Oct 2002 B2
6474814 Griffin Nov 2002 B1
6506200 Chin Jan 2003 B1
6511178 Roffman et al. Jan 2003 B1
6527389 Portney Mar 2003 B2
6537283 Van Noy Mar 2003 B2
6543610 Nigam Apr 2003 B1
6544286 Perez Apr 2003 B1
6551307 Peyman Apr 2003 B2
6554424 Miller et al. Apr 2003 B1
6554425 Roffman et al. Apr 2003 B1
6557998 Portney May 2003 B2
6581993 Nigam Jun 2003 B2
6582076 Roffman et al. Jun 2003 B1
6589203 Mitrev Jul 2003 B1
6589280 Koziol Jul 2003 B1
6592591 Polla et al. Jul 2003 B2
6596000 Chan et al. Jul 2003 B2
6605093 Blake Aug 2003 B1
6607537 Binder Aug 2003 B1
6607556 Nigam Aug 2003 B1
6623522 Nigam Sep 2003 B2
6626941 Nigam Sep 2003 B2
6629979 Feingold et al. Oct 2003 B1
6632244 Nigam Oct 2003 B1
6645246 Weinschenk, III et al. Nov 2003 B1
6648877 Juhasz et al. Nov 2003 B1
6657029 Vanderbilt Dec 2003 B2
6666887 Callahan et al. Dec 2003 B1
6673112 Nigam Jan 2004 B2
6709103 Roffman et al. Mar 2004 B1
6712848 Wolf et al. Mar 2004 B1
6723104 Ott Apr 2004 B2
6733507 McNicholas et al. May 2004 B2
6733526 Paul et al. May 2004 B2
6808262 Chapoy et al. Oct 2004 B2
6824178 Nigam Nov 2004 B2
6855163 Peyman Feb 2005 B2
6875232 Nigam Apr 2005 B2
6879402 Küchel Apr 2005 B2
6881197 Nigam Apr 2005 B1
6893461 Nigam May 2005 B2
6949093 Peyman Sep 2005 B1
7128351 Nigam Oct 2006 B2
20010051826 Bogaert et al. Dec 2001 A1
20020055753 Silvestrini May 2002 A1
20020101563 Miyamura et al. Aug 2002 A1
20020103538 Hughes et al. Aug 2002 A1
20030014042 Juhasz et al. Jan 2003 A1
20030033010 Hicks et al. Feb 2003 A1
20030069637 Lynch et al. Apr 2003 A1
20030078487 Jeffries et al. Apr 2003 A1
20030229303 Haffner et al. Dec 2003 A1
20040019379 Glick et al. Jan 2004 A1
20040034413 Christensen Feb 2004 A1
20040049267 Nigam Mar 2004 A1
20040054408 Glick et al. Mar 2004 A1
20040073303 Schanzlin Apr 2004 A1
20050080484 Marmo et al. Apr 2005 A1
20050080485 Nigam Apr 2005 A1
20050113844 Nigam May 2005 A1
20050119738 Nigam Jun 2005 A1
20050143717 Peyman Jun 2005 A1
20050178394 Slade Aug 2005 A1
20050182350 Nigam Aug 2005 A1
20050203494 Holliday Sep 2005 A1
20050246015 Miller Nov 2005 A1
20050246016 Miller et al. Nov 2005 A1
20060020267 Marmo Jan 2006 A1
20060116762 Hong et al. Jun 2006 A1
20060142780 Pynson et al. Jun 2006 A1
20060142781 Pynson et al. Jun 2006 A1
20060212041 Nigam Sep 2006 A1
20060235430 Le et al. Oct 2006 A1
20070027538 Aharoni et al. Feb 2007 A1
20070129797 Lang et al. Jun 2007 A1
20070203577 Dishler et al. Aug 2007 A1
20070255401 Lang Nov 2007 A1
20070280994 Cunanan Dec 2007 A1
Foreign Referenced Citations (24)
Number Date Country
3208729 Sep 1983 DE
0308077 Mar 1989 EP
0420549 Apr 1991 EP
01-195853 Aug 1989 JP
02-211119 Aug 1990 JP
5502811 May 1993 JP
08-501009 Feb 1996 JP
9-504706 May 1997 JP
2000506056 May 2000 JP
03-508135 Mar 2003 JP
WO 9626690 Sep 1996 WO
WO 9808549 Mar 1998 WO
WO 9848715 Nov 1998 WO
WO 9917691 Apr 1999 WO
WO 9921513 May 1999 WO
WO 9930645 Jun 1999 WO
WO 0038594 Jul 2000 WO
WO 0341616 May 2003 WO
WO 03061518 Jul 2003 WO
WO 03101341 Dec 2003 WO
WO 2006029316 Apr 2006 WO
WO 2006060363 Jun 2006 WO
WO 2007101016 Sep 2007 WO
WO 2007132332 Nov 2007 WO
Related Publications (1)
Number Date Country
20080243138 A1 Oct 2008 US