The field of the invention relates generally to corneal implants, and more particular, to insertion systems for corneal implants.
As is well known, abnormalities in the human eye can lead to vision impairment. Some typical abnormalities include variations in the shape of the eye, which can lead to myopia (near-sightedness), hyperopia (far-sightedness) and astigmatism as well as variations in the tissue present throughout the eye, such as a reduction in the elasticity of the lens, which can lead to presbyopia. A variety of technologies have been developed to try and address these abnormalities, including corneal implants.
Corneal implants can correct vision impairment by altering the shape of the cornea. Corneal implants can be classified as an onlay or an inlay. An onlay is an implant that is placed over the cornea such that the outer layer of the cornea, e.g., the epithelium, can grow over and encompass the implant. An inlay is an implant that is surgically implanted into the cornea beneath a portion of the corneal tissue by, for example, cutting a flap in the cornea and inserting the inlay beneath the flap. Both inlays and outlays can alter the refractive power of the cornea by changing the shape of the anterior cornea, by having a different index of refraction than the cornea, or both. Since the cornea is the strongest refracting optical element in the human ocular system, altering the cornea's anterior surface is a particularly useful method for correcting vision impairments caused by refractive errors.
There is a need for improved apparatuses, systems and methods for storing a corneal implant prior to use and for retrieving the corneal implant from storage during a surgical procedure. There is also a need for improved apparatuses, systems and methods for delivering a corneal implant to the cornea and for precisely depositing the corneal implant at a desired location in or on the cornea without damaging the corneal implant.
Provided herein are apparatuses, systems and methods for storing and retrieving a corneal implant and for delivering the corneal implant in or on the cornea.
In an embodiment, an insertion system comprises an inserter for delivering a corneal implant to a desired location in or on the cornea. The inserter comprises an elongated body having a distal end and a proximal end. The elongated body has a holding space at its distal end for holding the corneal implant to be delivered. The holding space is formed between a top distal portion and a bottom distal portion of the elongated body. In a preferred embodiment, a solution, e.g., saline, substantially fills the holding space with the corneal implant to keep the implant hydrated and to hold the implant in the holding space by the surface tension of the solution. The elongated body of the inserter may also have a curved portion that follows the curvature of the cornea and a clearance bend that provides clearance between the inserter and a facial feature, e.g., nose, of the patient.
In an embodiment, the corneal implant is preloaded in the holding space of the inserter and the preloaded inserter is stored in a storage container filled with storage fluid, e.g., saline, until use. In one embodiment, a cap is placed on the distal end of the inserter after the implant is preloaded. The cap encloses the holding space of the inserter to prevent the corneal implant from moving out of the holding space in the storage fluid during storage. By preloading the implant in the inserter, the surgeon does not have to separately retrieve the implant and place the implant in the inserter, which is difficult due to the small size and delicate nature of the implant.
A method of delivering a corneal implant according to an embodiment includes positioning an inserter with the corneal implant at a desired location in or on the cornea. At the desired location, the corneal implant is held down in the holding space of the inserter by a surgical tool, e.g., cannula. The surgical tool accesses the implant in the holding space through a slot in the inserter. While the corneal implant is held down by the surgical tool, the inserter is retracted to release the corneal implant from the inserter and deposit the corneal implant at the desired location. By holding down the implant at the desired location and retracting the inserter to release the implant, the surgeon is able to precisely deposit the implant at the desired location.
Other systems, methods, features and advantages of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims. It is also intended that the invention not be limited to the details of the example embodiments.
The inserter 100 further includes a holding space 101 for holding a corneal implant 200 to be delivered by the inserter. Preferably, saline, BSS or other solution (not shown) is placed in the holding space 101 to hold the implant 200 therein due to surface tension of the saline. The saline stays in the holding space 101 due to capillary forces, thereby keeping the implant hydrated. The inserter also includes top and bottom inserter slots 102 and 110 as shown in
In the preferred embodiment, the width “w” of the holding space 101 is slightly larger than the diameter of the implant 200 to be delivered by the inserter 100 as shown in
The inserter 100 may be manufactured from a rod that is cut and bent to form the inserter 100. In one embodiment, a cylindrical titanium rod is cut and bent to form the inserter 100. In this embodiment, the proximal portion of the inserter 100 is generally cylindrical with angled portions that taper down to the distal portion of the inserter 100.
The inserter system further includes an inserter cap 300, which may be made of Teflon (PTFE). In an embodiment, the inserter cap 300 is generally cylindrical and can be fitted snugly on the distal end of the inserter 100 by engaging the sides of the inserter 100 as shown in
In a preferred embodiment, the implant 200 is preloaded in the inserter 100 and packaged for later use by the surgeon during an implantation procedure. In this embodiment, the implant is 200 preloaded into the holding space 101 of the inserter 100 with the top surface of the implant 200 orientated to face the top surface of the inserter 100. The implant 200 may be preloaded by submerging both the implant 200 and the holding space 101 of the inserter 100 in a solution, e.g., saline, and inserting the implant 200 into the holding space 101 while they are both submerged. After the implant 700 is preloaded in the inserter 100, the inserter cap 300 is placed on the distal end of the inserter 100. The cap 300 may be placed on the inserter 100 while the holding space 101 is still submerged in the solution. The preloaded inserter 100 assembled with the inserter cap 300 is placed into a vial 400 or other storage container filled with saline 410 or other suitable solution as shown in
An implantation procedure using an insertion system according to an embodiment will now be given. In this embodiment, the preloaded inserter 100 is removed from the outer package 420 and the vial 400 filled with saline 410. The saline within the space between the inserter cap 300 and the inserter 101 is then removed by placing a sterile surgical sponge (not shown) or other absorbent material on the open end on the inserter cap 300. The sponge draws out the saline from the interior of the cap 300 by capillary action through the opening between the cap 300 and the inserter 101. In the embodiment in which the cap 300 has a generally cylindrical shape, the opening is formed between the cylindrical cap 300 and the flat top and bottom surfaces of the inserter 100. The saline is removed from the spaced between the cap 300 and the inserter 100 while the cap 300 is still on the inserter 100. This is done to prevent the cap 300 from pulling the implant 200 out of the inserter 100 by capillary action when the cap 300 is removed from the inserter 100. After the saline is removed, the cap 300 is removed from the inserter 100. At this point, a small amount of saline or BSS may be applied to the holding space 101 of the inserter 100 to keep the implant 200 hydrated. The saline stays in the holding space 101 due to capillary forces, thereby keeping the implant 200 hydrated during the procedure. Further, the surface tension of the saline holds the implant 200 in the holding space 101 of the inserter 100 so that the implant 200 does not fall out of the inserter 100 during the procedure. This surface tension and the geometry of the holding space 101 keep the implant 200 centered in the inserter 100. To enable a surgeon to better hold the inserter 100, a handle 500 may be attached to the proximal end of the inserter 100 as shown in
The surgeon may then implant the corneal implant 200 in the patient's cornea. To access the interior of the cornea, a flap may be cut into the cornea and lifted to expose the cornea's interior, e.g, stroma bed of the cornea. An example of this is shown in
The implant 200 may be implanted concurrent with a LASIK procedure or post-LASIK. Since a flap is cut into the cornea during a LASIK procedure, the same flap may be used to implant the implant 200. If the implant 200 is implanted post-LASIK, then the LASIK flap may be re-opened or the inserter 100 may be advanced between the flap and the underlying corneal tissue to the desired position. In this example, the LASIK procedure may be used to correct distance vision while the implant is used to provide near vision. Additional details can be found, for example, in U.S. patent application Ser. No. 11/554,544, entitled “Small Diameter Inlays,” filed on Oct. 30, 2006, the specification of which is incorporated herein by reference.
The implant 200 may also be implanted through a closed flap instead of an open flap. In this embodiment, the distal portion of the inserter 100 may be inserted between the flap and the underlying corneal tissue and advanced between the flap and underlying corneal tissue to the desired position in the cornea. The distal portion of the inserter 100 preferably has a thin cross-section so that the inserter 100 does not induce corneal wound stretching. The curved portion 103 of the inserter 100 follows the curvature of the cornea allowing the inserter to more easily move between the flap and underlying corneal tissue while minimizing stress on the cornea. Further, the top surface of the inserter 100 preferably a downward slopping portion 115 that slopes downward to the leading edge 111 of the inserter 100 as shown in
The implant 200 may also be implanted using different methods to access the interior of the cornea. For example, the interior of the cornea may be accessed through a lamellar pocket, channel, or pathway cut into the cornea. Additional details may be found, for example, in U.S. patent application Ser. No. 11/421,597, entitled “Ocular Tissue Separation Areas With Barrier Regions For Inlays Or Other Refractive Procedures,” filed on Jun. 1, 2006, the specification of which is incorporated herein by reference. Methods for creating pockets in the cornea are described in United States Patent Application Publication No. 2003/0014042, published Jan. 16, 2003, entitled “Method of Creating Stromal Pockets for Corneal Implants,” which is also fully incorporated by reference herein. For example, the inserter may be inserted into a channel or pocket cut into the cornea and advanced through the channel to position the implant at the desired location in the cornea. A second channel may also be cut into the cornea to provide access for the surgical cannula or other tool used to hold down the implant at the desired location. A pocket is a recess formed within the corneal tissue for receiving the corneal implant and may be accessed through a channel formed in the cornea.
In another embodiment, the inserter 100 may include a channel running through the inserter 100 and extending from the proximal end of the inserter 100 to the holding space 101. The proximal end of the inserter 100 may be connected to a syringe filled with fluid, e.g., saline, for delivering fluid to the holding space 101 through the channel. In this embodiment, the channel may deliver fluid at the back of the holding space 101. This allows a surgeon to deliver a small amount of fluid into the holding space 101 to hydrate the implant 200 and/or gently push the implant 200 out of the holding space 101 for releasing the implant 200 from the inserter 100. For example, when the implant 200 is at the desired location on the cornea, the surgeon may deliver fluid through the channel to help release the implant 200 from the inserter 101. This may be done instead of or in conjunction with the tool used to hold down the implant 200.
The inserter 900 also includes a top inserter slot 930 through which a surgical cannula, Sinskey Hook or other tool can be used to hold down the implant 1000 at the desired location in the cornea. The inserter 900 also includes a bottom opening 940 through which the implant 1000 can contact the cornea when the implant is held down as shown in
The implant 1000 may be implanted in the cornea using procedures similar to the ones discussed above. For example, a flap may be cut into the cornea and lifted to expose a stroma bed of the cornea. The surgeon may then position the implant 1000 at the desired location using the inserter 900. When the implant 1000 is at the desired position, the surgeon may use a surgical cannula or other tool to hold the implant 1000 through the top inserter slot 930. The surgeon may hold down the implant 1000 such that the bottom surface of the implant 1000 contacts the cornea through the bottom opening 940 of the inserter 900. While the implant 1000 is held down at the desired location, the surgeon retracts the inserter 900 to deposit the implant 1000 on the cornea. The surgeon may also deliver fluid to the implant 1000 through the channel in the inserter to release the implant 1000 from the inserter 900. After the implant 1000 is correctly positioned, the surgeon places the flap over the implant 1000.
The implant 1000 may also be implanted using other procedures including implantation through a channel, pocket or pathway cut into the cornea for access to the desired position in the cornea. In these procedures, the inserter 900 may be moved to the desired position through the channel, pocket or pathway. The thin cross section of the inserter 900 minimizes stress on the cornea as the inserter 900 is advanced through the channel, pocket or pathway. A second channel may also be cut into the cornea to provide access for the surgical tool used to hold down the implant 1000 at the desired location.
The inserter systems described herein may to used to implant various types of corneal implant. For example, the inserter systems may be used to implant corneal implants deep within the cornea such as intraocular lenses or at lower depths such as inlays. The inserter systems may also be used to place an onlay on the surface of the cornea. Thus, the inserter systems may be used to implant corneal implants of various rigidity, sizes and properties at various depths in the cornea. The corneal implant may be an inlay, lens, or the like.
In the foregoing specification, the invention has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention. As another example, each feature of one embodiment can be mixed and matched with other features shown in other embodiments. As yet another example, the order of steps of method embodiments may be changed. Features and processes known to those of ordinary skill may similarly be incorporated as desired. Additionally and obviously, features may be added or subtracted as desired. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
2714721 | Stone, Jr. | Aug 1955 | A |
3168100 | Rich | Feb 1965 | A |
3343657 | Speshyock | Sep 1967 | A |
3379200 | Pennell | Apr 1968 | A |
3482906 | Volk | Dec 1969 | A |
3743337 | Crary | Jul 1973 | A |
3770113 | Thomas | Nov 1973 | A |
3879076 | Barnett | Apr 1975 | A |
3950315 | Cleaver | Apr 1976 | A |
3996627 | Deeg et al. | Dec 1976 | A |
4030480 | Meyer | Jun 1977 | A |
4037604 | Newkirk | Jul 1977 | A |
4039827 | Zdrok et al. | Aug 1977 | A |
4065816 | Sawyer | Jan 1978 | A |
4071272 | Drdlik | Jan 1978 | A |
4136406 | Norris | Jan 1979 | A |
4157718 | Baehr | Jun 1979 | A |
4184491 | McGannon | Jan 1980 | A |
4194814 | Fischer et al. | Mar 1980 | A |
4238524 | LaLiberte et al. | Dec 1980 | A |
4257521 | Poler | Mar 1981 | A |
4268133 | Fischer et al. | May 1981 | A |
4326306 | Poler | Apr 1982 | A |
4357940 | Muller | Nov 1982 | A |
4392569 | Shoup | Jul 1983 | A |
4418991 | Breger | Dec 1983 | A |
4423809 | Mazzocco | Jan 1984 | A |
4428746 | Mendez | Jan 1984 | A |
4452235 | Reynolds | Jun 1984 | A |
4466705 | Michelson | Aug 1984 | A |
4490860 | Rainin | Jan 1985 | A |
4504982 | Burk | Mar 1985 | A |
4521210 | Wong | Jun 1985 | A |
4525044 | Bauman | Jun 1985 | A |
4545478 | Waldman | Oct 1985 | A |
4554115 | Neefe | Nov 1985 | A |
4554918 | White | Nov 1985 | A |
4565198 | Koeniger | Jan 1986 | A |
4580882 | Nuchman et al. | Apr 1986 | A |
4586929 | Binder | May 1986 | A |
4604087 | Joseph | Aug 1986 | A |
4607617 | Choyce | Aug 1986 | A |
4616910 | Klein | Oct 1986 | A |
4618227 | Bayshore | Oct 1986 | A |
4619256 | Horn | Oct 1986 | A |
4624664 | Peluso et al. | Nov 1986 | A |
4624669 | Grendahl | Nov 1986 | A |
4640595 | Volk | Feb 1987 | A |
4646720 | Peyman et al. | Mar 1987 | A |
4655774 | Choyce | Apr 1987 | A |
4662370 | Hoffmann et al. | May 1987 | A |
4663358 | Hyon et al. | May 1987 | A |
4671276 | Reynolds | Jun 1987 | A |
4676792 | Praeger | Jun 1987 | A |
4697697 | Graham et al. | Oct 1987 | A |
4702244 | Mazzocco | Oct 1987 | A |
4709697 | Muller | Dec 1987 | A |
4721124 | Tuerkheimer et al. | Jan 1988 | A |
4726367 | Shoemaker | Feb 1988 | A |
4750901 | Molteno | Jun 1988 | A |
4762496 | Maloney et al. | Aug 1988 | A |
4766895 | Reynolds | Aug 1988 | A |
4769033 | Nordan | Sep 1988 | A |
4772283 | White | Sep 1988 | A |
4778462 | Grendahl | Oct 1988 | A |
4798609 | Grendahl | Jan 1989 | A |
4806382 | Goldberg et al. | Feb 1989 | A |
4836201 | Patton et al. | Jun 1989 | A |
4840175 | Peyman | Jun 1989 | A |
4842599 | Bronstein | Jun 1989 | A |
4844242 | Chen et al. | Jul 1989 | A |
4851003 | Lindstrom | Jul 1989 | A |
4860885 | Kaufman et al. | Aug 1989 | A |
4886488 | White | Dec 1989 | A |
4888016 | Langerman | Dec 1989 | A |
4897981 | Beck | Feb 1990 | A |
4911715 | Kelman | Mar 1990 | A |
4919130 | Stoy et al. | Apr 1990 | A |
4923467 | Thompson | May 1990 | A |
4934363 | Smith et al. | Jun 1990 | A |
4936825 | Ungerleider | Jun 1990 | A |
4946436 | Smith | Aug 1990 | A |
4955903 | Sulc et al. | Sep 1990 | A |
4968296 | Ritch et al. | Nov 1990 | A |
4971732 | Wichterle | Nov 1990 | A |
4976719 | Siepser | Dec 1990 | A |
5019084 | Aysta et al. | May 1991 | A |
5019098 | Mercier | May 1991 | A |
5022414 | Muller | Jun 1991 | A |
5030230 | White | Jul 1991 | A |
5041081 | Odrich | Aug 1991 | A |
5063942 | Kilmer et al. | Nov 1991 | A |
5071276 | Nielsen et al. | Dec 1991 | A |
5073163 | Lippman | Dec 1991 | A |
5092837 | Ritch et al. | Mar 1992 | A |
5098444 | Feaster | Mar 1992 | A |
5108428 | Capecchi et al. | Apr 1992 | A |
5112350 | Civerchia et al. | May 1992 | A |
5123905 | Kelman | Jun 1992 | A |
5123921 | Werblin et al. | Jun 1992 | A |
5139518 | White | Aug 1992 | A |
5171213 | Price, Jr. | Dec 1992 | A |
5173723 | Volk | Dec 1992 | A |
5178604 | Baerveldt et al. | Jan 1993 | A |
5180362 | Worst et al. | Jan 1993 | A |
5181053 | Brown | Jan 1993 | A |
5188125 | Kilmer et al. | Feb 1993 | A |
5190552 | Kelman | Mar 1993 | A |
5192317 | Kalb | Mar 1993 | A |
5196026 | Barrett et al. | Mar 1993 | A |
5211660 | Grasso | May 1993 | A |
5225858 | Portney | Jul 1993 | A |
5229797 | Futhey et al. | Jul 1993 | A |
5244799 | Anderson | Sep 1993 | A |
5258042 | Mehta | Nov 1993 | A |
5270744 | Portney | Dec 1993 | A |
5273750 | Homiger et al. | Dec 1993 | A |
5282851 | Jacob-LaBarre | Feb 1994 | A |
5300020 | L 'Esperance, Jr. | Apr 1994 | A |
5300116 | Chirila et al. | Apr 1994 | A |
5312413 | Eaton et al. | May 1994 | A |
5318044 | Kilmer et al. | Jun 1994 | A |
5318046 | Rozakis | Jun 1994 | A |
5318047 | Davenport et al. | Jun 1994 | A |
5336261 | Barrett et al. | Aug 1994 | A |
5338291 | Speckman et al. | Aug 1994 | A |
5344448 | Schneider et al. | Sep 1994 | A |
5346464 | Camras | Sep 1994 | A |
5370607 | Memmen | Dec 1994 | A |
5372577 | Ungerleider | Dec 1994 | A |
5385582 | Ommaya | Jan 1995 | A |
5391201 | Barrett et al. | Feb 1995 | A |
5397300 | Baerveldt et al. | Mar 1995 | A |
5405384 | Silvestrini | Apr 1995 | A |
5428412 | Stoyan | Jun 1995 | A |
5433701 | Rubinstein | Jul 1995 | A |
5454796 | Krupin | Oct 1995 | A |
5458819 | Chirila et al. | Oct 1995 | A |
5467149 | Morrison et al. | Nov 1995 | A |
5474562 | Orchowski et al. | Dec 1995 | A |
5476445 | Baerveldt et al. | Dec 1995 | A |
5489301 | Barber | Feb 1996 | A |
5493350 | Seidner | Feb 1996 | A |
5502518 | Lieberman | Mar 1996 | A |
5512220 | Roffman et al. | Apr 1996 | A |
5520631 | Nordquist et al. | May 1996 | A |
5521656 | Portney | May 1996 | A |
5530491 | Baude et al. | Jun 1996 | A |
5533997 | Ruiz | Jul 1996 | A |
5570142 | Lieberman | Oct 1996 | A |
5591185 | Kilmer et al. | Jan 1997 | A |
5598234 | Blum et al. | Jan 1997 | A |
5616148 | Eagles et al. | Apr 1997 | A |
5620450 | Eagles et al. | Apr 1997 | A |
5628794 | Lindstrom | May 1997 | A |
5630810 | Machat | May 1997 | A |
5634943 | Villain et al. | Jun 1997 | A |
5643276 | Zaleski | Jul 1997 | A |
5657108 | Portney | Aug 1997 | A |
5682223 | Menezes et al. | Oct 1997 | A |
5684560 | Roffman et al. | Nov 1997 | A |
5715031 | Roffman et al. | Feb 1998 | A |
5716633 | Civerchia | Feb 1998 | A |
5722948 | Gross | Mar 1998 | A |
5722971 | Peyman | Mar 1998 | A |
5728155 | Anello et al. | Mar 1998 | A |
5752928 | de Roulhac et al. | May 1998 | A |
5755785 | Rowsey et al. | May 1998 | A |
5766181 | Chambers et al. | Jun 1998 | A |
5772667 | Blake | Jun 1998 | A |
5779711 | Kritzinger et al. | Jul 1998 | A |
5785674 | Mateen | Jul 1998 | A |
5800442 | Wolf et al. | Sep 1998 | A |
5800529 | Brauker et al. | Sep 1998 | A |
5805260 | Roffman et al. | Sep 1998 | A |
5810833 | Brady et al. | Sep 1998 | A |
5817115 | Nigam | Oct 1998 | A |
5824086 | Silvestrini | Oct 1998 | A |
5847802 | Menezes et al. | Dec 1998 | A |
5855604 | Lee | Jan 1999 | A |
5860984 | Chambers et al. | Jan 1999 | A |
5872613 | Blum et al. | Feb 1999 | A |
5873889 | Chin | Feb 1999 | A |
5876439 | Lee | Mar 1999 | A |
5888243 | Silverstrini | Mar 1999 | A |
5913898 | Feingold | Jun 1999 | A |
5919185 | Peyman | Jul 1999 | A |
5928245 | Wolf et al. | Jul 1999 | A |
5929968 | Cotie et al. | Jul 1999 | A |
5929969 | Roffman | Jul 1999 | A |
5941583 | Raimondi | Aug 1999 | A |
5944752 | Silvestrini | Aug 1999 | A |
5945498 | Hopken et al. | Aug 1999 | A |
5964748 | Peyman | Oct 1999 | A |
5964776 | Peyman | Oct 1999 | A |
5968065 | Chin | Oct 1999 | A |
5976150 | Copeland | Nov 1999 | A |
5976168 | Chin | Nov 1999 | A |
5980549 | Chin | Nov 1999 | A |
6007510 | Nigam | Dec 1999 | A |
6010510 | Brown et al. | Jan 2000 | A |
6024448 | Wu et al. | Feb 2000 | A |
6033395 | Peyman | Mar 2000 | A |
6036714 | Chin | Mar 2000 | A |
6050999 | Paraschac et al. | Apr 2000 | A |
6055990 | Thompson | May 2000 | A |
6066170 | Lee | May 2000 | A |
6068642 | Johnson et al. | May 2000 | A |
6079826 | Appleton et al. | Jun 2000 | A |
6083231 | Van Noy et al. | Jul 2000 | A |
6086202 | Chateau et al. | Jul 2000 | A |
6090141 | Lindstrom | Jul 2000 | A |
6102946 | Nigam | Aug 2000 | A |
6110166 | Juhasz et al. | Aug 2000 | A |
6120148 | Fiala et al. | Sep 2000 | A |
6125294 | Scholl et al. | Sep 2000 | A |
6129733 | Brady et al. | Oct 2000 | A |
6139560 | Kremer | Oct 2000 | A |
6142969 | Nigam | Nov 2000 | A |
6143001 | Brown et al. | Nov 2000 | A |
6159241 | Lee et al. | Dec 2000 | A |
6171324 | Cote et al. | Jan 2001 | B1 |
6175754 | Scholl et al. | Jan 2001 | B1 |
RE37071 | Gabrielian et al. | Feb 2001 | E |
6183513 | Guenthner et al. | Feb 2001 | B1 |
6197019 | Peyman | Mar 2001 | B1 |
6197057 | Peyman et al. | Mar 2001 | B1 |
6197058 | Portney | Mar 2001 | B1 |
6203538 | Peyman | Mar 2001 | B1 |
6203549 | Waldock | Mar 2001 | B1 |
6203557 | Chin | Mar 2001 | B1 |
6206919 | Lee | Mar 2001 | B1 |
6210005 | Portney | Apr 2001 | B1 |
6214015 | Reich et al. | Apr 2001 | B1 |
6214044 | Silverstrini | Apr 2001 | B1 |
6217571 | Peyman | Apr 2001 | B1 |
6221067 | Peyman | Apr 2001 | B1 |
6228114 | Lee | May 2001 | B1 |
6248111 | Glick et al. | Jun 2001 | B1 |
6250757 | Roffman et al. | Jun 2001 | B1 |
6251114 | Farmer et al. | Jun 2001 | B1 |
6264648 | Peyman | Jul 2001 | B1 |
6264670 | Chin | Jul 2001 | B1 |
6264692 | Woffinden et al. | Jul 2001 | B1 |
6267768 | Deacon et al. | Jul 2001 | B1 |
6271281 | Liao et al. | Aug 2001 | B1 |
6277137 | Chin | Aug 2001 | B1 |
6280449 | Blake | Aug 2001 | B1 |
6280470 | Peyman | Aug 2001 | B1 |
6283595 | Breger | Sep 2001 | B1 |
6302877 | Ruiz | Oct 2001 | B1 |
6325509 | Hodur et al. | Dec 2001 | B1 |
6325792 | Swinger et al. | Dec 2001 | B1 |
6361560 | Nigam | Mar 2002 | B1 |
6364483 | Grossinger et al. | Apr 2002 | B1 |
6371960 | Heyman et al. | Apr 2002 | B2 |
6391230 | Sarbadhikari | May 2002 | B1 |
6398277 | McDonald | Jun 2002 | B1 |
6398789 | Capetan | Jun 2002 | B1 |
6428572 | Nagai | Aug 2002 | B2 |
6435681 | Portney | Aug 2002 | B2 |
6436092 | Peyman | Aug 2002 | B1 |
6447519 | Brady et al. | Sep 2002 | B1 |
6447520 | Ott et al. | Sep 2002 | B1 |
6458141 | Peyman | Oct 2002 | B1 |
6461384 | Hoffmann et al. | Oct 2002 | B1 |
6471708 | Green | Oct 2002 | B2 |
6474814 | Griffin | Nov 2002 | B1 |
6506200 | Chin | Jan 2003 | B1 |
6511178 | Roffman et al. | Jan 2003 | B1 |
6527389 | Portney | Mar 2003 | B2 |
6537283 | Van Noy | Mar 2003 | B2 |
6543610 | Nigam | Apr 2003 | B1 |
6544286 | Perez | Apr 2003 | B1 |
6551307 | Peyman | Apr 2003 | B2 |
6554424 | Miller et al. | Apr 2003 | B1 |
6554425 | Roffman et al. | Apr 2003 | B1 |
6557998 | Portney | May 2003 | B2 |
6581993 | Nigam | Jun 2003 | B2 |
6582076 | Roffman et al. | Jun 2003 | B1 |
6589203 | Mitrev | Jul 2003 | B1 |
6589280 | Koziol | Jul 2003 | B1 |
6592591 | Polla et al. | Jul 2003 | B2 |
6596000 | Chan et al. | Jul 2003 | B2 |
6605093 | Blake | Aug 2003 | B1 |
6607537 | Binder | Aug 2003 | B1 |
6607556 | Nigam | Aug 2003 | B1 |
6623522 | Nigam | Sep 2003 | B2 |
6626941 | Nigam | Sep 2003 | B2 |
6629979 | Feingold et al. | Oct 2003 | B1 |
6632244 | Nigam | Oct 2003 | B1 |
6645246 | Weinschenk, III et al. | Nov 2003 | B1 |
6648877 | Juhasz et al. | Nov 2003 | B1 |
6657029 | Vanderbilt | Dec 2003 | B2 |
6666887 | Callahan et al. | Dec 2003 | B1 |
6673112 | Nigam | Jan 2004 | B2 |
6709103 | Roffman et al. | Mar 2004 | B1 |
6712848 | Wolf et al. | Mar 2004 | B1 |
6723104 | Ott | Apr 2004 | B2 |
6733507 | McNicholas et al. | May 2004 | B2 |
6733526 | Paul et al. | May 2004 | B2 |
6808262 | Chapoy et al. | Oct 2004 | B2 |
6824178 | Nigam | Nov 2004 | B2 |
6855163 | Peyman | Feb 2005 | B2 |
6875232 | Nigam | Apr 2005 | B2 |
6879402 | Küchel | Apr 2005 | B2 |
6881197 | Nigam | Apr 2005 | B1 |
6893461 | Nigam | May 2005 | B2 |
6949093 | Peyman | Sep 2005 | B1 |
7128351 | Nigam | Oct 2006 | B2 |
20010051826 | Bogaert et al. | Dec 2001 | A1 |
20020055753 | Silvestrini | May 2002 | A1 |
20020101563 | Miyamura et al. | Aug 2002 | A1 |
20020103538 | Hughes et al. | Aug 2002 | A1 |
20030014042 | Juhasz et al. | Jan 2003 | A1 |
20030033010 | Hicks et al. | Feb 2003 | A1 |
20030069637 | Lynch et al. | Apr 2003 | A1 |
20030078487 | Jeffries et al. | Apr 2003 | A1 |
20030229303 | Haffner et al. | Dec 2003 | A1 |
20040019379 | Glick et al. | Jan 2004 | A1 |
20040034413 | Christensen | Feb 2004 | A1 |
20040049267 | Nigam | Mar 2004 | A1 |
20040054408 | Glick et al. | Mar 2004 | A1 |
20040073303 | Schanzlin | Apr 2004 | A1 |
20050080484 | Marmo et al. | Apr 2005 | A1 |
20050080485 | Nigam | Apr 2005 | A1 |
20050113844 | Nigam | May 2005 | A1 |
20050119738 | Nigam | Jun 2005 | A1 |
20050143717 | Peyman | Jun 2005 | A1 |
20050178394 | Slade | Aug 2005 | A1 |
20050182350 | Nigam | Aug 2005 | A1 |
20050203494 | Holliday | Sep 2005 | A1 |
20050246015 | Miller | Nov 2005 | A1 |
20050246016 | Miller et al. | Nov 2005 | A1 |
20060020267 | Marmo | Jan 2006 | A1 |
20060116762 | Hong et al. | Jun 2006 | A1 |
20060142780 | Pynson et al. | Jun 2006 | A1 |
20060142781 | Pynson et al. | Jun 2006 | A1 |
20060212041 | Nigam | Sep 2006 | A1 |
20060235430 | Le et al. | Oct 2006 | A1 |
20070027538 | Aharoni et al. | Feb 2007 | A1 |
20070129797 | Lang et al. | Jun 2007 | A1 |
20070203577 | Dishler et al. | Aug 2007 | A1 |
20070255401 | Lang | Nov 2007 | A1 |
20070280994 | Cunanan | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
3208729 | Sep 1983 | DE |
0308077 | Mar 1989 | EP |
0420549 | Apr 1991 | EP |
01-195853 | Aug 1989 | JP |
02-211119 | Aug 1990 | JP |
5502811 | May 1993 | JP |
08-501009 | Feb 1996 | JP |
9-504706 | May 1997 | JP |
2000506056 | May 2000 | JP |
03-508135 | Mar 2003 | JP |
WO 9626690 | Sep 1996 | WO |
WO 9808549 | Mar 1998 | WO |
WO 9848715 | Nov 1998 | WO |
WO 9917691 | Apr 1999 | WO |
WO 9921513 | May 1999 | WO |
WO 9930645 | Jun 1999 | WO |
WO 0038594 | Jul 2000 | WO |
WO 0341616 | May 2003 | WO |
WO 03061518 | Jul 2003 | WO |
WO 03101341 | Dec 2003 | WO |
WO 2006029316 | Apr 2006 | WO |
WO 2006060363 | Jun 2006 | WO |
WO 2007101016 | Sep 2007 | WO |
WO 2007132332 | Nov 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20080243138 A1 | Oct 2008 | US |