Shoulder Replacement is a commonly performed medical procedure for treatment of osteoarthritis, rheumatoid arthritis, as well as for treatment of certain deformities related to oncological indications as well as trauma. There are two primary types of articulations available to surgeons for treatment: anatomic and reverse. With anatomic, the surgeon replaces the articular surfaces with industrial materials such that the articulating surfaces are substantially the same shape as the natural anatomy. A stem can be commonly fixed inside the canal of the humerus, a metallic articular head can be rigidly fixed to the proximal aspect of the same, the articular head having a convex articular surface adapted to articulate with the glenoid implant. The glenoid implant can include on its back side (medial side) certain pegs or posts or fins adapted to be rigidly fixed within the glenoid fossa of the scapula and on its front side a concave or flat articular surface adapted to articulate with the humeral head of the humeral implant.
When a reverse prosthesis is used, the articular surface is reversed in that the metallic ball is rigidly fixed to the glenoid fossa of the scapula, and the concave articular surface is rigidly fixed to the humeral bone, thereby reversing the fashion of articulation of the prosthesis.
The surgeon chooses between the two types of prostheses by assessing a number of conditions of the patient including level of pain, patient activity level, deformity or severity of the boney degradation, the strength of surrounding soft tissues, and present or absence of prior surgery, and particularly the health and strength of the rotator cuff muscle and tendon. Disease of the rotator cuff is common among patients with arthritis of the shoulder. In this circumstance, it is commonly observed that the absence of insufficiency of the rotator cuff leads to a condition where the anatomic shoulder replacement prosthesis is not sufficiently stabilized by surrounding soft tissue. In this case, a reverse shoulder replacement prosthesis can be preferred in some cases due to the higher inherent stability of the articulation. In addition, the reverse prosthesis can advantageously utilize the remaining muscles in a way they can be more effective in the absence of the other soft tissue structures by adjusting the position of the articular surfaces within the joint.
It is not uncommon that a surgeon selects to use an anatomic prosthesis and is provides effective treatment to the patient though the shoulder replacement operation. However, over time and during use of the prosthesis, the patient's rotator cuff complex can become insufficient, tear, or generally be diseased such that it can no longer perform its function associated with normal joint kinematics. In this case, the surgeon can elect to perform a second operation to remove the anatomic prosthesis, and replace the anatomic prosthesis with a reverse prosthesis.
Several attempts have been made to attempt to address the need of conversion of the articular surface without interruption of the fixation. Primarily, these are created using a two (or more) system, where there is a metallic fixation component which is rigidly fixed to the glenoid fossa, and a polyethylene (PE) articular component which is secondarily fixed to the metallic component, and provides the concave articular surface adapted to articular with the humeral prosthesis. While referred to herein as a PE component, some embodiments do not require the use of polyethylene and can be made of other biocompatible materials depending on the desired clinical result. The PE component is commonly fixed to the metallic fixation component by conventional industrial techniques such as snap fit mechanisms, snap rings, compression pins, overmolding of the PE and other such means.
A challenge of this particular articulation in some cases is that the glenoid fossa is relatively small, and commonly there is much reduced presence of bone in patients with arthritis. In this context, the surgeon has limited positioning and bone to work with in order to fit within the patient. In addition, the surgeon must be careful not to overstuff the joint, meaning implant components that move the new articulating surface far from its original position such that the soft tissues is unnaturally tensioned, which can lead to instability, accelerated where, soft tissue failure, pain, reduced range of motion, or fracture of the prosthesis and surrounding bone. Facing these conditions, the prosthesis typically needs to be designed to remain relatively thin (commonly, 1 piece, where PE glenoid implants typically have a 4 mm thick articular surface). In order to design these modular components, there can be little additional packaging space provided into which to fit the attachment mechanisms necessary for use without adversely affecting the performance of the overall joint replacement procedure. Thus, typically, these designs lead to “over-optimization” of the fixation and articular portions in order to provide sufficient attachment mechanisms such that either: the PIE is too thin to be sufficiently strong, the metallic components are too small to provide sufficient fixation, or the overall mechanism is insufficiently rigid causing there to be secondary wear surfaces, and generation of wear particles leading to PE disease.
A problem that can exist is that in the case where the surgeon wants to change the prosthesis type, the anatomic prosthesis is commonly well fixed and adapted to the patient's body such that removal of the prosthesis can be very destructive, and leave natural bone remaining that is perhaps insufficient to support the fixation of the reverse prosthesis. What is needed is a prosthesis system that provides a means by which the articulating surfaces of the implant can be exchanged such that the anatomic surfaces can be converted to reverse surfaces, while not exchanging the fixation components.
What is also needed is a simple means by which the surgeon can implant an inset anatomic articulating glenoid implant whereby at a later date, can remove the anatomic articulating surface and replace it with a reverse articulating surface such that the primary means of fixation remains well fixed in the glenoid fossa at the moment of articular exchange.
In some embodiments, disclosed herein is a method of performing a reversible anatomic shoulder replacement procedure. The method can include any number of: reaming a cavity into the glenoid; and inserting an anatomic glenoid articular implant into the glenoid cavity, the glenoid anatomic articular implant comprising a medial surface configured to mate with the glenoid cavity, a central peg extending medially from the medial surface, a lateral surface configured to articulate with a humeral component; and an intermediate component between the lateral surface and the medial surface, the intermediate component having an outer diameter reversibly attached to a snap ring attached to a fixation ring, the snap ring and the fixation ring at least partially implanted within the glenoid cavity. The anatomic glenoid articular implant can be partially or fully inset into the glenoid cavity. The cavity could be circular, oval, or another shape.
Also disclosed herein is a method of converting an anatomic to a reverse shoulder prosthesis, including any number of: identifying a patient with an anatomic glenoid articular implant within a glenoid cavity, the anatomic articular implant comprising a medial surface mated with the glenoid cavity, a central peg extending medially from the medial surface, a lateral surface articulating with a humeral component; and a central component between the lateral surface and the medial surface, the central component having an outer diameter reversibly attached to a snap ring and a fixation ring, the snap ring and the fixation ring at least partially implanted within the glenoid cavity; inserting a implant removal tool through the lateral articulating surface of the anatomic glenoid articular implant sufficient to collapse the snap ring; removing the anatomic glenoid articular implant while leaving the fixation ring in place within the glenoid cavity; and inserting a reverse shoulder implant into the glenoid cavity sufficient to actuate the snap ring such that the reverse shoulder implanted is reversibly fixed to the fixation ring. Inserting the removal tool can include driving pins, a drill bit, or another tool of the removal tool through the lateral articulating surface of the anatomic glenoid articular implant.
In some embodiments, also disclosed herein is a reversible anatomic shoulder replacement system, that can include any number of: a fixation ring configured to be positioned within the glenoid cavity, the fixation ring comprising a peripheral edge comprising an outer diameter and a plurality of spaced-apart radially inward indents in the peripheral edge, the fixation ring comprising a groove configured to house a snap ring therein; a snap ring comprising an expanded configuration and a collapsed configuration; and an anatomic articular implant comprising a medial surface configured to mate with the glenoid cavity, a central peg extending medially from the medial surface, a lateral surface configured to articulate with a humeral component; and an intermediate component between the lateral surface and the medial surface, the intermediate component having an outer diameter reversibly attached to the snap ring and the fixation ring, the snap ring and the fixation ring configured to be at least partially implanted within the glenoid cavity. The groove can include anti-rotation tabs. The peripheral edge of the fixation ring can be configured to facilitate bone ingrowth, e.g., via an osteoinductive or osteoconductive surface. The groove can be a circumferential groove. The lateral surface can include any appropriate material, such as polyethylene.
Also disclosed herein is a reverse shoulder replacement kit for an anatomic shoulder replacement system, that can include any number of: an implant removal tool configured to bore through a medial surface of the anatomic glenoid articular implant sufficient to collapse a snap ring; and remove an anatomic glenoid articular implant while leaving a fixation ring in place within the glenoid cavity; and a reverse shoulder implant configured to be implanted into the glenoid cavity, the reverse shoulder implant comprising a generally cylindrical component comprising a medial surface configured to mate with the glenoid cavity, a central receptacle for housing an articular post therethrough, and a plurality of peripheral screw holes; a lateral surface, and a central post extending away from the lateral surface, wherein the reverse shoulder implant is configured to reversibly mate with the snap ring and fixation ring embedded in the glenoid cavity to anchor the reverse shoulder implant.
In some configurations, disclosed herein is a method of performing a reversible anatomic shoulder replacement procedure, comprising reaming a cavity into the glenoid; and inserting an anatomic glenoid articular implant into the glenoid cavity, the glenoid anatomic articular implant comprising a medial surface configured to mate with the glenoid cavity, a central peg extending medially from the medial surface, a lateral surface configured to articulate with a humeral component; and an intermediate component between the lateral surface and the medial surface, the intermediate component having an outer diameter reversibly attached via press fitting to a fixation ring at least partially comprising a porous surface, the fixation ring at least partially implanted within the glenoid cavity.
In some configurations, the anatomic glenoid articular implant is partially or fully inset into the glenoid cavity. The cavity can be, for example, circular or oval.
In some configurations, disclosed herein is a reversible anatomic shoulder replacement system, comprising a fixation ring configured to be positioned within the glenoid cavity, the fixation ring at least partially comprising a porous coating, the fixation ring also comprising a peripheral edge comprising an outer diameter; and an anatomic articular implant comprising a medial surface configured to mate with the glenoid cavity, a central peg extending medially from the medial surface, a lateral surface configured to articulate with a humeral component; a medial peripheral edge; and a lateral peripheral edge, the medial peripheral edge comprising a substantially constant diameter that is less than a substantially constant diameter of the lateral peripheral edge, the fixation ring comprising an inner diameter sized and configured to circumscribe the medial peripheral edge of the implant. The fixation ring can be configured to he at least partially implanted within the glenoid cavity. The fixation ring can include anti-rotation features on an outer diameter of the fixation ring. The peripheral edge of the fixation ring can be configured to facilitate bone ingrowth, e.g., an osteoinductive or osteoconductive surface. The inner diameter of the fixation ring can include barbs and/or threads, including self-tapping threads.
In particular, some embodiments of the invention are focused on advantageously exchanging the articular surface of the glenoid from a concave shape to a convex shape, without removing the components or interface having to do with fixation of the implant into the glenoid fossa.
In some embodiments, embodiments of the invention can be used or modified with use with particular advantages of using inset glenoid fixation technology in anatomic shoulder arthroplasty, such as described, for example, in U.S. Pat. Nos. 8,007,538 and/or 8,778,028 to Gunther, which are hereby incorporated by reference in their entireties.
What is further described are methods by which the surgeon can achieve the use of the inset glenoid technology with an anatomic articulation, while after having the ability to convert the technology to a reverse articulation, without requiring removal the rigid fixation between the inset fixation and the scapula bone (in other words, allowing the rigid fixation support between the inset fixation and the scapula bone to remain in place during conversion from an anatomic to a reverse prosthesis).
Some embodiments of the invention can utilize an inset glenoid articulation implant described by Gunther et al. including in U.S. Pat. Nos. 8,007,538 or 8,778,028. However, some embodiments of the invention can also utilize onlay glenoid articulation. implants. The peripheral rim of the implant can in some cases have an important role in the fixation stability of the implant and its resistance to motion relative to the glenoid bone during articulation. In addition, it is recognized that a known “rule of thumb” in the industry is that the bearing component of the glenoid implant, such as the polyethylene (PE) component, should be at least about 3 mm thick at its thinnest position in order to achieve a sufficient material strength to minimize risk of accelerated implant failure. Of course, this rule is only a guide, but has proven helpful in assessing longevity of implant designs. With these points in mind, it is recognized that in some embodiments the design of the implant (which can be inset in some embodiments) might be improved upon by providing a step in the outer diameter of the inset glenoid implant at its most medial aspect while being able to maintain a minimum PE thickness of about or at least about 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, or ranges incorporating any of the aforementioned values. In the space that this step provides is placement of an annular ring which can be rigidly fixed on the outer diameter of the articular implant such that the outer diameter of the inset glenoid implant remains a contiguous surface, albeit in some embodiments made a plurality of materials: the lateral aspect being part of the PE articulation, the medial aspect being the outer diameter of the annular ring, which can be metallic in some cases. The annular ring and the PE articular component can be attached to one another through the use of a snap ring mechanism or other ways, some of which are described elsewhere herein.
The annular ring can be configured such that its outer diameter presents a surface to the surrounding bone which can be adapted to be biologically attractive for the growth of surrounding bone tissue. This technology can be achieved by several means such as, for example, various coatings or secondary manufacturing operations, mechanical modification through machining operations, creation of an adapted surface using 3D printing manufacturing, or other means. One advantage of the surface on the outer diameter is such that over the course of the healing process following surgery, bone grows and adapts itself to this annular ring so as to provide rigid attachment of surrounding bone to the annular ring. Thus, at the moment of articular component exchange, the ring is well fixed to bone, and following removal of the PE articulation component, the ring remains well fixed within the glenoid bone, and can be useful as a support surface in attachment of a new reverse articulating surface to the bone.
The guide 600 provides positioning of a plurality of holes, e.g., about or at least about two, three, four, five, or more holes positioning around the periphery of the PE implanted such that which a drill or pin 602 is mechanically driven into the guide holes 607, they are aligned to force the snap ring 400 in an radially inward fashion to allow for release of the snap ring.
As shown in
1. an outer diameter adapted to provide for a snap ring fit between the disc and annular ring in the same manner as the PE component and the annular ring;
2. a peg, pin, screw or other fixation means which is adapted to fit deeper into the central portion of the glenoid fossa to provide additional fixation means,
3. a central tapered hole into which a reverse ball articulating component can be placed and rigidly fixed; and
4. several peripheral holes through which screws can be driven to further increase the rigidity of fixation between the fixation disc and bone.
Following the removal of the anatomic, e.g., PE component, the surgeon can further prepare the glenoid fossa for the reverse fixation disc by drilling a centrally positioned hole. The hole can be adapted to receive a pin, post, screw, or other feature which is integrally attached to the medial aspect of the fixation disc. As the fixation disc can be positioned within the annular ring, the central fixation protrusion can be positioned within this hole in the glenoid bone such that further fixation rigidity is obtained.
Following the placement of the fixation disc in the annular ring, the surgeon can drill additional holes in the glenoid bone through peripheral holes in the fixation disc, which provides the ability to drive fixation screws through the fixation disc into the glenoid bone, even further improving rigidity, in addition to providing rotational stability. Due to the size constrains of the components, it can be advantageous to design the annular ring in a fashion that provides sufficient clearance through which these fixation screws can pass. To this end, the annular ring can be designed such that at on its periphery are several (four) indents of circular shape that provides clearance for passing of the peripheral screws.
Once the fixation disc is well fixed to the glenoid bone, the spherical articular component is introduced to the fixation disc. On its medial aspect, the articular component can have a cone-shaped protrusion which can be adapted to fit rigidly into a cone shaped hole centrally located within the fixation disc. This can provide a rigid fixation means by which the articular component is fixed to the fixation components using a technique and mechanism well known in the art.
Some embodiments of the modular, convertible shoulder system as disclosed for example herein can include several unique advantages not considered elsewhere, including but not limited to one or more of the following:
The use of an annular fixation ring can further improve the fixation potential of inset glenoid technology as described herein. The ring can increase the rigidity of the overall PE glenoid construct, reducing its deflection under load, and improves fixation rigidly.
The outer aspect of the annular ring can provide a surface which adheres to bone biologically and mechanically which provides further improvement of the rigidity of the fixation over time and in response to load in consideration of Wolf's law.
This improved rigidity and fixation can be provided with no sacrifice of the 3 mm minimum material thickness of the PE component, so that joint mechanics can be maintained with no change in the overall stack height of the anatomic prosthesis.
The attachment mechanism between the PE articular and annular ring can be reversible in situ, meaning the PE component can be removed from the annular ring which the ring remains in the bone, and can be performed in a manner which is nondestructive to the ring or the surrounding bone.
The annular ring can be shaped so as to provide a receptacle into which a reverse articulation can be inserted and rigidly fixed.
The ring can provide clearance so that further rigidity can be obtained by passing screws through the reverse fixation disc, annular ring, and bone.
The fixation disc can provide a female receptacle into which the articular sphere's attachment post can be positioned. Providing a female receptacle is shown in some cases to be an easy surgical technique and very robust attachment mechanism.
In some embodiments, an improved glenoid implant can be configured to lie both inset in a subchondral bone pocket in the glenoid, as well as on subchondral bone so that there is additional surface for the humeral head to articulate with in cases of perceived or real joint laxity.
The most common failure mechanism of glenoid implants is loosening due to a rocking horse motion which can be related to joint laxity. This joint laxity can sometimes allow the humeral head to undesirably articulate at the margins of a glenoid implant. This potential complication can occur with both inset glenoid implants as well as conventional onlay glenoid implants.
In some embodiments, such as for a circular inset glenoid, providing additional material for articulation can prevent subluxation while still providing enhanced inset fixation. This same fixation argument can be beneficial with respect to onlay glenoids which only provide fixation at small, discrete locations (e.g., peripheral and central pegs or keels).
Standard onlay glenoids use small, discrete fixation methods. Some designs include 1, 2 or more peripheral pegs which are small in diameter and allow for very small (<0.5 mm) cement mantle fixation. Other designs may use porous coated peripheral pegs. Typically, the central peg of most glenoids use cementless fixation through fins packed with morcellized bone or porous coated cylindrical pegs. Each of these designs provide no fixation for the majority of the backside surface, thereby allow the plastic glenoid material to move up or down in relation to the loading of the humeral head.
By providing a large fixation surface covering the majority of the implant backside, any rocking horse motion is advantageously greatly minimized or even eliminated. Such embodiments can be used in a large number of total shoulder arthroplasty surgery procedures. Further details of glenoid implants that can be used or modified for use with those as disclosed herein can be found, for example, in U.S. Pat. No. 8,778,028 to Gunther et al. and/or U.S. patent application Ser. No. 15/952,063 to Ball, both of which is hereby incorporated by reference in its entirety. In some embodiments, an inset glenoid implant configured to reversibly connect with and press-fit into a partial or completely porous ring can be very clinically advantageous.
In some embodiments, disclosed is a method of treating a patient, including identifying a patient having a glenoid surface; reaming a cavity into the glenoid surface; and inserting a glenoid implant having an inset body portion and a peg, the inset body portion having a bearing surface on a peripheral edge thereof into the cavity, such that at least a portion of, or the entire peripheral edge of the inset body portion resides below the adjacent glenoid surface and the portion residing below the adjacent glenoid surface is circumferentially surrounded by cortical bone of the glenoid, while an onlay body portion having a diameter or width greater than the inset body portion has an extended lateral articulating surface for articulation with a humerus or a humeral component, and a medial surface that rests on top of the glenoid surface.
In some embodiments, disclosed herein are implants that can use porous coating as a fixation method and optionally allow for conversion to a reverse shoulder arthroplasty during a revision surgery. The use of cement during a total shoulder arthroplasty procedure adds additional cost and time to the surgery. Any design that can effectively provide short and long term cementless fixation can advantageously simplify the procedure and reduce overall cost and risk to the patient. The porous coating could be, for example, poly-ether-ether-ketone (PEEK), a biostable and biocompatible thermoplastic polymer, hydroxyapatite (or other crystalline phases of HA), metals, or combinations thereof. Some embodiments can include HA coated PEEK implants, but can also include any polymer of the poly-aryl-ether-ketone family such as, but not limited to, poly-ether-ketone (PEK) and poly-ether-ketone-ether-ketone-ketone (PEKEKK), or others such as UHMWPE. In some embodiments, the coating can be applied via a plasma spray process. Prior to coating PEEK (or other similar polymers) with HA (or other crystalline phases of HA), the surface of the PEEK can be textured to provide a more suitable surface for HA deposition. Texturing of the surface further enhances the bond strength between the coating and the PEEK and also enhances fixation of the PEEK between the adjacent vertebrae, due to bony ingrowth, upon resorption of the coating. The surface of the porous coating may be textured into microstructured, macrostructured, macroporous or macroporous morphologies. Texturing can be accomplished, for example, by grit blasting using a suitable media such as alumina, or by machined grooves or threads, or any other method that may allow for texturing of the surface. Alternatively, a metal porous coating, such as titanium or its alloys, stainless steel alloys, cobalt-chromium (Co—Cr) alloys, tantalum alloys, zirconium alloys, nitinol, or other metals and/or metal alloys can be used. One example of a suitable titanium-based material is commercially pure (CP) titanium. Examples of different grades of CP titanium are specified in ASTM F67 as grades 1-4. One example of a suitable titanium alloy is a titanium-aluminum-vanadium (Ti—Al—V) alloy. In one embodiment, the Ti—Al—V alloy is Ti-A16-V4, or Ti-6-4, which includes 6% aluminum and 4% vanadium and is sometimes referred to as grade 5 titanium alloy. In some embodiments, the porosity can be between about 20% and about 80%, such as about 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, or ranges including any two of the aforementioned values. In some embodiments, individual pore sizes may range from about 100 μm to about 1000 μm, and such as from about 200 μm to about 300 μm in some cases.
By adding one or more porous coated elements to the underside of a glenoid implant, short and long term fixation can be created. Conventional devices either created a modular implant with a plastic glenoid articular surface implant fitting in to a metal stem and metal underside with porous coating and/or a porous stem compression molded to a plastic glenoid articular surface.
The use of a modular, metal backed implant can be deficient in multiple areas. First, the addition of metal backing required a reduction in polyethylene thickness. This increased the contact stresses in the plastic leading to early failures. Second, the poor mechanical lock between the plastic and metal backing, along with a non-polished metal surface, created wear debris that led to glenoid bone osteolysis and implant failure.
The use of porous stem compression molded to the articular plastic only provides stem fixation of the implant. Any loading that occurred off the axis of the stem creates a bending moment about the metal/plastic compression molded interface leading to wear debris generation and implant failure
Some embodiments include a metal/plastic modular glenoid implant using porous coating fixation. The porous structure, e.g., ring can be attached to the inferior periphery of the plastic glenoid implant as shown in
In some embodiments, the glenoid implants need not be convertible from anatomic to reverse. An implant could include a porous coated ring or band around the periphery of the implant body, partially or completely circumscribing the peripheral edge of the implant, somewhat similar to bands around a wine barrel. In some embodiments, the porous coating can be present in lieu of a metal backing component. In other words, a metal backing component can be absent in some embodiments and the porous ring forms the backside of the implant (other than the peg(s) or keel(s) in some cases).
In some embodiments, instead of a locking snap ring as shown in
The initial and long-term fixation of another embodiment of an implant 498′ can also be enhanced by the optional use of a porous coated stem 499, as illustrated in
By using a porous coated metal structure, e.g., a ring on the underside of the plastic implant, any off-axis loads can be advantageously readily counter-acted by the large diameter ring fixed into the subchondral bone. The ring is in some embodiments only used on the periphery of the plastic, thus keeping the plastic (or plastic plus porous structure) at a minimum thickness of about 3 mm which is the normal amount required for successful implant longevity, or at least about 2 mm, 2.5 mm, 3 mm, 3.5 mm, 4 mm, or more.
The ring can be attached in multiple ways to the polyethylene including press-fit or compression molded (e.g., without any adhesive or cement) and has the ability to be removed after implantation and reattached to a metal reverse arthroplasty baseplate.
It can be a difficult procedure to convert a primary shoulder arthroplasty to a reverse shoulder implant during a revision surgery. Not only is the original plastic implant difficult to remove, but the initial fixation of the reverse metal baseplate must begin to form at the completion of surgery. Having a component of the reverse implant already well-fixed enhances the overall integrity of the reverse shoulder construct immediately post-op.
Some embodiments can include texturing of the underside of a humeral head.
In some embodiments, systems and methods involving a humeral head can advantageously include an underside with an enlarged surface area relative to a fiat underside to contact the resected surface of the humeral head thereby distributing loads incurred during gleno-humeral articulation and allowing for bone in-growth into the humeral head underside. In some embodiments, the enlarged surface area is about or at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, or more relative to a flat underside humeral head, or ranges incorporating any two of the aforementioned values.
Bone resorption tends to occur in the areas surrounding a humeral stem implant. This resorption occurs due to a lack of load transmission from the implant in to the bone. By purposefully engaging contact between a large portion of the humeral head and the resected bone surface, compressive and tensile load transfer can occur, thus eliminating the possibility of bone resorption around the implant.
Prior devices either ignored the possibility of bone resorption or included a collar of metal at the proximal aspect of the implant to distribute the loads. The collars used on other devices is typically either too small or too large. The majority of devices using a collar employ a small diameter configuration. The small diameter was used to allow for the use of skirts on concentric and eccentric humeral heads. The skirt is used to extend the articular surface of the humeral head implant and to provide a more appropriate looking AP x-ray. These small collars are not large enough in diameter to appropriately transmit loads into the resected bone. The larger diameter collar design is also in use. This collar edge was exposed to the surrounding soft tissues which led to irritation as the tissues rubbed against the edges of the collar. In addition, the larger diameter collar did not allow for the humeral head articular region to extend below the collar.
By texturing the underside of the humeral implant and forcing contact with the resected bone at implant insertion, the head now can serve as the implant pseudo-collar, and an actual collar is not required. This allows for load transmission at the furthest margins without creating any sharp features. It also allows for the humeral head articular region to extend all the way down to the resected bone surface.
In some embodiments, the fixation support does not include a snap ring.
Various other modifications, adaptations, and alternative designs are of course possible in light of the above teachings. Therefore, it should be understood at this time that within the scope of the appended claims the invention may be practiced otherwise than as specifically described herein. It is contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments disclosed above may he made and still fall within one or more of the inventions. For example, some embodiments can include one, two, or more of a hybrid inset-onlay glenoid implant, a porous ring structure, and/or a textured underside humeral implant. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with an embodiment can be used in all other embodiments set forth herein. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above. Moreover, while the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as “reaming a glenoid implant” includes “instructing the reaming of a glenoid implant.” The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “approximately”, “about”, and “substantially” as used herein include the recited numbers (e.g., about 10%=10%), and also represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount.
This application claims the benefit under 35 U.S.C. § 119(e) as a nonprovisional of U.S. Prov. App. No. 62/664,909 filed on Apr. 30, 2018, which is hereby incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/029905 | 4/30/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/213073 | 11/7/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2781758 | Jacques | Feb 1957 | A |
3979778 | Stroot | Sep 1976 | A |
4003095 | Gristina | Jan 1977 | A |
4012796 | Weisman et al. | Mar 1977 | A |
4045826 | Stroot | Sep 1977 | A |
4206517 | Pappas et al. | Jun 1980 | A |
4261062 | Amstutz et al. | Apr 1981 | A |
4404693 | Zweymuller | Sep 1983 | A |
4550450 | Kinnett | Nov 1985 | A |
4698063 | Link et al. | Oct 1987 | A |
4700660 | Levchenko et al. | Oct 1987 | A |
4783192 | Wroblewski et al. | Jan 1988 | A |
4827919 | Barbarito et al. | May 1989 | A |
4865605 | Dines et al. | Sep 1989 | A |
4908036 | Link et al. | Mar 1990 | A |
4964865 | Burkhead et al. | Oct 1990 | A |
4986833 | Worland | Jan 1991 | A |
4990161 | Kampner | Feb 1991 | A |
5030219 | Matsen, III et al. | Jul 1991 | A |
5032132 | Matsen, III et al. | Jul 1991 | A |
5080673 | Burkhead et al. | Jan 1992 | A |
5108440 | Grundei | Apr 1992 | A |
5281226 | Davydov | Jan 1994 | A |
5282865 | Dong | Feb 1994 | A |
5314479 | Rockwood, Jr. et al. | May 1994 | A |
5314489 | Hoffman et al. | May 1994 | A |
5344458 | Bonutti | Sep 1994 | A |
5358525 | Fox et al. | Oct 1994 | A |
5370694 | Davidson | Dec 1994 | A |
5437677 | Shearer et al. | Aug 1995 | A |
5462563 | Shearer et al. | Oct 1995 | A |
5480450 | James et al. | Jan 1996 | A |
5489309 | Lackey et al. | Feb 1996 | A |
5489310 | Mikhail | Feb 1996 | A |
5507748 | Sheehan et al. | Apr 1996 | A |
5507819 | Wolf | Apr 1996 | A |
5514184 | Doi | May 1996 | A |
5549683 | Bonutti | Aug 1996 | A |
5593448 | Dong | Jan 1997 | A |
5702447 | Walch et al. | Dec 1997 | A |
5702486 | Craig et al. | Dec 1997 | A |
5746771 | Clement, Jr. et al. | May 1998 | A |
5755811 | Tanamal et al. | May 1998 | A |
5769856 | Dong et al. | Jun 1998 | A |
5800551 | Williamson et al. | Sep 1998 | A |
5928285 | Bigliani et al. | Jul 1999 | A |
6019766 | Ling et al. | Feb 2000 | A |
6037724 | Buss et al. | Mar 2000 | A |
6228119 | Ondria et al. | May 2001 | B1 |
6231913 | Schwimmer et al. | May 2001 | B1 |
6290726 | Pope et al. | Sep 2001 | B1 |
6334874 | Tornier et al. | Jan 2002 | B1 |
6364910 | Shultz et al. | Apr 2002 | B1 |
6368353 | Arcand | Apr 2002 | B1 |
6379386 | Resch et al. | Apr 2002 | B1 |
6458136 | Allard et al. | Oct 2002 | B1 |
6514287 | Ondria et al. | Feb 2003 | B2 |
6520964 | Tallarida et al. | Feb 2003 | B2 |
6589281 | Hyde, Jr. | Jul 2003 | B2 |
6610067 | Tallarida et al. | Aug 2003 | B2 |
6620197 | Maroney | Sep 2003 | B2 |
6673115 | Resch et al. | Jan 2004 | B2 |
6679916 | Frankle et al. | Jan 2004 | B1 |
6679917 | Ek | Jan 2004 | B2 |
6699289 | Iannotti et al. | Mar 2004 | B2 |
6709463 | Pope et al. | Mar 2004 | B1 |
6712823 | Grusin et al. | Mar 2004 | B2 |
6761740 | Tornier | Jul 2004 | B2 |
6783549 | Stone et al. | Aug 2004 | B1 |
6875234 | Lipman et al. | Apr 2005 | B2 |
6953478 | Bouttens et al. | Oct 2005 | B2 |
7011686 | Ball et al. | Mar 2006 | B2 |
7044973 | Rockwood et al. | May 2006 | B2 |
7238089 | Tsumuraya et al. | Jul 2007 | B2 |
7238208 | Camino et al. | Jul 2007 | B2 |
7261741 | Weisman et al. | Aug 2007 | B2 |
7294149 | Hozack et al. | Nov 2007 | B2 |
7320709 | Felt et al. | Jan 2008 | B2 |
7329284 | Maroney et al. | Feb 2008 | B2 |
7465319 | Tornier | Dec 2008 | B2 |
7517364 | Long et al. | Apr 2009 | B2 |
7618462 | Ek | Nov 2009 | B2 |
7678151 | Ek | Mar 2010 | B2 |
7749278 | Frederick et al. | Jul 2010 | B2 |
7753959 | Berelsman et al. | Jul 2010 | B2 |
7766969 | Justin et al. | Aug 2010 | B2 |
7776098 | Murphy | Aug 2010 | B2 |
7892287 | Deffenbaugh | Feb 2011 | B2 |
7922769 | Deffenbaugh et al. | Apr 2011 | B2 |
8007538 | Gunther | Aug 2011 | B2 |
8038719 | Gunther | Oct 2011 | B2 |
8048161 | Guederian et al. | Nov 2011 | B2 |
8048167 | Dietz et al. | Nov 2011 | B2 |
8303665 | Tornier et al. | Nov 2012 | B2 |
8529629 | Angibaud et al. | Sep 2013 | B2 |
8608805 | Forrer et al. | Dec 2013 | B2 |
8721726 | Capon et al. | May 2014 | B2 |
8778028 | Gunther et al. | Jul 2014 | B2 |
8840671 | Ambacher | Sep 2014 | B2 |
8920508 | Iannotti | Dec 2014 | B2 |
8940054 | Wiley et al. | Jan 2015 | B2 |
9114017 | Lappin | Aug 2015 | B2 |
9283083 | Winslow et al. | Mar 2016 | B2 |
9381086 | Ries et al. | Jul 2016 | B2 |
9545311 | Courtney, Jr. et al. | Jan 2017 | B2 |
9545312 | Tornier et al. | Jan 2017 | B2 |
9610166 | Gunther et al. | Apr 2017 | B2 |
9615839 | Olson | Apr 2017 | B2 |
9693784 | Gunther | Jul 2017 | B2 |
9867710 | Dalla Pria et al. | Jan 2018 | B2 |
9962265 | Ek | May 2018 | B2 |
10034753 | Dressler et al. | Jul 2018 | B2 |
10143559 | Ries et al. | Dec 2018 | B2 |
10357373 | Gargac et al. | Jul 2019 | B2 |
10492926 | Gunther | Dec 2019 | B1 |
10702390 | Chavarria et al. | Jul 2020 | B2 |
10722373 | Hodorek et al. | Jul 2020 | B2 |
10779952 | Gunther et al. | Sep 2020 | B2 |
10786265 | Gunther | Sep 2020 | B2 |
10925745 | Cardon et al. | Feb 2021 | B2 |
10966788 | Britton et al. | Apr 2021 | B2 |
11065125 | Ball | Jul 2021 | B2 |
11166733 | Neichel et al. | Nov 2021 | B2 |
11464645 | Cardon et al. | Oct 2022 | B2 |
11564802 | Ball et al. | Jan 2023 | B2 |
D977643 | Ball et al. | Feb 2023 | S |
11696772 | Gunther | Jul 2023 | B2 |
20010011192 | Ondria et al. | Aug 2001 | A1 |
20010037153 | Rockwood, Jr. et al. | Nov 2001 | A1 |
20010047210 | Wolf | Nov 2001 | A1 |
20020055783 | Tallarida et al. | May 2002 | A1 |
20020082702 | Resch et al. | Jun 2002 | A1 |
20020087213 | Bertram, III | Jul 2002 | A1 |
20020095214 | Hyde, Jr. | Jul 2002 | A1 |
20020111689 | Hyde, Jr. et al. | Aug 2002 | A1 |
20020138148 | Hyde, Jr. et al. | Sep 2002 | A1 |
20030033019 | Lob | Feb 2003 | A1 |
20030100952 | Rockwood, Jr. et al. | May 2003 | A1 |
20030114933 | Bouttens et al. | Jun 2003 | A1 |
20030125809 | Iannotti et al. | Jul 2003 | A1 |
20030144738 | Rogalski | Jul 2003 | A1 |
20030158605 | Tournier | Aug 2003 | A1 |
20030163202 | Lakin | Aug 2003 | A1 |
20030236572 | Bertram, III | Dec 2003 | A1 |
20040002766 | Hunter et al. | Jan 2004 | A1 |
20040039449 | Tournier | Feb 2004 | A1 |
20040039451 | Southworth | Feb 2004 | A1 |
20040059424 | Guederian et al. | Mar 2004 | A1 |
20040064187 | Ball et al. | Apr 2004 | A1 |
20040064189 | Maroney et al. | Apr 2004 | A1 |
20040064190 | Ball et al. | Apr 2004 | A1 |
20040107002 | Katsuya | Jun 2004 | A1 |
20040122519 | Wiley et al. | Jun 2004 | A1 |
20040122520 | Lipman et al. | Jun 2004 | A1 |
20040167629 | Geremakis et al. | Aug 2004 | A1 |
20040167630 | Rolston | Aug 2004 | A1 |
20040193168 | Long et al. | Sep 2004 | A1 |
20040193275 | Long et al. | Sep 2004 | A1 |
20040193276 | Maroney et al. | Sep 2004 | A1 |
20040193277 | Long et al. | Sep 2004 | A1 |
20040193278 | Maroney et al. | Sep 2004 | A1 |
20040199260 | Pope et al. | Oct 2004 | A1 |
20040220674 | Pria | Nov 2004 | A1 |
20040230311 | Cyprien et al. | Nov 2004 | A1 |
20040260398 | Kelman | Dec 2004 | A1 |
20050043805 | Chudik | Feb 2005 | A1 |
20050049709 | Tornier | Mar 2005 | A1 |
20050065612 | Winslow | Mar 2005 | A1 |
20050075638 | Collazo | Apr 2005 | A1 |
20050107882 | Stone et al. | May 2005 | A1 |
20050119531 | Sharratt | Jun 2005 | A1 |
20050177241 | Angibaud et al. | Aug 2005 | A1 |
20050261775 | Baum et al. | Nov 2005 | A1 |
20050278030 | Tornier et al. | Dec 2005 | A1 |
20060036328 | Parrott et al. | Feb 2006 | A1 |
20060069443 | Deffenbaugh et al. | Mar 2006 | A1 |
20060069444 | Deffenbaugh et al. | Mar 2006 | A1 |
20060069445 | Ondrla et al. | Mar 2006 | A1 |
20060200249 | Beguin et al. | Sep 2006 | A1 |
20070038302 | Shultz et al. | Feb 2007 | A1 |
20070050042 | Dietz et al. | Mar 2007 | A1 |
20070055380 | Berelsman et al. | Mar 2007 | A1 |
20070112433 | Frederick et al. | May 2007 | A1 |
20070118229 | Bergin | May 2007 | A1 |
20070156246 | Meswania et al. | Jul 2007 | A1 |
20070179624 | Stone et al. | Aug 2007 | A1 |
20070225817 | Ruebelt et al. | Sep 2007 | A1 |
20070225818 | Reubelt et al. | Sep 2007 | A1 |
20080021564 | Gunther | Jan 2008 | A1 |
20080082175 | Holovacs et al. | Apr 2008 | A1 |
20080177327 | Malandain et al. | Jul 2008 | A1 |
20080234820 | Felt et al. | Sep 2008 | A1 |
20080294268 | Baum et al. | Nov 2008 | A1 |
20090105837 | LaFosse et al. | Apr 2009 | A1 |
20090125113 | Guederian et al. | May 2009 | A1 |
20090228112 | Clark et al. | Sep 2009 | A1 |
20090270866 | Poncet | Oct 2009 | A1 |
20090281630 | Delince et al. | Nov 2009 | A1 |
20090287309 | Walch et al. | Nov 2009 | A1 |
20100087876 | Gunther | Apr 2010 | A1 |
20100087877 | Gunther | Apr 2010 | A1 |
20100114326 | Winslow et al. | May 2010 | A1 |
20100161066 | Iannotti et al. | Jun 2010 | A1 |
20100217399 | Groh | Aug 2010 | A1 |
20100274360 | Gunther | Oct 2010 | A1 |
20110029089 | Giuliani et al. | Feb 2011 | A1 |
20110106266 | Schwyzer et al. | May 2011 | A1 |
20110137424 | Lappin et al. | Jun 2011 | A1 |
20110144758 | Deffenbaugh | Jun 2011 | A1 |
20110276144 | Wirth et al. | Nov 2011 | A1 |
20110313533 | Gunther | Dec 2011 | A1 |
20120209392 | Angibuad et al. | Aug 2012 | A1 |
20120239156 | De Wilde et al. | Sep 2012 | A1 |
20130150972 | Iannotti et al. | Jan 2013 | A1 |
20130060346 | Collins | Mar 2013 | A1 |
20130090736 | Katrana et al. | Apr 2013 | A1 |
20130150974 | Iannotti et al. | Jun 2013 | A1 |
20130194353 | Hirai et al. | Aug 2013 | A1 |
20130197651 | McDaniel et al. | Aug 2013 | A1 |
20130261752 | Lappin | Oct 2013 | A1 |
20140025173 | Cardon et al. | Jan 2014 | A1 |
20140107794 | Deffenbaugh et al. | Apr 2014 | A1 |
20140253641 | Furuya | Sep 2014 | A1 |
20140257499 | Winslow et al. | Sep 2014 | A1 |
20150223941 | Lang | Aug 2015 | A1 |
20150265411 | Deransart et al. | Sep 2015 | A1 |
20160045323 | Kovacs | Feb 2016 | A1 |
20160270922 | Pressacco | Sep 2016 | A1 |
20160302934 | Chavarria et al. | Oct 2016 | A1 |
20170056187 | Humphrey et al. | Mar 2017 | A1 |
20170071749 | Lappin et al. | Mar 2017 | A1 |
20170209275 | Levy | Jul 2017 | A1 |
20170273806 | Cardon et al. | Sep 2017 | A1 |
20170304063 | Hatzidakis et al. | Oct 2017 | A1 |
20180071104 | Kovacs et al. | Mar 2018 | A1 |
20180078377 | Gargac et al. | Mar 2018 | A1 |
20180161169 | Cardon et al. | Jun 2018 | A1 |
20180193150 | Winslow et al. | Jul 2018 | A1 |
20180200067 | Axelso, Jr. et al. | Jul 2018 | A1 |
20180333268 | Cardon | Nov 2018 | A1 |
20190336293 | Kehres | Nov 2019 | A1 |
20200383792 | Cardon et al. | Dec 2020 | A1 |
20210038401 | Ball et al. | Feb 2021 | A1 |
20210137692 | Budge | May 2021 | A1 |
20210137693 | Ball et al. | May 2021 | A1 |
20210236292 | Chavarria et al. | Aug 2021 | A1 |
20210244547 | Gunther et al. | Aug 2021 | A1 |
20210251640 | Gunther | Aug 2021 | A1 |
20210338446 | Ball | Nov 2021 | A1 |
20220151795 | Running et al. | May 2022 | A1 |
20220175543 | Ball | Jun 2022 | A1 |
20220175544 | Ball et al. | Jun 2022 | A1 |
20230078024 | Gunther et al. | Mar 2023 | A1 |
20230080207 | Gunther et al. | Mar 2023 | A1 |
Number | Date | Country |
---|---|---|
4220217 | Dec 1993 | DE |
10164328 | Jul 2003 | DE |
0299889 | Jan 1989 | EP |
0339530 | Nov 1989 | EP |
0570816 | Nov 1993 | EP |
1464305 | Oct 2004 | EP |
1858453 | Nov 2007 | EP |
1952788 | Aug 2008 | EP |
2601912 | Jun 2013 | EP |
2083759 | Sep 2015 | EP |
3090705 | Nov 2016 | EP |
3598957 | Jul 2018 | EP |
2248820 | May 1975 | FR |
2567019 | Jan 1986 | FR |
2695313 | Mar 1994 | FR |
04-282149 | Oct 1992 | JP |
2013-158909 | Aug 2013 | JP |
2014-515651 | Jul 2014 | JP |
2017-148558 | Aug 2017 | JP |
2017-523872 | Aug 2017 | JP |
WO 2006093763 | Aug 2006 | WO |
WO 2008011078 | Jan 2008 | WO |
WO 2009071940 | Jun 2009 | WO |
WO 2011112425 | Sep 2011 | WO |
WO 2013148437 | Oct 2013 | WO |
WO 2012075183 | Apr 2014 | WO |
WO 2014067961 | May 2014 | WO |
WO 20140195909 | Dec 2014 | WO |
WO 2016025378 | Feb 2016 | WO |
WO 2017184792 | Oct 2017 | WO |
WO 2018022227 | Feb 2018 | WO |
WO 2018129286 | Jul 2018 | WO |
WO 2018191420 | Oct 2018 | WO |
WO 2019006205 | Jan 2019 | WO |
WO 2019178104 | Sep 2019 | WO |
WO 2019213073 | Nov 2019 | WO |
WO 2020185893 | Sep 2020 | WO |
WO 2023183283 | Sep 2023 | WO |
WO 2024026101 | Feb 2024 | WO |
Entry |
---|
US 11,672,669 B2, 06/2023, Running et al. (withdrawn) |
U.S. Appl. No. 16/701,118, filed Dec. 2, 2019, Gunther. |
U.S. Appl. No. 29/870,666, filed Feb. 1, 2023, Ball et al. |
U.S. Appl. No. 18/349,805, filed Jul. 10, 2023, Gunther. |
Biomet, “Absolute™ Bi-Polar.” 2001 in 2 pages. |
Biomet, “Copeland™ Humeral Resurfacing Head, Interlok®/HA Coated Implant Information,” 2003 in 1 page. |
Biomet, “Copeland™ Humeral Resurfacing Head,” 2001 in 12 pages. |
Biomet, “Copeland™ Humeral Resurfacing Head, Macrobond™ Implant Information,” 2003 in 1 page. |
Biomet, “Copeland™ Humeral Resurfacing Head, Surgical Technique,” 2003 in 2 pages. |
Boileau et al., “The Three-Dimensional Geometry of the Proximal Humerus. Implications for Surgical Technique and Prosthetic Design,” J. Bone Joint Surg. Br. 79: 857-865, 1997. |
Braun, et al., Modular Short-stem Prosthesis in Total Hip Arthroplasty: Implant Positioning and the Influence of Navigation, ORTHO SuperSite (Oct. 2007) in 8 pages. |
Clavert et al. Glenoid resurfacing: what are the limits to asymmetric reaming for posterior erosion? J. Shoulder and Elbow Surg. Nov./Dec. 2007: 843-848. |
Dalla Pria, Paolo. Slide presentation, entitled “Shoulder Prosthesis Design and Evolution”, to the Naples International Shoulder Congress in Italy (2000) in 55 pages. |
DePuy, “Global C.A.P., Surgical Technique Resurfacing Humeral Head Implant,” 2004 in 23 pages. |
Inset Mini-glenoid Brochure, Titan Modular Shoulder System Brochure, Ascension Orthopedics, 2011, 4 pages. |
Karduna et al. Glenhumeral Joint Translations before and after Total Shoulder Arthroplasty. J. Bone and Joint Surg. 79(8) (1997): 1166-1174. |
Redacted letter from a third party dated Aug. 24, 2012 in 2 pages. |
Levy et al., “Cementless Surface Replacement Arthroplasty of the Should. 5- to 10-year Results with the Copeland Mark-2 Prosthesis,” J. Bone Joint Surg. Br. 83: 213-221, 2001. |
Lima-Lto Medical Systems Glenoidi/Glenoids catalogue (2001) in 1 page. |
Lima-Lto Miniglenoide Cementata document 7560.50.030 (1999) in 1 page. |
Panisello, et al., Bone remodelling after total hip arthroplasty using an uncemented anatomic femoral stem: a three-year prospective study using bone densitometry, J Ortho Surg 14(1):32-37 (2006). |
Ross, Mark and Duke, Phillip, “Early Experience In The Use of a New Glenoid Resurfacing Technique” Glenoid Presentation, SESA Nov. 4, 2006, Session 4/0800-0930 p. 93 in 1 page. |
Tight Fit Tools, Right Angle Drill Attachment, Serial No. 00400 www.tightfittools.com/riganat.html in 1 page/downloaded Mar. 11, 2005. |
TITAN(TM) Modular Shoulder System Brochure, 2011, available at http://www.ascensionortho.com/Assets/PDF/TitanModular/TITANModularShoulder_Brochure-revD.pdf (2 pages). |
Tournier et al., Enhancement of Glenoid Prosthesis Anchorage using Burying Technique. Techniques in Shoulder & Elbow Surgery 9(1)(2008): 35-42. |
Wang et al., Biomechanical Evaluation of a Novel Glenoid Design in Total Shoulder Arthroplasty. J. Shoulder & Elbow Surgery (2005) 15: 129S-140S. |
Statement of Grounds and Particulars of Opposition for Australian Patent Application No. 2006218936 dated Oct. 5, 2012 in 8 pages. |
Number | Date | Country | |
---|---|---|---|
20210137693 A1 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
62664909 | Apr 2018 | US |