DESCRIPTION OF THE DRAWINGS
FIG. 1 is an exploded perspective view of a portion of a first embodiment of the invention;
FIG. 2 is an end view of a component of the first embodiment of invention shown in FIG. 1;
FIG. 3 is an environmental perspective view of the component of the first embodiment of the invention shown in FIG. 1;
FIG. 4 is an environmental perspective view of the first embodiment of the invention;
FIG. 5 is an exploded side elevation view of a portion of a second embodiment of the invention;
FIG. 6 is an assembled side elevation view of the portion of the second embodiment of the invention shown in FIG. 5;
FIG. 7 is an exploded side elevation view of a portion of a third embodiment of the invention;
FIG. 8 is an assembled side elevation view of the portion of the third embodiment of the invention shown in FIG. 7;
FIG. 9 is a side sectional elevation view in partial section illustrating a fourth embodiment of the invention; and
FIG. 10 is a side sectional elevation view in partial section illustrating a fifth embodiment of the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now to FIG. 1 of the drawings, there is shown a receiver 1 having a threaded connector in the form of a stud 3 with male threads and a central axial open bore 5 extending between a wall mountable end of the receiver 1 and an opposite rod receiving end of the receiver 1 in communication with a central aperture 6 in a circular flange 7 from which the stud 3 extends. An optional anchor 9 adapted to be driven through a hole drilled in a wall is provided for receiving the shank of a fastener which, in the preferred embodiment of the invention, is a screw 11, but which can also be a nail or other fastener having a shank and a head as will be known to those skilled in the art. The shank of the screw 11 is passed through the bore 5 and aperture with the end of the screw 11 distal from its shank penetrating the wall. Where the axis of the receiver 1 is in alignment with a stud in the wall, the anchor 9 need not be used and the screw 11 may be driven through the wall into the wall stud.
The head 13 of the screw can have a diameter smaller than the diameter of the bore 5 in which case the underside of the screw head 13 engages a circular seat in the form of a circular apertured shoulder 15 (se FIG. 2) within the bore 5 proximate the flange 7 at the wall mountable end of the receiver when the screw is fully tightened. Alternatively, as shown in FIG. 3, the head 13 of the screw 11 can have a diameter approximately equal to the outer diameter of the stud 3 and less than the diameter of the bore 5 for allowing a threaded connector in the form of a nut 14 to be passed over the head 13 and threaded onto the stud 3 when the screw 11 is fully tightened to secure the receiver 1 to the wall.
The nut 14, which has a female thread facing toward its axis, is fixedly mounted, e.g., by an interference fit, within an outer end of a section 19 of a telescoping rod or pipe having two or more sections slidably connected with respect to one another and sharing a common longitudinal axis, for enabling each section to be fastened to a receiver 1 by rotation about a mutual axis of the section 19 and receiver 1. Instead of providing a nut 14, the inner bore of the rod section may be provided with female threads facing inwardly toward the axis of the rod section, complementary to the outward facing male threads on the outer surface of the stud 3.
In use, two receivers 1 are mounted as described above, each on a respective one of two facing walls with the axes of the receivers 1 horizontal alignment, and with their threaded studs projecting toward one another. A telescoping rod prepared as described above has each of its end sections threaded onto a respective one of the studs for secure attachment to the receivers as seen in FIG. 4.
In order to enhance the appearance at the interface of the rod with the receiver, a decorative collar 17 with a central aperture can be placed over the stud 3 as shown in FIGS. 1 and 3. As the rod section 19 is rotated onto the stud 3, the end of the section 19 engages the collar 17 thereby securing the rod section 19 and collar 17 on the receiver 1 when the rod threaded connector nut 14 and receiver threaded connector stud 3 are mated by threading the stud 3 into the nut 14. The collar 17 may be formed from a semi-resilient shape-retaining metal, plastic, or similar material thereby increasing friction with the end of the rod section 19 in the manner of a lock washer for preventing loosening of the connection between the rod section 19 and receiver 1.
Referring to FIGS. 5 and 6, in an alternative embodiment of the invention, instead of a threaded stud, a receiver 25 can be provided with a nipple 22 having a central threaded axial bore 23 in communication with a central aperture in a circular flange from which the nipple 22 extends. Again, an optional anchor adapted to be driven through a hole drilled in a wall can be provided for receiving a screw passed through the bore and aperture. The screw may be driven through the wall into a wooden stud.
The head of a screw 29 has a diameter smaller than the diameter of the bore 23 in which case the underside of the head of the screw 29 engages a circular seat at the end of the bore 23 proximate the flange 31 when the screw 29 is fully tightened.
Each outer end of an outer section of a telescoping rod or pipe 33 having two or more sections is threaded on its outer cylindrical wall for enabling the end of the section to be threaded into the bore of the receiver 25 whereby the section 33 can be fastened to the receiver 25 by rotation about a mutual axis of the section 33 and receiver 25. The outer circumference of the nipple 22 may be given a stepped configuration or other decorative or aesthetically pleasing form.
Referring now to FIGS. 7 and 8, according to still a further embodiment of the invention, a receiver 41 can be provided with a nipple 43 having a central threaded axial bore in communication with a central aperture in a circular flange from which the nipple extends and attached to a wall as explained above.
Each outer section 45 of a telescoping rod or pipe having two or more sections can be provided with a fixed threaded stud 47 extending beyond its outer end for being received within the bore in the nipple of the receiver 41. When the threaded stud 47 is fully threaded into the bore in the nipple 43, the end of the rod section 45 engages with the end of the nipple distal from the flange as shown in FIG. 8. By making the outer diameters of the rod section 45 and nipple equal 43, and squaring the end surfaces of the rod section 45 and nipple 43, the rod and nipple 43 may appear to be a unitary continuous structure.
Instead of mounting the receiver on the wall with a stud or nipple extending into the room in which the rod is to be mounted, the receiver may be mounted with the stud or nipple extending through the wall into the room.
As shown in FIG. 9, a threaded stud 51 having an extending shank 53 is preferably threaded to form a screw with the stud 51 forming the head of the screw. The screw 53 is driven into the wall with the stud 51 extending into the room. A rod section 55 having a nut (not shown) fixedly mounted within its bore, or a bore which is threaded, as shown in FIG. 9, can be mounted on the stud by rotating the rod section 55 to mate the rod section 55 and receiver stud 51 until the end of the rod section 55 engages the surface of the wall, thereby rendering the receiver entirely invisible and providing a clean look with the rod extending fully between opposite walls.
FIG. 10 shows a variation of the arrangement shown in FIG. 10 wherein the cylindrical nipple of a receiver 61 can be threaded on its outer wall 63 for being received in an anchor or a hole drilled through the wall into a wall stud, and threaded on its interior for receiving threads on the end of a rod section 65, i.e., either on the outer wall of the rod section, or on a stud fixedly mounted on and extending from the end of the rod section. The nipple may extend from a flange which has a diameter less than or equal to the diameter of the rod where a stud is mounted on the rod, or only slightly greater than the diameter of the rod where the outer wall of the rod section is threaded to make the rod appear to be mounted directly on the wall.
It is to be appreciated that other and further modifications and variations may be made to the embodiments herein disclosed without departing from the spirit and scope of the invention.