This invention provides a novel process for producing sub-micron sized particles of water insoluble compounds with biological uses, particularly water insoluble drugs.
Approximately one-third of the drugs in the United States Pharmacopoeia are water-insoluble or poorly water-soluble. Many currently available injectable formulations of such drugs carry important adverse warnings on their labels that originate from detergents and other agents used for their solubilization. Oral formulations of water-insoluble drugs or compounds with biological uses frequently show poor and erratic bioavailability. In addition, water-solubility problems delay or completely block the development of many new drugs and other biologically useful compounds.
Two alternative approaches for insoluble drug delivery are microparticles which involves forming a phospholipid stabilized aqueous suspension of submicron sized particles of the drug (see U.S. Pat. Nos. 5,091,187; 5,091,188 and 5,246,707) and microdroplets which involves forming a phospholipid stabilized oil in water emulsion by dissolving the drug in a suitable bio-compatible hydrophobic carrier (see U.S. Pat. Nos. 4,622,219 and 4,725,442).
The pharmacokinetic properties of both oral and injectable microparticle formulations are dependent on both the particle size and phospholid surface modifier. However, with certain water insoluble compounds the current employed methods of particle size reduction are problematic. Thus, the overall objective of this invention is to develop a novel process based on the use of compressed fluids, including supercritical fluid technology, that yields surface modifier stabilized suspensions of water insoluble drugs with an average particle size of 100 nm to about 300 nm and a narrow size distribution. The inventive process is robust, scalable and applicable to a wide range of water-insoluble compounds with biological uses.
The invention is further explained with reference to the attached drawings in which
This invention is a process using compressed fluids to produce submicron sized particles of industrially useful poorly soluble or insoluble compounds with biological uses by: (1) precipitating a compound by rapid expansion from a supercritical solution (Rapid expansion from supercritical solution) in which the compound is dissolved, or (2) precipitating a compound by spraying a solution, in which the compound is soluble, into compressed gas, liquid or supercritical fluid which is miscible with the solution but is antisolvent for the compound. In this manner precipitation with a compressed fluid antisolvent (Compressed fluid antisolvent) is achieved. Optionally, the process combines or integrates a phospholipid in water or other suitable surface modifiers such as surfactants, as may be required, into the processes. The surfactant is chosen to be active at the compound-water interface, but is not chosen to be active at the carbon dioxide-organic solvent or carbon dioxide compound interface when carbon dioxide is used as the supercritical solution. A unique feature of this invention is the combination of either rapid expansion from supercritical solution or compressed fluid antisolvent with recovery of surface modified stable submicron particles in an aqueous phase.
By industrially useful insoluble or poorly soluble compounds we include biologically useful compounds, imaging agents, pharmaceutically useful compounds and in particular drugs for human and veterinary medicine. Water insoluble compounds are those having a poor solubility in water, that is less than 5 mg/ml at a physiological pH of 6.5 to 7.4, although the water solubility may be less than 1 mg/ml and even less than 0.1 mg/ml.
Examples of some preferred water-insoluble drugs include immunosuppressive and immunoactive agents, antiviral and antifungal agents, antineoplastic agents, analgesic and anti-inflammatory agents, antibiotics, anti-epileptics, anesthetics, hypnotics, sedatives, antipsychotic agents, neuroleptic agents, antidepressants, anxiolytics, anticonvulsant agents, antagonists, neuron blocking agents, anticholinergic and cholinomimetic agents, antimuscarinic and muscarinic agents, antiadrenergic and antarrhythmics, antihypertensive agents, antineoplastic agents, hormones, and nutrients. A detailed description of these and other suitable drugs may be found in Remington's Pharmaceutical Sciences, 18th edition, 1990, Mack Publishing Co. Philadelphia, Pa.
Cyclosporine, a water insoluble immunosuppressive drug, is used as a model to illustrate the invention. This drug was chosen since it has not been possible by using conventional size reduction techniques to achieve the particle size and distribution believed necessary to reach the desired pharmacokinetic performance.
Cyclosporine is a water insoluble, lipophilic 11 amino acid polypeptide with unique immunosuppressive properties. Its major use is as an immunosuppressant in solid organ transplantation. The clinical utility of the currently available pharmaceutical dosage forms are severely limited by the drug's insolubility. That is, the bioavailability of the oral form is low and the intra and inter patient absorption is variable.
The phospholipid may be any natural or synthetic phospholipid, for example phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, phosphatidic acid, lysophospholipids, egg or soybean phospholipid or a combination thereof The phospholipid may be salted or desalted, hydrogenated or partially hydrogenated or natural semisynthetic or synthetic.
Examples of some suitable second surface modifiers include: (a) natural surfactants such as casein, gelatin, tragacanth, waxes, enteric resins, paraffin, acacia, gelatin, cholesterol esters and triglycerides, (b) nonionic surfactants such as polyoxyethylene fatty alcohol ethers, sorbitan fatty acid esters, polyoxyethylene fatty acid esters, sorbitan esters, glycerol monostearate, polyethylene glycols, cetyl alcohol, cetostearyl alcohol, stearyl alcohol, poloxamers, polaxamines, methylcellulose, hydroxycellulose, hydroxy propylcellulose, hydroxy propylmethylcellulose, noncrystalline cellulose, polyvinyl alcohol, polyvinylpyrrolidone, and synthetic phospholipids, (c) anionic surfactants such as potassium laurate, triethanolamine stearate, sodium lauryl sulfate, alkyl polyoxyethylene sulfates, sodium alginate, dioctyl sodium sulfosuccinate, negatively charged phospholipids (phosphatidyl glycerol, phosphatidyl inosite, phosphatidylserine, phosphatidic acid and their salts), and negatively charged glyceryl esters, sodium carboxymethylcellulose, and calcium carboxymethylcellulose, (d) cationic surfactants such as quaternary ammonium compounds, benzalkonium chloride, cetyltrimethylammonium bromide, chitosans and lauryldimethylbenzylammonium chloride, (e) colloidal clays such as bentonite and veegum. A detailed description of these surfactants may be found in Remington's Pharmaceutical Sciences, and Theory and Practice of Industrial Pharmacy, Lachman et al, 1986.
More specifically, examples of suitable second surface modifiers include one or combination of the following: polaxomers, such as Pluronic™ F68, F108 and F127, which are block copolymers of ethylene oxide and propylene oxide available from BASF, and poloxamines, such as Tetronic™ 908 (T908), which is a tetrafunctional block copolymer derived from sequential addition of ethylene oxide and propylene oxide to ethylene-diamine available from BASF, Triton™ X-200, which is an alkyl aryl polyether sulfonate, available from Rohm and Haas. Tween 20, 40, 60 and 80, which are polyoxyethylene sorbitan fatty acid esters, available from ICI Speciality Chemicals, Carbowax™ 3550 and 934, which are polyethylene glycols available from Union Carbide, hydroxy propylmethylcellulose, dimyristoyl phosphatidylglycerol sodium salt, sodium dodecylsulfate, sodium deoxycholate, and cetyltrimethylammonium bromide.
Particles produced by the process of this invention are generally at most 500 nm in size usually below 300 nm, desirably less than 200 nm, preferably less than about 100 nm and often in a range of 0.1 to 100 nm in size. These particles are narrowly distributed in that 99% of the particles are below 500 nm and preferably below 400 nm with peaks at half width at half height at about 200 nm and preferably below 100 nm. The particles may be recovered from suspension by any convenient means such as spray drying, lyophilization, diafiltration, dialysis or evaporation.
The solvent properties of supercritical fluids are strongly affected by their fluid density in the vicinity of the fluid's critical point. In rapid expansion from supercritical solutions, a non volatile solute is dissolved in a supercritical fluid. Nucleation and crystallization are triggered by reducing the solution density through rapid expansion of the supercritical fluid to atmospheric conditions. To achieve this the supercritical fluid is typically sprayed through 10-50 microns (internal diameter) nozzles with aspect ratios (L/D) of 5-100. The fluid approaches sonic terminal velocity at the nozzle tip and high levels of supersaturation result in rapid nucleation rates and limited crystal growth. The combination of a rapidly propagating mechanical perturbation and high supersaturation is a distinguishing feature of rapid expansion from a supercritical solution. These conditions lead to the formation of very small particles with a narrow particle distribution.
The first comprehensive study of rapid expansion from a supercritical solution was reported by Krukonis (1984) [V. J. Krukonis: AIChE Annual Meeting San Francisco (1984), as cited in J. W. Tom et al.: Supercritical Fluid Engineering Science, Chapter 19, p238, (1993)] who formed micro-particles of an array of organic, inorganic, and biological materials. Most particle sizes reported for organic materials, such as lovastatin, polyhydroxyacids, and mevinolin, were in the 5-100 micron range. Nanoparticles of beta-carotene (300 nm) were formed by expansion of ethane into a viscous gelatin solution in order to inhibit post expansion particle aggregation.
Most rapid expansion from supercritical solution studies on organic materials utilize supercritical carbon dioxide. However, ethane was preferred to carbon dioxide for beta-carotene because of certain chemical interactions. Carbon dioxide is generally preferred, alone or in combination with a cosolvent. Minute additions of a cosolvent can increase the solubility of some solutes by orders of magnitude. When cosolvents are used in rapid expansion from a supercritical solution, care is required to prevent desolution of the particles due to solvent condensing in the nozzle. Normally, this is achieved by heating, the supercritical fluid, prior to expansion, to a point where no condensate (mist) is visible at the nozzle tip.
A similar problem occurs when carbon dioxide is used alone. During adiabatic expansion (cooling), carbon dioxide will be in two phases unless sufficient heat is provided at the nozzle to maintain a gaseous state. Most investigators recognize this phenomenon and increase the pre-expansion temperature to prevent condensation and freezing in the nozzle. A significant heat input is required (40-50 kcal/kg) to maintain carbon dioxide in the gaseous state. If this energy is supplied by increasing the pre-expansion temperature the density drops and consequently reduces the supercritical fluid's solvating power. This can lead to premature precipitation and clogging of the nozzle.
There are a number of advantages in utilizing compressed carbon dioxide in the liquid and supercritical fluid states, as a solvent or anti-solvent for the formation of materials with submicron particle features. Diffusion coefficients of organic solvents in supercritical fluid carbon dioxide are typically 1-2 orders of magnitude higher than in conventional liquid solvents. Furthermore, carbon dioxide is a small linear molecule that diffuses more rapidly in liquids than do other antisolvents. In the antisolvent precipitation process, the accelerated mass transfer in both directions can facilitate very rapid phase separation and hence the production of materials with sub-micron features. It is easy to recycle the supercritical fluid solvent at the end of the process by simply reducing pressure. Since supercritical fluids do not have a surface tension, they can be removed without collapse of structure due to capillary forces. Drying of the product is unusually rapid. No carbon dioxide residue is left in the product, and carbon dioxide has a number of other desirable characteristics, for example it is non-toxic, nonflammable, and inexpensive. Furthermore, solvent waste is greatly reduced since a typical ratio of antisolvent to solvent is 30:1.
As an antisolvent, carbon dioxide has broad applicability in that it lowers the cohesive energy of nearly all organic solvents. In 1992, D. J. Dixon, PhD. Dissertation, University of Texas at Austin, described a process in which liquid solutions of polymer in solvent are sprayed into compressed carbon dioxide to form microspheres and fibers. In this process, so called precipitation with a compressed fluid antisolvent, the polymer is insoluble in carbon dioxide, and the organic solvent is fully miscible with CO2. This concept has been used to form biologically active insulin particles (4 microns) [Yeo, S. D., Lim, G. B. and Debenedetti, P. G. Formation of Microparticulate Protein Powders using a Supercritical Fluid Anti-Solvent Biotechnol, and Bioeng. 1993, 341], several micron biodegradable L-poly(lactic acid) particles [Randolph, T. W. B., R. A.; Johnston, K. P. Micron Sized Biodegradeable Particles of Poly(L-lactic Acid) via the Gas Antisolvent Spray Precipitation Process. Biotechnology Progress. 1993, 9, 429] and methylprednisolone acetate particles (<5 microns) [W. J. Schmitt, M. C. S., G. G. Shook, S. M. Speaker. Finely-Divided Powders by Carrier Solution Injection into a Near or Supercritical Fluid. Am. Inst. Chem. Eng. J. 1995, 41, 2476-2486]. Somewhat surprisingly, the particle sizes have been as small as those made by rapid expansion from a supercritical solution, despite the potentially faster times for depressurization in rapid expansion from a supercritical solution versus two-way mass transfer in the Compressed fluid antisolvent process. Not only can the compressed fluid antisolvent process produce PS particles, but also solid and hollow fibers highly oriented microfibrils biocontinuous networks and 100 nm microballoons with porous shells.
To date, it has not been possible to make submicron particles by the compressed fluid antisolvent process without particle aggregation or flocculation. Our objective is to overcome this limitation with the use of surface modifiers, also termed surfactant stabilizers, such as phospholipids, salts of cholic and deoxycholic acids, Tweens (polyoxyethylene sorbitan esters), Pluronic F-68, Tetronic-908, hydroxypropylmethyl cellulose (HPMC), Triton X-100, cetyltrimethylammonium bromide, PEG-400 or combinations of these compounds as described in more detail above.
Considerable variations as to the identities and types of phospholipid and especially the surface active agent or agents should be expected depending upon the water-insoluble or poorly water-soluble biologically active substance selected as the surface properties of these small particles are different. The most advantageous surface active agent for the insoluble compound will be apparent following empirical tests to identify the surfactant or surfactant system/combination resulting in the requisite particle size and particle size stability on storage over time.
Appropriate choice of stabilizers will prevent flocculation in the aqueous phase. The surfactant is chosen to be active at the compound water interface, but it is not chosen to be active at the carbon dioxide-organic solvent or carbon dioxide-drug interface. It is not necessary for the stabilizer to be soluble in CO2; it can be soluble in the liquid to be sprayed, as it only needs to be active at the CO2/solute interface.
This invention provides a supercritical fluid/compressed fluid based process to produce suspensions of water insoluble drugs with an average particle size of less than 100 nm and a narrow size distribution. An essential element is the use of phospholipids and other surfactants to modify the surface of the drug particles to prevent particle aggregation and thereby improve both their storage stability and pharmacokinetic properties.
Materials and methods: Particle sizing was based on the principle of photon correlation spectroscopy using Submicron Particle Sizer-Autodilute Model 370 (NICOMP Particle Sizing Systems, Santa Barbara, Calif.). This instrument provides number weighted, intensity weighted, and volume weighted particle size distributions as well as multimodality of the particle size distribution, if present.
Separation and quantitation of cyclosporine was carried out with a Waters HPLC system utilizing reverse phase chromatography. The drug was extracted from the sample with methanol and injected for analysis on a C-18 analytical column at 60-80° C. with a mobile phase consisting of acetonitrile, methanol, and water. Anylate was detected though its absorbance at 214 nm. Operation of the chromatography system and data processing was conducted by Waters Millennium v2.1 software.
Carbon dioxide was used to prepare rapid expansion supercritical solutions since there is no literature reference to any chemical interaction with cyclosporine. Carbon dioxide has been used as a solvent for cyclosporine in fermentation recovery and in HPLC. The relative solubilities of cylclosporine dissolved in a solvent that is expanded with compressed carbon dioxide will be established.
A gas will approach sonic terminal velocity when expanded in a nozzle. Therefore it is important to determine the maximum nozzle diameter and aspect ratio (L/D) that will maintain these conditions in scaleup. Nozzle diameters of 10-50 microns are reported to be used in conjunction with aspect ratios ranging from 5 to 200.
The apparatus for rapid expansion from supercritical solution shown in
The preheater as shown in
The expansion nozzle as shown in more detail in
The apparatus used to carry out the Compressed fluid antisolvent sprays is shown in
A 0.5 μm filter 21 was threaded into the CO2 effluent line 22 to prevent loss of the water insoluble compound from the precipitation vessel. The filter assembly included an in-line sintered filter element (Swagelok “F” series) which was welded onto a ¼″ i.d. NPT fitting. The effluent vent valve 23 (Whitey, SS-21RS4) connected to rotameter 24 was heated in a water bath 29 to at least 50° C. to prevent the expanding CO2 from freezing. During precipitation, a known amount of aqueous solution 25 was agitated using a 45° pitched blade impeller 26. After precipitation, agitation was discontinued and the vessel was isolated to depressurize for 30-45 min. The aqueous solution was then recovered for particle size analysis.
Unless otherwise specified, all parts and percentages reported herein are weight per unit volume (w/v), in which the volume in the denominator represents the total volume of the system. Diameters of dimensions are given in millimeters (mm=10−3 meters), micrometers (μm=10−6 meters), nanometers (nm=10−9 meters) or Angstrom units (=0.1 nm). Volumes are given in liters (L), milliliters (mL=10−3 L) and microliters (μL=10−6 L). Dilutions are by volume. All temperatures are reported in degrees Celsius. The compositions of the invention can comprise, consist essentially of or consist of the materials set forth and the process or method can comprise, consist essentially of or consist of the steps set forth with such materials.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
The following examples further explain and illustrate the invention:
Cyclosporine Microparticle Formation by the Rapid Expansion from Supercritical Solution Process
A homogeneous solution of cyclosporine in supercritical CO2 was expanded by rapid expansion from supercritical solution into various aqueous solutions to study microparticle stabilization. The aqueous solutions were pure water 1.0 wt % Tween 80, phospholipid dispersion or 2.0 wt % Tween 80 with phospholipid dispersion. An amount of 0.0480 g of cyclosporine was charged to a variable volume view cell and 20 mL of CO2 were added to formulate a 0.25 wt % solution. After the solution came to thermal equilibrium (T=35° C.) the cyclosporine/CO2 solution at 3000 psia was sprayed through a 0.30 μm orifice (L/D of 8) into an aqueous solution for 25 seconds. The pre-expansion temperature was 40° C. The volume weighted particle size of the cyclosporine microparticles expanded into pure phospholipid was 153.7 nm (peak 2) as shown in FIG. 4. Most of the mass that constitutes the peak 1 of 20-50 nm diameter may originate largely from the phospholipid; however, this population may also possess some particles that contain cyclosporine. The volume weighted mean particle size of the cyclosporine microparticles expanded into phospholipid dispersion with 2.0 wt % Tween 80 was 80.9 nm (peak 2) as shown in FIG. 5. In this case again the smaller peak (26.8 nm) may originate largely from the phospholipid and Tween 80 dispersion and a small fraction of cyclosporine containing particulates. A control experiment was performed in which pure carbon dioxide at 3000 psia was sprayed into the phospholipid dispersion. The mean diameter of the particulates in the dispersion was 9 nm. Therefore, the particles greater than 100 nm in
Water Insoluble Compound Phase Behavior in Compressed CO2.
In order to assess whether a particular water insoluble compound should be processed by rapid expansion from supercritical solution or compressed fluid antisolvent, the solubility of the candidate drugs in carbon dioxide was measured. Cyclosporine, nifedipine, piroxicam, carbamazepine, indomethacin and tetracaine HI were studied. To prepare solutions with a constant molar composition, measured amounts of drug and CO2 were charged to the variable volume view cell from Example 1. To increase the solubility, a cosolvent, i.e., acetone or ethanol, was added to the view cell. The temperature and pressure were varied from 25-45° C. and 1200 to 4500 psia, respectively. The phase behavior was determined visually by noting when phase separation occurred as the pressure was slowly reduced at 1-2 psia/sec. Table 1 shows a summary of the solubility behavior in CO2. Cyclosporine was soluble in CO2 up to 0.5 wt %. Solutions containing 0.01 wt % carbamazepine, tetracaine HI, nifedipine and piroxicam were insoluble in CO2. With the addition of 2.40 wt % acetone, 0.026 wt % piroxicam was soluble in CO2 at 25° C. for all pressures down to the vapor pressure of CO2, which is 930 psia. A solution containing 0.028 wt % nifedipine and 2.26 wt % acetone cosolvent was insoluble in CO2 at 25° C. At 45° C., the nifedipine was solvated with no visible phase separation down to 2000 psia.
Indomethacin Microparticle Formation by the Compressed Fluid Antisolvent Process
A 9.9 wt % solution of indomethacin in acetone was sprayed into carbon dioxide with the aqueous solution using the Compressed fluid antisolvent process. The duration of the spray was 30 s at 1 mL/min. The volume weighted mean particle size of the phospholipid dispersion was 26 nm (peak 1) as shown in
Tetracaine HI Microparticle Formation by the Compressed Fluid Antisolvent Process
A 0.97 wt % solution of Tetracaine HI in acetone was sprayed into the precipitator containing carbon dioxide and pure water. The volume weighted mean particle sizes of the Tetracaine HI microparticles were 31.8, 193.4 and 2510.1 nm, respectively (FIG. 8). This illustrates that the Compressed fluid antisolvent process can produce extremely small particles even without surfactant stabilizer. With 1.0 wt % Tween 80 added to the water, three peaks were observed with mean diameters of 9.5 nm, 38.3 nm and 169.1 nm (FIG. 9). The particle size distribution for 1.0 wt % Tetracaine HI stabilized with phospholipid dispersion and 2.0 wt % Tween 80 is shown in
This application is a continuation of U.S. application Ser. No. 09/202,504 filed Oct. 17, 1996, issued as U.S. Pat. No. 6,576,264, which is a 371 of PCT/US96/16841 filed Oct. 17, 1996, which claims the benefit of U.S. Application Ser. No. 60/005,340 filed Oct. 17, 1995.
Number | Name | Date | Kind |
---|---|---|---|
2803582 | Cherney | Aug 1957 | A |
3137631 | Soloway | Jun 1964 | A |
3216897 | Drantz | Nov 1965 | A |
3274063 | Nieper et al. | Sep 1966 | A |
3594476 | Merrill | Jul 1971 | A |
3715432 | Merrill | Feb 1973 | A |
3755557 | Jacobs | Aug 1973 | A |
3794476 | Michalik et al. | Feb 1974 | A |
3937668 | Zolle | Feb 1976 | A |
3960757 | Morishita et al. | Jun 1976 | A |
3965255 | Bloch et al. | Jun 1976 | A |
3998753 | Antoshkiw et al. | Dec 1976 | A |
4016100 | Suzuki et al. | Apr 1977 | A |
4053585 | Allison et al. | Oct 1977 | A |
4056635 | Glen et al. | Nov 1977 | A |
4073943 | Wretlind et al. | Feb 1978 | A |
4078052 | Papahadjopoulos | Mar 1978 | A |
4089801 | Schneider | May 1978 | A |
4102806 | Kondo et al. | Jul 1978 | A |
4107288 | Oppenheim et al. | Aug 1978 | A |
4133874 | Miller et al. | Jan 1979 | A |
4145410 | Sears | Mar 1979 | A |
4147767 | Yapel, Jr. | Apr 1979 | A |
4186183 | Steck et al. | Jan 1980 | A |
4219548 | Reller | Aug 1980 | A |
4235871 | Papahadjopoulos et al. | Nov 1980 | A |
4241046 | Papahadjopoulos et al. | Dec 1980 | A |
4271196 | Schmidt | Jun 1981 | A |
4280996 | Okamoto et al. | Jul 1981 | A |
4298594 | Sears et al. | Nov 1981 | A |
4302459 | Steck et al. | Nov 1981 | A |
4308166 | Marchetti et al. | Dec 1981 | A |
4309421 | Ghyczy et al. | Jan 1982 | A |
4316884 | Alam et al. | Feb 1982 | A |
4320121 | Sears | Mar 1982 | A |
4325871 | Sasaki et al. | Apr 1982 | A |
4328222 | Schmidt | May 1982 | A |
4329332 | Couvreur et al. | May 1982 | A |
4331654 | Morris | May 1982 | A |
4332795 | Ghyczy et al. | Jun 1982 | A |
4332796 | Los | Jun 1982 | A |
4340594 | Mizushima et al. | Jul 1982 | A |
4345588 | Widder et al. | Aug 1982 | A |
4351831 | Growdon et al. | Sep 1982 | A |
4356167 | Kelly | Oct 1982 | A |
4369182 | Ghyczy et al. | Jan 1983 | A |
4378354 | Ghyczy et al. | Mar 1983 | A |
4394372 | Taylor | Jul 1983 | A |
4397846 | Weiner et al. | Aug 1983 | A |
4411894 | Schrank et al. | Oct 1983 | A |
4421747 | Ghyczy et al. | Dec 1983 | A |
4427649 | Dingle et al. | Jan 1984 | A |
4448765 | Ash et al. | May 1984 | A |
4483847 | Augart | Nov 1984 | A |
4485054 | Mezei et al. | Nov 1984 | A |
4492720 | Mosier | Jan 1985 | A |
4515736 | Deamer | May 1985 | A |
4529561 | Hunt et al. | Jul 1985 | A |
4532089 | MacDonald | Jul 1985 | A |
4610868 | Fountain et al. | Sep 1986 | A |
4613505 | Mizushima et al. | Sep 1986 | A |
4622219 | Haynes | Nov 1986 | A |
4675236 | Ohkawara et al. | Jun 1987 | A |
4687762 | Fukushima et al. | Aug 1987 | A |
4725442 | Haynes | Feb 1988 | A |
4756910 | Yagi et al. | Jul 1988 | A |
4761288 | Mezei et al. | Aug 1988 | A |
4762720 | Jizomoto | Aug 1988 | A |
4766046 | Abra et al. | Aug 1988 | A |
4776991 | Farmer et al. | Oct 1988 | A |
4801455 | List et al. | Jan 1989 | A |
4803070 | Cantrell et al. | Feb 1989 | A |
4806350 | Gerber | Feb 1989 | A |
4806352 | Cantrell | Feb 1989 | A |
4826687 | Nerome et al. | May 1989 | A |
4839111 | Huang | Jun 1989 | A |
4973465 | Baurain et al. | Nov 1990 | A |
5030453 | Lenk et al. | Jul 1991 | A |
5043280 | Fischer et al. | Aug 1991 | A |
5091187 | Haynes | Feb 1992 | A |
5091188 | Haynes | Feb 1992 | A |
5100591 | Leclef et al. | Mar 1992 | A |
5145684 | Liversidge et al. | Sep 1992 | A |
5169433 | Lindsay et al. | Dec 1992 | A |
5246707 | Haynes | Sep 1993 | A |
5272137 | Blasé | Dec 1993 | A |
5302401 | Liversidge et al. | Apr 1994 | A |
5320906 | Eley et al. | Jun 1994 | A |
5340564 | Illig et al. | Aug 1994 | A |
5470583 | Na et al. | Nov 1995 | A |
5510118 | Bosche et al. | Apr 1996 | A |
RE35338 | Haynes | Sep 1996 | E |
5637625 | Haynes | Jun 1997 | A |
5776486 | Castor et al. | Jul 1998 | A |
5874029 | Subramaniam et al. | Feb 1999 | A |
6177103 | Pace et al. | Jan 2001 | B1 |
6576264 | Henriksen et al. | Jun 2003 | B1 |
Number | Date | Country |
---|---|---|
2 513 797 | Oct 1975 | DE |
2 938 807 | Nov 1980 | DE |
0 052 322 | May 1982 | EP |
0 272 091 | Jun 1988 | EP |
0 322 687 | May 1989 | EP |
0 322 687 | Jul 1989 | EP |
0 418 153 | Mar 1991 | EP |
0 456 670 | Nov 1991 | EP |
0 456 764 | Nov 1991 | EP |
0 499 299 | Aug 1992 | EP |
0 542 314 | May 1993 | EP |
0 542 314 | May 1993 | EP |
0 0601 618 | Jun 1994 | EP |
0 601 618 | Jun 1994 | EP |
0 706 821 | Apr 1996 | EP |
0 744 992 | Dec 1996 | EP |
2046094 | Nov 1980 | GB |
56167616 | May 1980 | JP |
63233915 | May 1980 | JP |
55141407 | Nov 1980 | JP |
60208910 | Oct 1985 | JP |
63502117 | Aug 1988 | JP |
1502590 | Jul 1989 | JP |
WO 8500011 | Jan 1985 | WO |
WO 8704592 | Aug 1987 | WO |
WO 8804924 | Jul 1988 | WO |
WO 9104011 | Apr 1991 | WO |
WO 9521688 | Aug 1995 | WO |
WO 09714407 | Apr 1997 | WO |
WO 9807414 | Feb 1998 | WO |
WO 9952504 | Oct 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20040018229 A1 | Jan 2004 | US |
Number | Date | Country | |
---|---|---|---|
60005340 | Oct 1995 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09202504 | US | |
Child | 10458071 | US |