This application is the U.S. National Stage of PCT/FR2017/050470 filed Mar. 2, 2017, which in turn claims priority to French Application No. 1651741, filed Mar. 2, 2016. The contents of both applications are incorporated herein by reference in their entirety.
The present invention relates to using three-dimensional (3D) or multilayer weaving to fabricate fiber reinforcing structures for composite material parts.
More particularly, the invention relates to fiber structures that are to form reinforcement in a composite material part that is a body of revolution presenting, in radial section, a profile that varies (varying in shape and/or in thickness), such as for example an aeroengine fan casing.
Fiber structures that are to constitute the fiber reinforcement of a composite material part, e.g. such as an aeroengine fan casing, are made by 3D or multilayer weaving in a Jacquard type loom, the weaving consisting in inserting weft yarns to create a pattern between warp yarns. The warp yarns are organized in the harness of the loom as a plurality of layers and columns that are manipulated by the loom so as to enable the weft yarns to be inserted in compliance with the weaving pattern(s) programmed in the loom. The weft yarns are inserted between the warp yarns in columns.
In order to enable each column of weft yarns to the inserted while weaving the fiber structure, one or more take-up rollers are used between the outlet of the loom and a storage drum or mandrel onto which the woven fiber texture is wound for subsequent use in forming a fiber preform on an injection mold. The role of this or these take-up rollers located downstream from the loom is to take up the proper lengths of warp yarns after each weft column has been inserted. These rollers have outer surfaces that are covered in a material to which the weaving yarns adhere so as to exert a traction force on the warp yarns.
The fiber texture as woven in this way is to be wound onto an injection mold that is formed by a mandrel having a winding surface presenting, in radial section, a profile in relief corresponding to the profile of the part that is to be fabricated. In order to make a fiber texture that is adapted to the varying shape of the injection mold, use is made of a “contour” weaving technique, which consists in taking up different lengths of warp yarns depending on their positions across the width of the fiber texture that is being woven in the form of a strip. For this purpose, the take-up roller(s) present across their axial width a radius that varies so as to define an outer surface having a profile in relief for taking up different lengths of warp yarn as a function of the positions of the yarns across the width of the fiber texture, a greater length of warp yarn being taken up by the portion(s) of a take-up roller that is/are of radius greater than the remainder of the roller. Differential take-up of the warp yarns depends on the sums of the lengths of fiber texture that are in contact with the take-up rollers. The differential take-up performed by the take-up rollers has the effect, in the weaving cell of the loom, of causing the proper lengths of warp yarns to be pulled prior to inserting the next column of weft yarns.
However, while the fiber texture is being shaped on a mold prior to injection, it is wound to build up a plurality of layers. On each winding turn, the ratios between the various radii defining the profile in relief changes as a function of the number of layers of fiber texture that have already been wound. The magnitudes of these changes in profile increase with increasing shape and/or thickness ratios in the final part. Unfortunately, the above-described fabrication method is capable only of weaving a fiber texture with a profile in relief that is constant, i.e. matching radii for which the cross-section ratios do not change. While the fiber texture is being wound onto the injection mold, it comes out of register because of the differences between the profile as woven, which is constant over the entire length of the woven texture, and the real profile onto which the texture is being wound, thereby giving rise to losses of tension in certain axial positions in the texture. Such unbalances in tension across the width of the part can give rise to numerous defects such as waves, fibers buckling, pinched fibers, zones of unwanted extra thickness, and fiber volume contents that are out of specification. Such unbalances in tension also make the shaping of the fiber texture by winding more complicated, in particular by causing creases or misalignments to be formed, thereby making the shaping of the fiber texture more arduous and time-consuming.
It is therefore desirable to be able to make 3D or multilayer fiber structures with a profile in relief that varies during weaving of the texture in such a manner as to avoid losses or unbalances of tension in the fiber texture.
For this purpose, the invention proposes an installation for fabricating a fiber texture in the form of a strip presenting a profile that varies at least in cross-section, the installation comprising a loom, one or more take-up rollers, and a storage mandrel, each take-up roller and the storage mandrel presenting a radius that varies across its axial width so as to define an outer surface having a profile in relief, the installation being characterized in that at least one take-up roller includes a plurality of sectors releasably fastened on the outer surface of said take-up roller, each sector extending over a fraction of the circumference of the take-up roller and over all or part of the axial width of said take-up roller, each sector also presenting at least one thickness that is determined in such a manner as to modify locally the thickness of the profile in relief of the outer surface of the take-up roller.
By making use of sectors that enable the thickness of the profile in relief on the outer surface of one or more take-up rollers to be modified locally during fabrication of a fiber texture of varying shape, the fabrication installation of the invention enables fiber textures to be fabricated in the form of a strip presenting a profile that varies in cross-section in which losses or nonuniformities in tension are significantly reduced. These effects can be seen while winding the texture on the injection mold in order to shape it. Specifically, while being wound on the injection mold, the fiber preform presents few defects (waves, fiber buckling and/or pinching, zones of unwanted extra thickness, fiber volume contents that are out of specification, creases, misalignments, etc.) compared with a fiber texture fabricated in accordance with the prior art in which tension unbalances are greater. This reduces the number of unwanted stops of the winding machine that are usually necessary for the purpose of correcting defects such as creases or collapses of portions of the texture, which defects also require the machine to be reversed and action to be taken by one or more technicians.
According to a first particular characteristic of the installation of the invention, each sector presents a thickness that varies in the axial direction. It is thus possible to conserve or to modify the variation in the radius of the take-up roller.
According to a second particular characteristic of the installation of the invention, each sector presents an inner surface having a shape corresponding to the portion of the outer surface of profile in relief of the take-up roller on which said sector is fastened. Under such circumstances, the increase in the take-up of warp yarns in contact with the sectors is adjusted relative to the take-up of warp yarns performed at the same location, but on the take-up roller without sectors.
According to a third particular characteristic of the installation of the invention, each sector includes a layer of grip material on its outer surface so as to entrain the yarns of the fiber texture in contact with the sectors.
According to a fourth particular characteristic of the installation of the invention, at least one sector of the plurality of sectors has an edge that is chamfered so as to avoid putting the preform into contact with a sharp edge on a first sector that has been added to the take-up roller and so as to cause the take-up force on the yarns to increase progressively.
According to a fifth particular characteristic of the installation of the invention, it comprises a first take-up roller placed in the proximity of the outlet from the loom, and at least one second take-up roller placed between the first take-up roller and the storage mandrel, the second take-up roller including a plurality of sectors releasably fastened on the outer surface of said second take-up roller, each sector extending over a fraction of the circumference of the second take-up roller and over all or part of the axial width of said second take-up roller, each sector also presenting a thickness that is determined in such a manner as to modify locally the thickness of the profile in relief of the outer surface of the take-up roller.
Sectors are thus preferably used with those take-up rollers that are referred to as “reverser” rollers and that present variations in radius that are greater than on the take-up roller(s) that are referred to as “puller” rollers, and that consequently take up greater lengths of warp yarn than the “puller” rollers situated upstream in the winding direction.
The invention also provides a method of fabricating a fiber structure in the form of a strip presenting a varying profile in cross-section by three-dimensional or multilayer weaving between a plurality of layers of warp yarns interlinked by weft yarns, the warp yarns being driven at the outlet from the loom by one or more take-up rollers, the fiber texture being wound onto a storage mandrel placed downstream from the take-up rollers, each take-up roller and the storage mandrel presenting across its axial width a radius that varies so as to define an outer surface having a profile in relief, the method being characterized in that, during weaving, it comprises adding a plurality of sectors on the outer surface of at least one take-up roller, each sector extending over a fraction of the circumference of the take-up roller and over all or part of the axial width of said take-up roller, each sector also presenting at least one thickness that is determined in such a manner as to modify locally the thickness of the profile in relief of the outer surface of the take-up roller.
According to a first particular characteristic of the method of the invention, each sector extends over a fraction of the circumference of the take-up roller, which fraction is determined as a function of the circumferential fraction of contact between the fiber texture and the outer surface of said take-up roller.
According to a second particular characteristic of the method of the invention, each sector presents a thickness that varies in the axial direction.
According to a third particular characteristic of the method of the invention, each sector presents an outer surface having a shape corresponding to the portion of the outer surface of profile in relief of the take-up roller on which said sector is fastened.
Other characteristics and advantages of the invention appear from the following description of particular embodiments of the invention, given as nonlimiting examples, and with reference to the accompanying drawings, in which:
The invention applies in general manner to making fiber textures suitable for constituting fiber reinforcement, or “preforms”, for fabricating composite material parts in the form of bodies of revolution presenting, in radial section, a profile that varies and/or a thickness that varies, in particular in a radial section, where a radial section corresponds to a plane defined by the axial direction and by the radial direction of the mold on which the preform is shaped. The parts are obtained by winding a fiber texture on a mold and by injecting a matrix precursor into the shaped fiber texture, with the matrix typically being a resin.
The fiber texture of the invention, which is in the form of a strip presenting a profile of varying cross-section, is obtained by three-dimensional weaving or by multilayer weaving.
The term “three-dimensional weaving” or “3D weaving” is used herein to mean a weaving technique in which at least some of the weft yarns interlink warp yarns over a plurality of warp layers, or vice versa. The 3D weaving may be of the interlock type, as described in Document WO 2006/136755.
The term “multilayer weaving” is used herein to mean 3D weaving with a plurality of warp layers in which the base weave for each layer is equivalent to a conventional 2D weave, such as a weave of plain, satin, or twill type, but including certain points of the weave that interlink warp layers, or vice versa.
Fabricating the fiber structure by 3D or multilayer weaving makes it possible to obtain bonding between the layers, and thus to have good mechanical strength for the fiber structure and for the resulting composite material part, and to do so in a single textile operation.
In particular, the fiber structure may be woven using yarns made of fibers of carbon, of ceramic such as silicon carbide, of glass, or indeed of aramid.
The warp yarns 201 are taken from spools arranged on a creel (not shown in
The first take-up roller 300 that is situated closest to the outlet 120 of the loom 100 is said to be a “puller” roller. The take-up roller 300 is driven in a direction of rotation S300 shown in
The other two take-up rollers 400 and 500 that are situated downstream from the first take-up roller 300 are referred to as “reverser” rollers, and they are driven in rotation in respective directions of rotation S400 and S500 shown in
The installation 10 also has a storage drum or mandrel 600, also referred to as a “take-up” mandrel, that is driven in rotation in the direction of rotation S600 and that likewise presents across its axial width a radius that varies so as to define an outer surface 601 having a profile in relief corresponding to the weaving profile specified for the fiber texture 210, in order to limit deformation of the fiber texture 210. The fiber texture 210 is wound onto the storage mandrel 600 on which it is stored for subsequent use in forming a fiber preform by winding the fiber texture onto an injection mold.
In accordance with the invention, at least one take-up roller is provided on its outer surface with a plurality of sectors that are removably attached, e.g. by means of nut-and-bolt type fastener members or by interfitting, each sector extending over a fraction of the circumference of the take-up roller and over all or part of the axial width of said take-up roller. In the presently described example, and as shown in
The outer surfaces 412, 422, and 432 are covered in a layer of grip material (not shown), e.g. a layer of elastomer (rubber), to which the woven yarns adhere so as to exert a traction force on the warp yarns.
In this example, the sectors 410, 420, and 430 present respective thicknesses that vary across the axial widths L410, L420, and L430 of the sectors 410, 420, and 430, as shown in
Once fitted with its sectors 410, 420, and 430, the roller 400 takes up greater lengths of the warp yarns where the warp yarns are in contact with the sectors.
The sectors 410, 420, and 430 are added during fabrication of the fiber texture 210 when it is necessary to take up a greater length of warp yarn, e.g. because the difference between the woven profile and the real profile on which the texture is being wound is such that it can lead to losses of tension at certain axial positions across the texture.
The sectors 410, 420, and 430 are removed in like manner, as shown in
Each sector extends over a fraction of the circumference of the roller. It presents a circularly arcuate length, such as the circularly arcuate length A410 of the sector 410 shown in
Sectors may be used on a single take-up roller, as described above for the roller 400, or on a plurality of take-up rollers, such as the above-described rollers 300, 400, and 500, so as to modify locally the thickness of the profile in relief of the outer surface of each take-up roller in question. Nevertheless, the sectors are preferably used with the take-up rollers referred to as “reverser” rollers, since they present variations in radius that are greater than on the take-up roller(s) that are referred to as “puller” rollers, and that consequently take up greater lengths of warp yarn than the “puller” rollers. The “reverser” take-up rollers are placed between the “puller” take-up rollers and the storage mandrel in the installation for fabricating a fiber texture in the form of a strip presenting a cross-section of varying profile.
In the context of the invention it is also possible to mount a plurality of sectors on one another so as to increase or decrease progressively the thickness of the profile in relief of the outer surface of any take-up roller.
The sectors are made of rigid material or of material that withstands compression well, such as a metal or a plastics material. By way of example, the sectors may be made by molding, by machining, or by 3D printing.
By making use of sectors that enable the thickness of the profile in relief on the outer surface of one or more take-up rollers to be modified locally during fabrication of a fiber texture of varying shape, the fabrication installation and method of the invention enable fiber textures to be fabricated of varying shape in which losses or nonuniformities in tension are significantly reduced. The effects of the invention on a fiber texture fabricated with the installation and the method of the invention are visible while the texture is being wound onto the injection mold in order to be shaped. Specifically, while being wound onto the injection mold, the shaped fiber preform presents few defects (waves, fiber buckling and/or pinching, zones of unwanted extra thickness, fiber volume contents that are out of specification, creases, misalignments, etc.) compared with a fiber texture fabricated in accordance with the prior art in which tension unbalances are greater. This reduces the number of unwanted stops of the winding machine that are usually necessary for correcting defects such as creases or collapses of portions of the texture, which defects also require the machine to be reversed and action to be taken by one or more technicians.
Number | Date | Country | Kind |
---|---|---|---|
16 51741 | Mar 2016 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2017/050470 | 3/2/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/149252 | 9/8/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3907004 | Yamaguchi | Sep 1975 | A |
3963185 | Quirk | Jun 1976 | A |
3970492 | Amberg | Jul 1976 | A |
4057001 | Valentine | Nov 1977 | A |
4080915 | Bompard | Mar 1978 | A |
4100009 | Nakajima | Jul 1978 | A |
4106968 | Kutnyak | Aug 1978 | A |
4384913 | Dana | May 1983 | A |
4519290 | Inman | May 1985 | A |
4621662 | Olry | Nov 1986 | A |
4722369 | Senn | Feb 1988 | A |
4825912 | Fleury | May 1989 | A |
5113568 | Lawton | May 1992 | A |
7670969 | Blackden | Mar 2010 | B2 |
8333222 | Leppla | Dec 2012 | B2 |
9186850 | Goering | Nov 2015 | B2 |
9403325 | Corradini | Aug 2016 | B2 |
9726616 | Mathon | Aug 2017 | B2 |
10016912 | Dunleavy | Jul 2018 | B2 |
20090294566 | Witmer | Dec 2009 | A1 |
20090294567 | Witmer | Dec 2009 | A1 |
20090325443 | Blackden | Dec 2009 | A1 |
20110155276 | Leppla | Jun 2011 | A1 |
20130074297 | Dey | Mar 2013 | A1 |
20130103162 | Costello | Apr 2013 | A1 |
20140102578 | Bartel | Apr 2014 | A1 |
20140110063 | Mathon | Apr 2014 | A1 |
20140113088 | Goering | Apr 2014 | A1 |
20140246143 | Kendrick | Sep 2014 | A1 |
20140246149 | Kendrick | Sep 2014 | A1 |
20140262046 | Mathon | Sep 2014 | A1 |
20140283977 | Mathon | Sep 2014 | A1 |
20150174833 | Desjoyeaux | Jun 2015 | A1 |
20150239181 | Corradini | Aug 2015 | A1 |
20150354103 | Dunleavy | Dec 2015 | A1 |
20160077019 | Mathon | Mar 2016 | A1 |
20160332120 | Oborn | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
201 128 797 | Oct 2008 | CN |
0 302 012 | Feb 1989 | EP |
2 660 673 | Nov 2013 | EP |
2 660 673 | Oct 1991 | FR |
3 018 286 | Sep 2015 | FR |
WO 2006136755 | Dec 2006 | WO |
Entry |
---|
International Preliminary Report on Patentability and the Written Opinion of the International Searching Authority as issued in International Patent Application No. PCT/FR2017/050470, dated Sep. 4, 2018. |
International Search Report as issued in International Patent Application No. PCT/FR2017/050470, dated May 10, 2017. |
Number | Date | Country | |
---|---|---|---|
20190062962 A1 | Feb 2019 | US |