This application is a national stage application, filed under 35 U.S.C. ยง371, of International Application No. PCT/ES2010/000025, filed Jan. 26, 2010, which is hereby incorporated by reference in its entirety.
1. Related Field
This invention relates, as its title indicates, to anchor positioning equipment in prefabricating reinforced mortar panels, particularly equipment that facilitates and secures the positioning of the versatile actuator means that are incorporated into the prefabricated cement mortar panels that are reinforced two-dimensionally to facilitate their maintenance during stripping, transport and on-site implementation operations and for anchoring to the structure of a building.
2. Related Art
The registration of Utility Model No. 200401484 is known, the owner of which is the applicant of this invention, which registration discloses a wide and extensive head piece with multiple grip. This head piece can grip, in a simultaneous, coplanar manner, a plurality of elements that are positioned in orderly fashion in a work post, move them in orderly fashion to another work post and place them in the same post in an identical position with respect to that arranged initially.
The gripping head piece is applied particularly in manufacturing panels for construction based on prestressed, two-dimensionally reinforced cement mortar. On these panels, on their non-visible face, metallic elements are located, in the form of omega shaped sections that sink into the mortar mass before it sets. The metallic elements are for installing the panels in the building structure. Also, they form gripping means for handling the panels during stripping, storage, transport and positioning.
To date, inserting these metallic elements into the back of the panel while moulding it, was done by hand and had to be done very accurately in a minimum length of time, so as to do it before the mortar started to set. The consequence of this was the slowness in manufacturing the panels and the increase in the product price.
In order to overcome these disadvantages, the solution was adopted to create means, reflected in Utility Model ES 1057 874. These means allow, on the one hand, arranging the metallic elements in orderly fashion so that their arrangement adjusts to the arrangement of the panel reinforcements and does not interfere with them and, on the other hand, that said elements can be sunk simultaneously into the back of the recently moulded panel before it starts to set.
Despite the good result of the invention, practice has shown that using said metallic elements in the form of omega shaped sections meant that the panels had on their non-visible face the projections of said omega shaped sections intended for handling and attaching them to the building structure. This, in spite of facilitating panel handling, makes it necessary to provide protection means when storing and transporting panels, so as to avoid any friction that could deteriorate the correct appearance of the texture or shine of the visible faces.
In order to overcome the mentioned drawbacks, the solution was adopted to replace said metallic elements in the form of omega sections with means for securing the panel to the structure, which are fully inserted inside the panel, while, nevertheless, being accessible from the non-visible face of the panels, but without projecting from said face.
According to the above solution, as contemplated in Utility Model No. 200700993, said means for securing the panel to the structure of the building, defined with a greater range of functions as versatile actuator means, are hidden in the mortar mass, interspersed in the space of some of the grid squares and even straddling the prestressed cables of the two-dimensional reinforcement of said panels.
These versatile actuator means have, on the one hand, means for being retained in the set mortar mass and, and on the other hand, opposed to the former, anchor means for elements for handling and/or securing to the building structure.
Said versatile actuator means are made up of blocks which are inserted in the mortar mass before it sets, and inside the mortar mass without reaching the visible face of the panel, whereas the means for anchoring to the building structure have an area thereof level with the surface of the non-visible face of the panel.
At any event there is the drawback that the metallic elements intended for handling and securing the panels to the structure of a building, must be inserted into the mortar mass before this starts to set. This was resolved for the omega sections by means of the devices in Utility Model No. 200401484.
When carrying out the positioning of the said versatile actuator means foreseen in Utility Model No. 200700993, since the mentioned devices are not appropriate, the solution has been adopted to position the means in orderly fashion on a template. After positioning the versatile actuator means they are gripped simultaneously and inserted through the non-visible face of the panel recently formed in the mould, and remaining in said position until the mortar acquires sets sufficiently for the panel to be stripped.
In order to carry out the task explained above the anchor positioning equipment in pre-fabricating reinforced mortar panels has been developed, which is the aim of the invention, comprising, on the one hand, a fixed base structure intended to support horizontally a plurality of stable seat elastic arrangements that are suitable for positioning therein an equal plurality of versatile actuator means and, on the other hand, movable frameworks that include, in orderly fashion to coincide with the stable seat elastic arrangements located on the fixed base structure for positioning said versatile actuator means, gripping arrangements for gripping the versatile actuator means that grip them as in each case one of said movable frameworks is tightly positioned against the fixed base structure and, due to their movable condition, remove from the stable seat elastic arrangements on the fixed base structure the versatile actuator means that are positioned on said elastic arrangements.
One feature of the invention consists of the fact that the stable seat elastic arrangements are made up of a fixed base body and a movable seat body for the versatile actuator means with a lower part that slides on the inside of the former and another upper part that is exterior to the said fixed body and forms a seating tray for an elastic plate that forms a flat hollow for fitting the retention means for retaining the versatile actuator means in the set mass of cement mortar.
Another characteristic related to the above lies in the fact that the fixed base body includes fixed in the inside thereof a guide bushing for sliding the movable body and a radial finger in cantilever arrangement the point of which, moving along the inside of a short groove on said movable body, determines the limits of movement of the latter when loaded by a spring located between said fixed body base and the tray of the movable body and/or by stress applied on said tray.
Also, a characteristic of the invention is the fact that the movable framework has as many fixed guides, distributed along the ledger and tie beams covered by the actual movable framework and integral with it, as there are seating devices on the fixed structure, housing in a sliding manner, although occasionally fixed, a gripping rod having gripping means for gripping at one end of the versatile actuator means, while near the other end, ending in a frustoconical shape, it has a wide semitoric groove.
Other characteristics associated to the above lie in the fact that the gripping rod is included by its gripping end to one end of the versatile actuator means located on the stable seat elastic arrangements of the fixed base structure and that the gripping rods when they act on the versatile actuator means are loaded by releasable means that immobilize them with respect to the corresponding guide and retention support, at least when interacting with said versatile actuator means.
The invention contemplates the characteristic whereby some of the releasable gripping arrangements act as traction means for the traction of the movable framework with respect to the reinforced mortar panel once it is at the stripping stage.
Also, the invention has a characteristic related to the one above whereby the gripping arrangements acting as traction means for stripping the panel are associated with a fork restraint that can be inserted into the wide groove of the gripping rod of the gripping arrangement.
Finally, the invention contemplates the fact that the movable framework holds a metallic reinforcement which, arranged to be applied against the surface of the layer of cement mortar, is connected to a terminal of high frequency electricity endothermic effect generator, while another terminal of the same generator is connected to the mould which shapes the thick layer of mortar cement so as to accelerate the setting of said mortar, without thereby excluding that the heavy metallic reinforcement of the movable framework, although acting as an upper reinforcement in a high frequency endothermic system, at all events acts to shape the surface of the layer of cement mortar that will form the non-visible face of the panel and will close the mould to prevent water from evaporating from the mortar as it sets.
To facilitate the understanding of the ideas expounded, while at the same time disclosing several constructive details, an embodiment of this invention is described below, with reference to the drawings accompanying this specification, and in view of their essentially illustrative purpose, they should be interpreted as being non-limiting with respect to the scope of the legal protection that is sought, and in these drawings:
The case of
Also, heavy upper metallic reinforcement 12A incorporated into movable framework 1, although acting as an upper reinforcement in a high frequency endothermic system, at all events acts to shape the surface of the layer of cement mortar 10 that will form the non-visible face of panel 11 and the closure of mould 8 to prevent water from evaporating from the mortar as it sets.
Said stable seat elastic arrangement 5 comprises a base 15 provided with anchoring screws 15A for anchoring to fixed base structure 2, a guide body 16, provided with a central self-lubricating bushing 17 and a seal 18 which, closed by an annular lid 19 form a sliding arrangement of foot 20 of a platform 21 loaded by a spring 22 in which there sits a seating plate 23 that has a recess 24 wherein retention means 13 for retaining blocks 6 fit in a stable manner. Foot 20 has axial recess 25 where an end stop 26 is applied fixed to guide body 16, being the function thereof to limit the emerging and descent of platform 21.
In said figures it is observed that gripping arrangement 3 installed on movable framework 1 comprises a top guide body 27 and a bottom guide body 28 which, associated to each other imprisoning a wall 1A of movable framework 1 by means of screws 29, forming two vertical concentric housings 30 and 31 for containing a gripping rod 4, which in the drawings grips block 6.
Top guide body 27 has on its side a cylindrical cavity 32 wherein two blind ducts 33 open, coplanar in the transverse direction to the axis of vertical housing 30, with said cylindrical cavity 32 being occupied by a sliding cylindrical body 34 and blind ducts 33 being occupied by respective rods 35 jointly emerging in cantilever arrangement of said sliding cylindrical body 34 and separated from each other at a magnitude smaller than the diameter of vertical housing 30.
The unit made up of said cylindrical sliding body 34 and rods 35 is associated with a motor mechanism 36 that moves it in the axial direction in a space sufficient to separate rods 35 from the surrounds of vertical housing 30.
The plane on which rods 35 are placed coincides with a groove 37 provided at the top end of gripping rods 4, which makes it possible to retain said gripping rods 4 in gripping arrangement 3 when said rods 35 are in the position in which they are housed in blind ducts 33, whereas, on the contrary, said gripping rods 4 are released when rods 35 are moved, withdrawing partially from inside said blind ducts 33.
Motor mechanism 36 can be any of the known types, i.e. hydraulic, pneumatic or electric.
Said
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/ES2010/000025 | 1/26/2010 | WO | 00 | 7/10/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/104390 | 9/1/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2772560 | Neptune | Dec 1956 | A |
4017115 | Holt et al. | Apr 1977 | A |
4079983 | Van Mastrigt | Mar 1978 | A |
4290638 | Manning | Sep 1981 | A |
4325575 | Holt et al. | Apr 1982 | A |
4367892 | Holt | Jan 1983 | A |
4437276 | Goldberg | Mar 1984 | A |
4437642 | Holt | Mar 1984 | A |
4483121 | Froening et al. | Nov 1984 | A |
4512121 | Carydias et al. | Apr 1985 | A |
4676035 | GangaRao | Jun 1987 | A |
5226265 | Kelly et al. | Jul 1993 | A |
6092849 | Zambelli et al. | Jul 2000 | A |
6568730 | Paterson | May 2003 | B1 |
6694680 | Zambelli et al. | Feb 2004 | B2 |
6792734 | Zambelli et al. | Sep 2004 | B2 |
7677829 | Westhoff et al. | Mar 2010 | B2 |
20110262263 | Comerford et al. | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
3714581 | Nov 1988 | DE |
0493140 | Jul 1992 | EP |
1057874 | Oct 2004 | ES |
1065420 | Aug 2007 | ES |
WO 2004020761 | Mar 2004 | WO |
Entry |
---|
International Searching Authority, International Search Report for International Application No. PCT/ES2010/000025, mailed Oct. 4, 2010, 5 pages, Spain Patent and Trademark Office, Madrid. |
Number | Date | Country | |
---|---|---|---|
20120285006 A1 | Nov 2012 | US |