The field of application of the invention is included within the manufacturing processes of tubular profiles or molecularly oriented plastic tubes, and particularly discontinuous or in-batch systems.
The present invention relates to a facility and the corresponding method for the adaptation of initial or preformed tubes for the subsequent manufacture of molecularly oriented plastic tubes, particularly for their application in the manufacture of tubes, signage elements and light structural elements.
The object of the invention consists of a system to prepare the preformed tubes that shall be introduced in the mould for their subsequent molecular orientation, in such a manner that these are heated at a specific molecular orientation temperature to ensure maximum regularity and homogeneity in terms of thicknesses, always in a gaseous medium and in a fast and economic manner, using the facility and manufacturing method of this invention.
The facility is fundamentally comprised of a specially designed oven, fitted with both internal and external accessories that allow adequate air convection, displacement of the tubes along its interior and adequate control systems, optimizing both tube processing time and thermal homogeneity.
Molecular bio-orientation is a process by means of which, applying a mechanical deformation to a previously extruded or preformed tube under adequate temperature and pressure conditions, deformation speed and deformation radius, its mechanical properties are substantially modified, mainly material sigma (or tension), impact resistance, creep improvement (or thermofluency), fracture propagation resistance, improvement in elastic properties (Young module), etc.
By means of said molecular bio-orientation process, we can obtain an ultra-resistant tube using less raw material and with identical or superior performance to that of molecularly oriented tubes, thanks to the higher resistance of the material.
In order to strengthen the tube tangentially, i.e. the direction in which the material shall be strengthened so as to support the pressure, the previously extruded tube must be expanded radially, therefore increasing its diameter substantially.
At present, there are several tubular profile manufacturing systems, which can be grouped into two main categories: continuous or in-line systems and discontinuous or in-batch systems.
Bearing in mind that the equipment and method of the invention is included under the category of the second system mentioned, allusion shall be made mainly to discontinuous or in-batch systems, which consist of processes that produce the molecular orientation “element by element” based on the expansion of the preformed tube within a mould that gives the tubular profile its final shape.
Although there are several patents and documents that describe variants of molecular orientation, invention patent application WO98/13182 is worth mentioning among those patents that describe treatments prior to molecular orientation.
This document describes a continuous work process, from extrusion to the step prior to orientation. The tube, which has been extruded and slightly refrigerated to facilitate cutting thereof, is cut in adequate lengths and introduced in a hot-water tank, at a temperature of approximately 100° C., which acts as a refrigerating means and cools the tube, thus lowering its temperature. The cooling system consists of a water tank, wherein tubes are stored during a certain period of time until being extracted from said tank and used.
The main characteristics of said method reside in the fact that it is based on a continuous work process (the tubes are treated immediately after being extruded and are therefore hot) and that the guillotine cutting system acts on the tubes while these are still hot and in a plastic state. The water tank is fitted with a support for the tubes to be refrigerated at a specific and unique temperature therein, and an axial water current is created by means of pumps, in addition to an oscillating movement to improve thermal transfer.
This system has the following disadvantages:
The facility and heating process of the preformed tube, prior to its molecular orientation, that comprises the object of this invention, solves the problems and inconveniences mentioned in the preceding section, thereby allowing a more efficient and homogeneous adaptation and preparation of the preformed tubes in terms of thickness, the equipment used being much less sophisticated and expensive than that currently used, which substantially reduces costs and processing times, in addition to the cost of said equipment, thereby allowing these products to reach the market at a much more competitive price and with a superior finish quality.
Additionally, it must be pointed out that this facility offers other advantages in terms of:
More specifically, the facility of the invention is comprised of a feeder in which the plastic tubes or tubular profiles are maintained at room temperature and a special oven for air-based dry heating of said tubes, from room temperature to orientation temperature.
The oven, which in itself represents an object of the invention, ensures circumferential homogeneity of the tube in terms of temperature and thickness, independently of whether the tubes are fed in a continuous or discontinuous manner, while the heating facility also represents an object of the invention in itself, and includes the oven and feeder that houses the tubes at room temperature, from which the tubes are fed to the oven in a discontinuous manner.
Although this oven offers the possibility of allowing access from all directions, the preformed tubes shall preferably enter said oven in an axial direction, and for the sake of simplicity, at the same level as when they are heated. The loss of hot air is insignificant, as opposed to the facility of patent WO 98/13182, which does not allow this multiple access and has much larger apertures, wherein the fluid leaks out in the form of water vapour, which is more energetic and problematic.
The oven shall preferably be provided with internal displacement systems, along which the tubes proceed step by step and transversely between rotating supports one by one, towards the exit. The number of steps or supports disposed in the oven shall depend on the desired permanence time of the tubes to be manufactured.
The aforementioned rotating tube supports consist of parallel groups of longitudinal rollers, spaced out and motorized, disposed in such a manner that, while the preformed tube is resting on said rollers, these rotate around their axial axis and, by contact, produce the rotation of the other preformed tubes resting thereupon. This continuous movement guarantees circumferential thermal homogeneity from the first instant and throughout the whole process.
One of the fundamental parts of the oven consists of an internal air convection system, the main constituent elements of which include: powerful fans that move the air at great speed, a deflector system that directs the air flow in the right direction in order to optimize thermal transfer, and a system comprised of probes, controls and elements that enable the creation of areas with different temperatures and parameters with respect to adjacent areas within the enclosure.
This difference represents a substantial improvement with respect to the invention described in the preceding section, as the cold tubes that enter the system at temperatures below that of orientation in their initial positions may be heated and subsequently processed at orientation temperature, in order to ensure homogeneity, thereby reducing total uniform heating process time.
Also in accordance with the invention, the areas of one of the ends of the tubes may be further heated in order to differentiate their temperature with respect to the rest of the tube, for example if the mould produces integrated heads and different orientation conditions are required. This difference in induced longitudinal temperature does not contradict the fundamental fact that this oven is conceived to guarantee a very high and improved thermal homogeneity with respect to the invention described in the preceding section, in terms of temperature distribution in circumferential tube thickness.
Additionally, a blowing system comprised of axial air projectors may be added to the main convection system, which axially introduce the hot air into the preformed tube, thereby increasing thermal performance and transmission along the inner walls of the tube.
On the other hand, the object of the invention also includes the previously described heating system, which takes place in the facility prior to introducing the preformed tube in the mould where it is molecularly bio-oriented.
The heating process consists of the following phases:
Preferably, the preformed tube shall rotate around its axis during the heating process for a certain time interval along a section of the oven, followed by its transverse displacement to another parallel section, in which the rotation and transverse displacement take place consecutively until the preformed tube exits the oven, in order to obtain a homogeneous circumferential temperature and thickness.
Additionally, according to a possible embodiment, the heating process is carried out uniformly with different temperatures in different areas along the length of the preformed tube, particularly at its head.
This heating process is valid for preformed tubes made of polymeric material, both for those with a higher and lower density than the water.
For the purpose of complementing the preceding description and to further explain the characteristics of the invention, a set of drawings in accordance with a preferred embodiment thereof has been included as an integral part of said description, in which the following figures have been represented in an illustrative and unlimitative manner:
A preferred form of embodiment of the facility of the invention is described below which, as may be observed in
As shown in
Each of the rotating supports (3) is fundamentally comprised of parallel groups of longitudinal rollers (20), spaced out and motorized, as shown in
In a complementary manner, the oven (8) may include incoming (4) and outgoing (4′) axial displacement means as represented, for example, in
The transverse displacement means (5, 6) are comprised of a tray (6) and transferring supports (5) fixed to said tray (6), disposed in correspondence with the spaces between the longitudinal rollers (20) and between the transverse rollers (21) for the elevation and transverse displacement of the preformed tubes (11) towards and/or from a rotating support (3).
The oven (8) has a thermally insulated, double-walled metal casing that confines the heated enclosure, with lateral or front and rear accesses for lateral or axial feeding,
Each of the rows of longitudinal rollers (20) of the rotating support (3) discontinuously support the preformed tube (11) to be processed, along two of its planes, as shown in
The preformed tube (11) rotates on the longitudinal rollers (20) that are disposed underneath the line of contact planes of the preformed tube (11). When the tube passes from one rotating support (3) to another, both the tray (6) and transferring supports (5), which are solidary, rise above said plane and sustain the preformed tube (11), then move perpendicularly and back down until the preformed tube (11) rests on another rotating support (3) closer to the exit.
While the preformed tubes (11) are resting on the rotating longitudinal rollers (20), these rotate and are affected by the hot air current (1), as shown in
This hot air current (1) is directed by means of deflectors (2), which direct the fluid in a normal manner towards the preformed tube (11) with a minimum loss of energy, thereby allowing an optimum distribution to achieve maximum thermal homogeneity and heating speed in the actuation quadrant.
In the embodiment represented in
The oven (8) shall also include axial air projectors (16), represented in
The deflectors (2) and fans (10) create semi-static air currents, which differentiate and control the temperatures in the different quadrants. The elements (15) are also disposed in two areas and controlled by the pyrometric detectors (17), in order to achieve the desired regulation.
The preformed tube movement process is represented in
When the tray (6) is disposed at an upper position it moves transversely along the same length as that between the rotating supports (3), in such a manner that these remain suspended over the rotating support (3). The preformed tube (11) that was disposed in the last row of the rotating supports (3) proceeds to the line of outgoing (4′) axial displacement means, as shown in
The tray (6), which is disposed at a lower position, then returns to its initial position by means of a transverse movement until the next operation. From that moment, the longitudinal rollers (20) start rotating and therefore the preformed tubes (11) resting thereupon, continuing with their heating cycle.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/ES2007/070210 | 12/13/2007 | WO | 00 | 10/25/2010 |