For a more complete understanding of the disclosed methods and apparatuses, reference should be made to the embodiments illustrated in greater detail in the accompanying drawings, wherein:
It should be understood that the drawings are not necessarily to scale and that the disclosed embodiments are sometimes illustrated diagrammatically and in partial views. In certain instances, details which are not necessary for an understanding of the disclosed methods and apparatuses or which render other details difficult to perceive may have been omitted. It should be understood, of course, that this disclosure is not limited to the particular embodiments illustrated herein and further that the devices disclosed herein can be used to apply fluids other than stain treatment fluids.
An exemplary applicator or device for applying a stain treatment formulation to fabric or an article of clothing is illustrated in
Turning first to
As best seen in
In general, when a stain, mark or spill is to be treated, the throttle element 15 of the applicator 10 is opened and stain treatment fluid is delivered through the exit orifice 21 (
Turning to
The fluid reservoir is shown at 41 and includes a built-in pump 16 or flexible wall. The indicia 42 makes it clear to the user which direction the fluid will flow when the applicator 10 is moved to the open position. The reservoir 41 is fabricated from a flexible material and includes an open end 43 which receives a restrictive flow element 45 that, with the throttle element 15 forms a valve assembly. Preferably, the reservoir 41 is translucent or clear so the user is aware of how much stain treatment fluid remains in the reservoir 41.
The restrictive flow element 45 and throttle element 15 will be described in greater detail below in connection with
Turning to
Still referring to
However, to close the valve assembly 15/45, the throttle element 15 is rotated thereby rotating the channel 58 of the throttle element 15 out of communication with the connecting channel 59. Thus, in the position shown in
Another valve assembly 15a/45a is illustrated in
Turning to
Thus, at least three types of valve assemblies 15/45, 15a/45a, 15b/77/75/76 are shown and described in detail. A simple cap or cover for the reservoir 41 with a small or restrictive opening will also suffice. The first valve assembly 15/45 includes a rotating throttle element 15 and the second and third types of valve assemblies 15a/45a and 15b/77/75/76 include a throttle element 15a, 15b that moves axially with respect to the restrictive flow element or nozzle 45a, 75. However, other types of valve assemblies will be apparent to those skilled in the art as discussed above in the summary of the disclosure section.
The absorbent material 18 may be obtained from Filtrona Richmond, Inc. of Colonial Heights, Va. (http://www.filtronafibertec.com/BondedFiberComponents/). The fibers themselves may be fabricated from various polyesters, polypropylene, wool, polyolefins, cellulose acetates and other similar materials. Additional information regarding suitable fibers and absorbent pads may be obtained from the manufacturer. Polyester felt material has also been found to be useful and can be attained from a variety of different manufacturers.
The devices 10, 10a can be designed to be disposable or designed to have the reservoirs 41, 41a and/or the absorbent pad rings 33 replaceable.
Multi-purpose fluids are disclosed. Useful compositions are illustrated below in the following tables.
Additional ingredients can be utilized, such as those illustrated in the following table:
Stepanol WA-Extra PCK is 28.95% sodium lauryl sulfate in water. Proxel GXL is a preservative. (EPA Registration No. 10182-30) manufactured by Zeneca AG Products, Inc.
Suitable exemplary formulations include but are not limited to:
Additional examples include:
As the disclosed formulations are preferably for use “on-the-go,” is important to keep residues at a minimum as residues would be visible on darker fabrics. Most nonionic surfactants lead some sort of residue and therefore it is important to keep the nonionic surfactants 3 wt % and preferably below 2 wt % and preferably below 1 wt %. For more powerful cleaning capability, the anionic surfactant amounts can be increased shown above. Citric acid can be used as a pH adjuster and therefore can be used to relatively small amounts, less than 1 wt %.
Preferred multi-use formulations include a combination of surfactants, including a plurality of anionic surfactants. While only one nonionic surfactant as shown above, a plurality of nonionic surfactants may be incorporated as well. Regarding the anionic surfactants, it will be noted that only a single anionic surfactant is necessary but the above combination has proven to be quite effective. In larger quantities, citric acid can be used as a stain removing agent but, in this example, citric acid is used to lower the pH.
The anionic surfactants may be selected from the group consisting of sodium lauryl sulfate, isopropyl amine sulfonate, sodium capryl sulfonate and mixtures thereof. Preferably, the anionic surfactants are provided in the form of a combination of sodium lauryl sulfate, isopropyl amine sulfonate, and sodium capryl sulfonate. Suitable anionic surfactants may further be selected from the group consisting of alkyl sulfates, alkyl ethoxy sulfates (AES) such as NaAES and NH4AES, amine oxides, and mixtures thereof. The alkyl sulfate surfactants may include branched-chain and random C10-C20 alkyl sulfates, and C10-C18 secondary (2,3) alkyl sulfates of the formula CH3(CH2)x(CHOSO3M+)CH3 and CH3(CH2)y(CHOSO3M+)CH2CH3 where x and (y+1) are integers of at least 7, preferably at least 9, and M is a water-solubilizing cation, especially sodium, as well as unsaturated sulfates such as oleyl sulfate. Alkyl ethoxy sulfate (AES) surfactants used herein are conventionally depicted as having the formula R(EO)xSO3Z, wherein R is C10-C16 alkyl, (EO)x is (CH2CH2O)x, x is 1-10 and can include mixtures which are conventionally reported as averages, e.g., (EO)2.5, (EO)6.5 and the like, and Z is a cation such as sodium ammonium or magnesium (MgAES). The C12-C16 alkyl dimethyl amine oxide surfactants can also be used.
Nonionic surfactants should have a HLB value in the range of 9-17 and may include but are not limited to: the ethoxylated octylphenols; ethoxylated fatty alcohols, including the ethoxylated primary fatty alcohols; ethoxylated secondary fatty alcohols; ethoxylated nonylphenols; ethoxylated sorbitan fatty acid esters; sorbitan fatty acid esters; linear ethoxylated ethoxylated alcohols; O—X—O alcohol ethoxylates; and mixtures thereof.
Optional chelating agents include but are not limited to: lactic acid; the salts of ethylenediamine tetraacetic acid (EDTA), such as ethylenediamine tetraacetic acid disodium salt, ethylenediamine tetraacetic acid diammonium salt, ethylenediamine tetraacetic acid trisodium salt, ethylenediamine tetraacetic acid tetrasodium salt, ethylenediamine tetraacetic acid tetrapotassium salt, ethylenediamine tetraacetic acid tetrammonium salt and the like; the salts of diethylenetriaminepentaacetic acid (DTPA), such as diethylenetriaminepentaacetic acid pentapotassium salt and the like; the salts of (N-hydroxyethyl) ethylenediaminetriacetic acid (HEDTA), such as (N-hydroxyethyl) ethylenediaminetriacetic acid trisodium salt, (N-hydroxyethyl) ethylene-diaminetriacetic acid tripotassium salt and the like; the salts of nitrilotriacetic acid (NTA), such as nitrilotriacetic acid trisodium salt, nitrilotriacetic acid tripotassium salt and the like; other chelating agents such as triethanolamine, diethanolamine, monoethanolamine and the like, and mixtures thereof. However, because of its low cost and effectiveness, the preferred chelating agent is citric acid.
To maintain the VOC level below the maximum allowed by certain federal and state regulations, if ethanol is used at all, the ethanol content should not exceed 7.5 wt %. D-limonene can also be used with water instead of or in combination with ethanol. The cumulative amount of anionic surfactants should not exceed 3 wt %. Only small amounts of anionic surfactant are necessary.
Other optional ingredients include limonene and greater amounts of citric acid. Small amounts of a bleaching agent, such as hydrogen peroxide, may also be employed. While the above formulation works well without a chelating agent, chelating agents have been proven to be effective in many formulations and their inclusion is not discouraged.
Aqueous-Formulation for Everyday Stains:
Like the multiple-the use formulation disclosed above, the nonionic surfactant and anionic surfactant can be combinations of various Nonionic and anionic surfactants respectively. Instead of or in addition to ethanol as a solvent, D-limonene can be used as it is excellent cleaning properties. Chelating agents may also be employed.
Aqueous Formulation for Blood, Ink and Greasy Foods:
Again, the primary difference between the above formulation and that for “everyday stains” is the inclusion of the bleaching agent, hydrogen peroxide.
While only certain embodiments have been set forth, alternatives and modifications will be apparent from the above description to those skilled in the art. These and other alternatives are considered equivalents and within the spirit and scope of this disclosure and the appended claims.
This application is based on and claims priority from provisional patent Application No. 60/805,159, filed on Jun. 19, 2006.
Number | Date | Country | |
---|---|---|---|
60805159 | Jun 2006 | US |