The use of electric powered heat pumps to heat domestic water is particularly useful where fossil fuels are either not available or are restricted to meet air pollution standards and/or to meet global warming prevention objectives for heating uses. Furthermore, heating water with a heat pump has a high efficiency compared to electric resistance heating. It is conceivable that heat pump water heating will consume 25% of the electric power of electric resistance heating for the same load.
Conventional heat pump water heaters produce domestic hot water directly from the condenser. From there, water flows into a series of domestic hot water storage tanks. A large volume of water and domestic hot water storage is required due to short cycling of the heat pump compressors. There is a need for a heat pump water heater that negates the need for domestic hot water storage and will provide instantaneous domestic hot water on demand. Domestic hot water storage may be employed, but a large water storage facility is not required.
A typical domestic water heat pump heats the domestic water directly within the condenser of the heat pump. These systems are dead band controlled and the temperature of the heated domestic water fluctuates significantly. The fluctuations in temperature are dampened by insertion of one or more storage tanks in the domestic hot water system downstream of the heat pump.
Non-potable, utility water is circulated by a pump in a closed loop. The utility water is heated by a heat pump. Heat exchange from the utility water heats domestic hot water on demand, eliminating or reducing the need for domestic hot water storage tanks and storage of large quantities of domestic hot water. In the present invention, fluctuations in condenser water temperature are dampened internally in a condenser water buffer and a control system as described herein.
As shown in the drawing figures, an embodiment of the device utilizes three loops in which water is circulated. The first loop is source water supplied to the evaporator 340 of the water-to-water heat pump 140,
Non-potable, utility water is circulated by water pump 130 in a second loop, or condenser water system, which is a closed loop.
In the third loop, domestic potable water external to the heat pump circulation system enters from the building domestic water supply at the domestic potable water inlet and absorbs heat from the double-walled heat exchanger 120 in the embodiment shown. Domestic hot water, heated in the double-walled heat exchanger 120, is instantaneously available for use.
Water-to-water heat pump 140 is an electric powered refrigerant heat pump in the embodiment as shown. The refrigerant used in the heat pump can be R134a, R410a, R514, R1233zd, carbon dioxide, or other (preferably, non-ozone depleting, low global warming potential) refrigerant. As shown in
As shown in
The closed loop condenser water system circulates water through the condenser 320 of the water-to-water heat pump 140, in which heat has been absorbed into the utility water. The heated utility water then flows into the condenser water buffer 100. The condenser water is circulated through double-walled heat exchanger 120 using circulator 130. Domestic potable water flows through the opposite side of the heat exchanger 120, with the domestic hot water system of a building being an example of a third water loop, although it is an open loop in most cases. Heat is exchanged from the circulating condenser water and instantaneously heats the domestic water as it leaves to support the building domestic hot water system.
Domestic hot water loads within a multi-family residential or commercial building vary throughout the day. To meet varying demand, a temperature control loop may control the flow of condenser water through the double-walled heat exchanger 120 by changing the position of valve 170. Valve 170 is a three-way diverting valve with water entering one port and flowing out through two ports proportionate to the flow required to control the temperature of the leaving domestic water as measured by sensor 160. An electronic temperature controller 150 changes the position of the valve by an electronic signal to the valve actuator.
Source water from the building flows through the evaporator 340 and is cooled as it leaves the water-to-water heat pump 140 and returns to the building in the embodiment as shown, which may be downstream of the source outlet. Typically, source water originates from the building cooling water system. Expected water-to-water heat pump Coefficient of Performance (COP) is greater than 3.5. Consequently, this invention allows for simultaneous production of cooled water and heated domestic water heating, which may provide a typical Simultaneous Coefficient of Performance (SCOP) greater than 6.0. The simultaneous cooling of building water may be utilized to supplement building cooling. Producing both hot water for use in baths, kitchens and the like while also producing water for building cooling represents efficient energy usage, and reduces facility energy consumption.
Water exiting the heat pump in the closed loop is not uniform in temperature. In the present invention, fluctuations in utility water temperature may be dampened internally in the condenser water buffer 100 and controller 420. Further, the temperature of the domestic hot water is controlled with a modulating control valve 170 and temperature controller 150 on the flow of utility water to double-walled heat exchanger 120. Domestic hot water supply temperature sensor 160 measures the outlet water temperature and temperature controller 150, through a proportional/integral/derivative control loop, modulates control valve 170 based on instantaneous requirements. The system preferably provides water from the closed loop to heat exchanger 120 having a temperature that is plus or minus 0.5° F.
Buffer 100 acts as a hydraulic and thermal buffer that allows variations in water temperature from heated utility water received from the heat pump 140 to equalize. Buffer 100 is positioned in the closed loop of the utility water system between the heat pump and the heat exchanger 120. In a preferred embodiment, the volume of utility water closed loop, including buffer 100, is no more than 25% of storage tank volume used in a domestic hot water system of conventional heat pump water heaters, in which a heat pump directly heats the domestic hot water, since the buffer is for control of water temperature and not for water storage. The buffer could be defined by piping, such as oversized piping, positioned between the heat pump condenser and the heat exchanger 120. In the present invention, buffer 100 is not required for heat pumps with variable speed compressors.
An expansion tank 110 communicates with the buffer 100 to accommodate thermal expansion of the utility water. A diaphragm or bladder in the expansion tank keeps the pressure in the expansion tank substantially constant.
While the utility water system is defined as a closed loop, provision may be made to add water to the utility water system due to evaporation or other water loss due to operation or otherwise. The operational pressure of the system should be maintained, and water volume in the system is a factor in maintaining operational pressure.
In addition, when the domestic water system pressure is elevated due to the height of the building, the double-walled heat exchanger 120 in this system isolates the lower operating pressure heat pump components from the elevated pressure in the domestic water system. The double walled heat exchanger aids in preventing system leaks. If the interior wall develops a leak, the water enters an area between the walls of the heat exchanger. A weep hole in the second wall allows limited flow from the weep hole, but signals that a leak is present in the heat exchanger, avoiding a catastrophic failure. In a conventional heat pump water heater, the hot water storage tank must be designed for the elevated pressure as well as the condenser water components of the heat pump.
In certain situations, the source water temperature is above the range of operation for the heat pump to function properly. Subassembly 200 cooling loop may be provided to alleviate this problem. An additional circulating pump 210 may be added to the source water piping that provides water to the heat pump evaporator 340. This enables source water to circulate the evaporator heat exchanger independently of the flow of external source water. Temperature controller 240 adjusts the position of control valve 220 to allow source water to return to the cooling water system, thus causing additional flow of source water into the evaporator. The temperature of the water at temperature sensor 230 increases as additional source water from the source is introduced to the evaporator 340, and decreases as less water is returned to the cooling or source water system.
This invention negates the need for domestic hot water storage and provides instantaneous domestic hot water as needed. Domestic hot water storage may be utilized, but is not required. The device can be constructed as a stand-alone appliance that can be inserted into the building water system between the cooling water source (the first loop) and the domestic hot water system (the third loop). In the event that the appliance fails, it can be removed for repair or replacement with another appliance inserted into the system between the cooling water source and the domestic hot water system.
Number | Name | Date | Kind |
---|---|---|---|
7575001 | Kaiser | Aug 2009 | B2 |
10571135 | Kreutzman | Feb 2020 | B2 |
20110289952 | Kim | Dec 2011 | A1 |
20120312042 | Jeong | Dec 2012 | A1 |
20150059379 | Ootani | Mar 2015 | A1 |
20150159960 | Fujitsuka | Jun 2015 | A1 |
20210302084 | Suemitsu | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
101627264 | Jan 2010 | CN |
2005083585 | Mar 2005 | JP |
2005140439 | Jun 2005 | JP |
3811682 | Aug 2006 | JP |
4114930 | Jul 2008 | JP |
4778299 | Sep 2011 | JP |
4839141 | Dec 2011 | JP |
4971838 | Jul 2012 | JP |
5173780 | Apr 2013 | JP |
5215692 | Jun 2013 | JP |
5494703 | May 2014 | JP |
5884042 | Mar 2016 | JP |
101436241 | Aug 2014 | KR |
Number | Date | Country | |
---|---|---|---|
20220373193 A1 | Nov 2022 | US |