The present invention relates to an intraocular lens insertion instrument used to insert an intraocular lens into an aphakic eye after cataract surgery or to an intraocular lens insertion instrument used to insert an intraocular lens to a phakic eye during refractive surgery. More specifically, the present invention relates to a preset intraocular lens insertion instrument wherein a lens has been preset in an injector.
In cataract surgery, there has been widely performed removal of opacified lenses by phacoemulsification (PEA) followed by implantation of intraocular lenses into aphakic eyes. Intraocular lenses are classified into hard intraocular lenses whose optics are made of a hard material such as PMMA and soft intraocular lenses whose optics are made of a flexible material such as silicone elastomer or soft acrylic. Upon use of a hard intraocular lens, the lens needs to be inserted through an incision having been cut in a cornea or sclera in a width approximately the same as the diameter of the optic of the lens. On the other hand, by folding the optic of a soft intraocular lens, the lens can be inserted through an incision smaller than the diameter of the optic. In order to reduce the risk of post-surgery cornea astigmatism or infection, insertion of a lens through a small incision is preferable. Consequently, soft intraocular lenses tend to be preferred. In addition, dedicated injectors having a mechanism to lead a lens to an eye through a slender tube are used in some cases in order to insert lenses into eyes. By using such injectors dedicated to intraocular lens insertion, a lens can be inserted through an incision smaller than 3 mm.
Recently, in order to eliminate the possibility of microbial contamination and operational mishandling at the time of dealing with lenses, preset injectors having lenses preset therein have been available on the market. Some of such preset injectors have a lens holding mechanism and a lens moving mechanism. The lens holding mechanism holds a lens inside of an injector in a state of non-stress on the optic of the lens so that the lens can be changed from a stationary state at the time of shipment to an operable state upon use. The lens moving mechanism moves the lens to a position where the lens can be moved by a push-out mechanism (see Patent Documents 1 and 2, for example).
Nonetheless, the moving mechanism to move the lens from the preset position to the releasable position is complex in the preset injectors described in the above-mentioned Patent Documents 1 and 2, which increases the production cost thereof. Moreover, the possibility of malfunctioning is not eliminated. In order to solve these problems, the inventors of the invention have invented a mechanism whereby a lens can be pushed out as it is at a preset position.
However, even in this mechanism, the lens may stick to the setting section in the case where an intraocular lens has been stored in close contact with a lens setting section of an injector. In this case, the lens is stressed excessively if the lens is pushed out parallel to a surface thereof, and may be damaged or become behaviorally unstable. Specifically, in the case where the lens is made of a soft acrylic material or a silicone material, the lens tends to stick more to the lens setting section. Furthermore, in a combination of the lens made of such a material and polypropylene or polyethylene generally used as a material of disposable injectors, the lens tends to stick even more to the lens setting section.
The present invention has been conceived in view of the above-mentioned problems, and an object of the present invention is therefore to provide an intraocular lens insertion instrument that enables smooth push-out operation of a preset lens.
In order to achieve the object described above, the invention according to a first aspect thereof is an intraocular lens insertion instrument having: a main body comprising a lens setting section for setting an intraocular lens thereon, a transition section for deforming the intraocular lens, and a nozzle piece for discharging the intraocular lens; and a lens push-out mechanism for pushing out the intraocular lens set on the lens setting section, characterized in that the instrument further comprises a releasing means for releasing the intraocular lens pushed by the lens push-out mechanism from the lens setting section.
The invention according to a second aspect thereof is characterized in that the releasing means has a posture holding mount for holding the lens with a forward tilt relative to an axial line of lens movement.
The invention according to a third aspect thereof is characterized in that the posture holding mount has a passage through which the lens push-out mechanism passes.
The invention according to a fourth aspect thereof is characterized in that the lens push-out mechanism has a scooping surface for scooping the lens.
According to the intraocular lens insertion instrument as the first aspect of the invention, the presence of the releasing means enables the lens in close contact with the lens setting section to be released from the lens setting section when the lens push-out mechanism pushes the lens. Therefore, the lens can be pushed out smoothly, and damage to the lens and unstable behavior of the lens can be prevented.
According to the intraocular lens insertion instrument as the second aspect of the present invention, the presence of the posture holding mount enables the lens to be held with the forward tilt relative to the axial line of lens movement. Therefore, when the lens push-out mechanism pushes the lens, the rear end of the lens is lifted, enabling air to move in between the lens and the lens setting section. In this manner, the lens can be released from the lens setting section and pushed out smoothly.
According to the intraocular lens insertion instrument as the third aspect of the present invention, the presence of the passage prevents the posture holding mount from hindering movement of the lens push-out mechanism at the time the lens push-out mechanism pushes the lens out. Therefore, the lens can be pushed out more smoothly.
According to the intraocular lens insertion instrument as the fourth aspect of the present invention, scooping the rear end of the lens by the scooping surface at the time of lens push-out enables air to move in between the lens and the lens setting section. Consequently, the lens is released from the lens setting section and can be pushed out more smoothly.
Hereinafter, a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
An intraocular lens insertion instrument 1 shown in
The main body 3 comprises a tubular proximal member 5 and a distal member 6 whose tapered end is relatively narrower than the proximal member 5. The proximal member 5 and the distal member 6 are united with each other in a detachable manner in an engagement section 7. Various materials can be used for the main body 3. For example, not only a metal such as stainless steel or titanium but also a synthetic resin or the like can be used for the main body 3.
The proximal member 5 has a lens setting section 8 at one end thereof and a slit 9 formed in a tubular sidewall thereof along a longitudinal direction thereof. Engagement projections 10 to engage with a grip unit that will be described later are formed on an outer periphery surface of the proximal member 5. The slit 9 is formed between an edge of the one end and a substantial center of the proximal member 5.
The intraocular lens insertion instrument 1 has a releasing means 11 as shown in
The releasing means 11 releases the lens 2 from the lens setting section 8 by pushing forward the lens 2 stored on the lens setting section 8 with a forward tilt. The releasing means 11 comprises the lens push-out mechanism 4 and a posture holding mount 12 for holding the lens 2 on the lens setting section 8 with the forward tilt.
The lens setting section 8 comprises a setting section body 13 protruding from the one end of the proximal member 5, the posture holding mount 12 formed on an upper surface of the section body 13, and sidewalls 14 formed outside the posture holding mount 12. The setting section body 13 is made of a plate member whose surface is smooth and parallel to an axial line A of lens movement so that the lens 2 set thereon can be held stably.
The posture holding mount 12 is configured so as to hold the lens 2 with the forward tilt. On an upper surface of the posture holding mount 12, the mount 12 has slopes 12a inclined downward toward the distal end of the lens setting section 8. A passage 15 through which the lens push-out mechanism 4 passes is also provided in the center of the posture holding mount 12. The passage 15 comprises an elongated groove that is parallel to the axial line A of lens movement.
The sidewalls 14 are formed so that the center of the lens 2 can align with the axial line A of lens movement. The sidewalls 14 can also prevent the lens 2 from falling sideways when the lens 2 is placed on the lens setting section 8. Therefore, assembling the instrument becomes easy. The sidewalls 14 are made of plate members that protrude from both sides of the setting section body 13 and are elongated along a longitudinal direction of the body 13.
The distal member 6 comprises a nozzle piece 21 for inserting the lens 2 set on the lens setting section 8 into an eye, and a transition section 22 that connects the nozzle piece 21 with the proximal member 5. The transition section 22 is substantially funnel-shaped, tapering toward the distal end thereof, and connects the nozzle piece 21 at the distal end. The nozzle piece 21 is formed in such a size that an outside diameter thereof enables insertion thereof into an incision. The lens 2 is folded while passing through the transition section 22 by being pushed by the lens push-out mechanism 4. The distal member 6 also has a stopper 23 for stopping a hereinafter-described slider, at a predetermined position. The stopper 23 comprises projections that lock a hereinafter-described handling element of the slider.
As shown in
The plunger 26 is to insert the lens 2 folded by the slider 25 into an eye, and comprises a push rod 27 for pushing out the lens 2 and the grip unit 28 located at the proximal end of the push rod 27. The push rod 27 is loosely fitted into a hole 29 formed in the grip unit 28, and pivotally supported by the grip unit 28 at the bottom of the hole 29. A female screw 29a is formed in the hole 29. The female screw 29a formed in the grip unit 28 is to be screwed together with the engagement projections 10. The engagement projections 10 are made up of portions of a male screw that is to be screwed into the female screw 29a. Forming the engagement projections 10 as the male screw portions enables not only preventing of the engagement projections 10 from interfering with the slit 9 or the like but also secure screwing into the female screw 29a for pushing in the grip unit. The grip unit 28 thus pushes the push rod 27 along the axial line A of lens movement. The grip unit 28 is formed into a shape that enables easy push of the plunger 26.
As shown in
The lens contact area 31 is formed by an arc whose curvature radius is substantially the same as that of the outside diameter of the lens 2. The form of the lens contact area 31 enables smooth execution of the initial operation without locally stressing the lens 2, by contacting the lens 2 in a larger area.
The lens contact area 31 also has a scooping surface 31a. The scooping surface 31a enables scooping of the rear end of the lens 2 set on the lens setting section 8. The scooping surface 31a is shaped into a downward slope toward the distal end thereof. By having the sloped shape, the scooping surface 31a can gradually scoop up the lens 2, which enables more secure release of the lens 2.
As shown in
Alternatively, the scooping surface 31a may be formed to have a wedge-like shape, as shown in
The guide groove 32 is formed so as to allow the plunger 26 to slide thereon, and to allow the distal end of the plunger 26 to protrude from the lens contact area 31. The guide groove 32 is formed substantially in the center of one surface of the slider 25 over the entire length thereof, and comprises a groove that is parallel to the axial line A of lens movement. A cross section of the guide groove 32 is formed substantially in the same shape as the contour of the plunger 26. A fan-shaped leading passage 21a is formed at the proximal end of the guide groove 32. Thus, the push rod 27 is inserted through the guide groove 32 formed in the slider 25, and slides within the guide groove 32 in a longitudinal direction of the slider 25. Alternatively, the guide groove 32 may be a hole that pierces parallel to the axial line A of lens movement.
The slider body 30 enables the slider 25 to be held substantially in the center of the main body 3 while enabling the slider 25 to move along the axial line A of lens movement, by engaging with the slit 9. Therefore, the plunger 26 is held in the center of the main body 3, and movable along the axial line A of lens movement due to the presence of the guide groove 32. The handling element 33 enables easy movement of the slider 25.
The looped-member guide 34 is formed on another surface of the slider 25 on which the guide groove 32 is not formed. The looped-element guide 34 fixes the lens 2 by catching one of the looped haptic elements 2b. The looped-member guide 34 is formed by a groove similar to the curvature of the looped haptic elements 2b. The looped-member guide 34 is formed in the curvature on the side of the distal end of the slider 25 so as not to physically stress the looped haptic elements 2b.
As shown in
Procedures of assembling the intraocular lens insertion instrument 1 of the above configuration will be described next. The slider 25 is firstly attached to the proximal member 5. In order to join the slider 25 and the proximal member 5, the slider body 30 is engaged with the slit 9 from the one end of the proximal member 5, and the slider 25 is pushed in to the proximal end of the slit 9. The plunger 26 is then inserted from the other end of the proximal member 5. At this time, the distal end of the plunger 26 is aligned with a position where the distal end does not project beyond the distal end of the slider 25 having been set in the proximal member 5. Thereafter, as shown in
Operation of the above configuration will be described next. The lens 2 has been set on the lens setting section 8 for some time, and in close contact with the lens setting section 8. Firstly, an operator holds the handling element 33 and pushes the slider 25 forward. When the slider 25 is pushed forward, the lens contact area 31 touches the lens 2. When the operator pushes the slider 25 forward in a state where the lens 2 is in contact with the lens contact area 31, the rear of the lens 2 is lifted since the lens 2 is held with the forward tilt. When the rear of the lens 2 is lifted, air comes in between the lens 2 and the lens setting section 8, releasing the lens 2 having been in close contact with the lens setting section 8 from the lens setting section 8. By pushing the slider 25 until the slider 25 hits the stopper that is not shown in
When the slider 25 hits the stopper 23 and stops, the operator pushes the plunger 26. In order to push the plunger 26, the operator pushes the grip unit 28 to cause the female screw 29a to engage with the engagement projections 10 by screwing. Thereafter, the operator turns the grip unit 28. While being turned, the grip unit 28 moves from the proximal end of the proximal member 5 in a direction of the axial line A of lens movement. When the grip unit 28 is moved from the proximal end in the direction of the axial line A, the push rod 27 moves in the direction of the axial line A by being pushed by the grip unit 28, while pushing the plunger 26. In this manner, the lens 2 is folded while passing through the narrow nozzle piece 21 by being pushed by the plunger 26. By pushing the plunger 26 further in a state where the lens 2 is folded in such a manner, the lens 2 is inserted into an eye.
As has been described above, according to this embodiment, the intraocular lens insertion instrument 1 has the releasing means 11 for releasing the lens 2 pushed by the lens push-out mechanism 4 from the lens setting section 8. Therefore, the lens 2 in close contact with the lens setting section 8 can be released from the lens setting section 8 when the lens push-out mechanism 4 pushes the lens 2. Consequently, the lens 2 can be pushed out smoothly, which prevents damage to the lens 2 as well as unstable behavior of the lens 2.
Moreover, the releasing means 11 has the posture holding mount 12 for holding the lens 2 with the forward tilt along the direction of the axial line A of lens movement. Therefore, when the lens push-out mechanism 4 pushes the lens 2, the rear end of the lens 2 is lifted, allowing air to come in between the lens 2 and the lens setting section 8. In this manner, the lens 2 can be released from the lens setting section 8 and pushed out smoothly.
Since the posture holding mount 12 has the passage 15 through which the lens push-out mechanism 4 passes, the posture holding mount 12 does not hinder the movement of the lens push-out mechanism 4 when the lens push-out mechanism 4 pushes out the lens 2. Therefore, the lens 2 can be pushed out more smoothly.
Furthermore, the lens push-out mechanism 4 has the scooping surface 31a for scooping the lens 2. Therefore, when the lens 2 is pushed out, the scooping surface 31a scoops the rear end of the lens 2, allowing air to come in between the lens 2 and the lens setting section 8. Consequently, the lens 2 can be released from the lens setting section 8 and pushed out smoothly.
In addition, the posture holding mount 12 is configured to support the both sides of the lens 2. Therefore, even in the case where the lens 2 has been stored for a long time, deformation of the optic 2a can be prevented.
Since the posture holding mount 12 holds the lens 2 with the forward tilt, the looped haptic element 2b at the rear of the lens 2 can be placed above the lens push-out mechanism 4. Therefore, damage to the looped haptic elements 2b associated with the movement of the lens push-out mechanism 4 can be prevented.
Moreover, the lens setting section 8 has the sidewalls 14. Therefore, the lens 2 can be set easily at the center of the lens setting section 8. Consequently, the center of the lens 2 agrees with the axial line A of lens movement, which enables smoother push-out of the lens 2.
In a state of non-use, the lens 2 is in close contact with the lens setting section 8. Therefore, the lens 2 can be held safely and securely even in the case where the looped haptic element 2b is not caught by the looped-element guide 34 of the slider 25.
The present invention is not limited to the embodiment described above, and various modifications can be made thereto within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2005-354968 | Dec 2005 | JP | national |
This application is a continuation of U.S. application Ser. No. 12/095,172, filed May 28, 2008 now U.S. Pat. No. 8,523,941, which was the U.S. national phase under 35 U.S.C. §371 of PCT International Application No. PCT/JP2006/324054, which has an International filing date of Dec. 1, 2006, and claims the benefit of Japanese Application No. 2005-354968, filed Dec. 8, 2005, each of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2761446 | Reed | Sep 1956 | A |
4205747 | Gilliam et al. | Jun 1980 | A |
4269307 | LaHaye | May 1981 | A |
4423809 | Mazzocco | Jan 1984 | A |
4573998 | Mazzocco | Mar 1986 | A |
4608049 | Kelman | Aug 1986 | A |
4634423 | Bailey | Jan 1987 | A |
4681102 | Bartell | Jul 1987 | A |
4697697 | Graham et al. | Oct 1987 | A |
4699140 | Holmes | Oct 1987 | A |
4702244 | Mazzocco | Oct 1987 | A |
4715373 | Mazzocco et al. | Dec 1987 | A |
4747404 | Jampel et al. | May 1988 | A |
4750498 | Graham | Jun 1988 | A |
4759359 | Willis et al. | Jul 1988 | A |
4763650 | Hauser | Aug 1988 | A |
4765329 | Cumming et al. | Aug 1988 | A |
4769034 | Poley | Sep 1988 | A |
4781719 | Kelman | Nov 1988 | A |
4787904 | Severin | Nov 1988 | A |
4810249 | Haber et al. | Mar 1989 | A |
4819631 | Poley | Apr 1989 | A |
4834094 | Patton | May 1989 | A |
4836201 | Patton | Jun 1989 | A |
4862885 | Cumming | Sep 1989 | A |
4880000 | Holmes et al. | Nov 1989 | A |
4919130 | Stoy et al. | Apr 1990 | A |
4934363 | Smith et al. | Jun 1990 | A |
4955889 | Van Gent | Sep 1990 | A |
4976716 | Cumming | Dec 1990 | A |
4988352 | Poley | Jan 1991 | A |
4994028 | Leonard et al. | Feb 1991 | A |
5066297 | Cumming | Nov 1991 | A |
5098439 | Hill et al. | Mar 1992 | A |
5123905 | Kelman | Jun 1992 | A |
5139501 | Klaas | Aug 1992 | A |
5171241 | Buboltz et al. | Dec 1992 | A |
5176686 | Poley | Jan 1993 | A |
5190552 | Kelman | Mar 1993 | A |
5190553 | Kanert et al. | Mar 1993 | A |
5222972 | Hill et al. | Jun 1993 | A |
5242450 | McDonald | Sep 1993 | A |
5259395 | Li | Nov 1993 | A |
5275604 | Rheinish et al. | Jan 1994 | A |
5281227 | Sussman | Jan 1994 | A |
5304182 | Rheinish et al. | Apr 1994 | A |
5354333 | Kammann et al. | Oct 1994 | A |
5395378 | McDonald | Mar 1995 | A |
5425734 | Blake | Jun 1995 | A |
5454818 | Hambleton et al. | Oct 1995 | A |
5468246 | Blake | Nov 1995 | A |
5474562 | Orchowski et al. | Dec 1995 | A |
5494484 | Feingold | Feb 1996 | A |
5496328 | Nakajima et al. | Mar 1996 | A |
5499987 | Feingold | Mar 1996 | A |
5562676 | Brady et al. | Oct 1996 | A |
5571113 | McDonald | Nov 1996 | A |
5578042 | Cumming | Nov 1996 | A |
5582613 | Brady | Dec 1996 | A |
5582614 | Feingold | Dec 1996 | A |
5584304 | Brady | Dec 1996 | A |
5616148 | Eagles et al. | Apr 1997 | A |
5620450 | Eagles et al. | Apr 1997 | A |
5643275 | Blake | Jul 1997 | A |
5643276 | Zaleski | Jul 1997 | A |
5645534 | Chanoch | Jul 1997 | A |
5653715 | Reich et al. | Aug 1997 | A |
5653753 | Brady et al. | Aug 1997 | A |
5702402 | Brady | Dec 1997 | A |
5702441 | Zhou | Dec 1997 | A |
5716364 | Makker et al. | Feb 1998 | A |
5728075 | Levander | Mar 1998 | A |
5728102 | Feingold et al. | Mar 1998 | A |
5735858 | Makker et al. | Apr 1998 | A |
5766181 | Chambers et al. | Jun 1998 | A |
5772666 | Feingold et al. | Jun 1998 | A |
5772667 | Blake | Jun 1998 | A |
5776138 | Vidal et al. | Jul 1998 | A |
5800442 | Wolf et al. | Sep 1998 | A |
5803925 | Yang et al. | Sep 1998 | A |
5807400 | Chambers et al. | Sep 1998 | A |
5810833 | Brady et al. | Sep 1998 | A |
5810834 | Heyman | Sep 1998 | A |
5860984 | Chambers et al. | Jan 1999 | A |
5860986 | Reich et al. | Jan 1999 | A |
5868751 | Feingold | Feb 1999 | A |
5868752 | Makker et al. | Feb 1999 | A |
5873879 | Figueroa et al. | Feb 1999 | A |
5876406 | Wolf et al. | Mar 1999 | A |
5876407 | Makker et al. | Mar 1999 | A |
5876440 | Feingold | Mar 1999 | A |
5891152 | Feingold | Apr 1999 | A |
5902307 | Feingold et al. | May 1999 | A |
5919197 | McDonald | Jul 1999 | A |
5921989 | Deacon et al. | Jul 1999 | A |
5928245 | Wolf et al. | Jul 1999 | A |
5941886 | Feingold | Aug 1999 | A |
5942277 | Makker et al. | Aug 1999 | A |
5944725 | Cicenas | Aug 1999 | A |
5947974 | Brady et al. | Sep 1999 | A |
5947975 | Kikuchi et al. | Sep 1999 | A |
5957748 | Ichiha | Sep 1999 | A |
5957896 | Bendek et al. | Sep 1999 | A |
6001107 | Feingold | Dec 1999 | A |
6010510 | Brown et al. | Jan 2000 | A |
6022358 | Wolf et al. | Feb 2000 | A |
6048348 | Chambers et al. | Apr 2000 | A |
6051000 | Heyman | Apr 2000 | A |
6056757 | Feingold et al. | May 2000 | A |
6056758 | Vidal et al. | May 2000 | A |
6059791 | Chambers | May 2000 | A |
6074397 | Chambers et al. | Jun 2000 | A |
6083230 | Makker et al. | Jul 2000 | A |
6093193 | Makker et al. | Jul 2000 | A |
6129733 | Brady et al. | Oct 2000 | A |
6142999 | Brady et al. | Nov 2000 | A |
6143000 | Feingold | Nov 2000 | A |
6162229 | Feingold et al. | Dec 2000 | A |
6174315 | Chambers et al. | Jan 2001 | B1 |
6214015 | Reich et al. | Apr 2001 | B1 |
6241737 | Feingold | Jun 2001 | B1 |
6248111 | Glick et al. | Jun 2001 | B1 |
6251114 | Farmer et al. | Jun 2001 | B1 |
6254607 | Makker et al. | Jul 2001 | B1 |
6267768 | Deacon | Jul 2001 | B1 |
6283975 | Glick et al. | Sep 2001 | B1 |
6283976 | Portney | Sep 2001 | B1 |
6312433 | Butts | Nov 2001 | B1 |
6334862 | Vidal et al. | Jan 2002 | B1 |
6336932 | Figueroa et al. | Jan 2002 | B1 |
6355046 | Kikuchi et al. | Mar 2002 | B2 |
6371960 | Heyman et al. | Apr 2002 | B2 |
6386357 | Egawa | May 2002 | B1 |
6387101 | Butts et al. | May 2002 | B1 |
6398788 | Makker et al. | Jun 2002 | B1 |
6406481 | Feingold et al. | Jun 2002 | B2 |
6428545 | Portney | Aug 2002 | B2 |
6447519 | Brady et al. | Sep 2002 | B1 |
6447520 | Ott et al. | Sep 2002 | B1 |
6468282 | Kikuchi et al. | Oct 2002 | B2 |
6471708 | Green | Oct 2002 | B2 |
6491697 | Clark et al. | Dec 2002 | B1 |
6497708 | Cumming | Dec 2002 | B1 |
6500181 | Portney | Dec 2002 | B1 |
6506195 | Chambers et al. | Jan 2003 | B2 |
6537283 | Van Noy | Mar 2003 | B2 |
6540754 | Brady | Apr 2003 | B2 |
6554839 | Brady | Apr 2003 | B2 |
6558395 | Hjertman et al. | May 2003 | B2 |
6607537 | Binder | Aug 2003 | B1 |
6629979 | Feingold | Oct 2003 | B1 |
6666871 | Kikuchi et al. | Dec 2003 | B2 |
6679891 | Makker et al. | Jan 2004 | B2 |
6685740 | Figueroa et al. | Feb 2004 | B2 |
6712848 | Wolf et al. | Mar 2004 | B1 |
6723104 | Ott | Apr 2004 | B2 |
6733507 | McNicholas et al. | May 2004 | B2 |
6793674 | Zapata | Sep 2004 | B2 |
6858033 | Kobayashi | Feb 2005 | B2 |
6921405 | Feingold et al. | Jul 2005 | B2 |
6923815 | Brady et al. | Aug 2005 | B2 |
6976989 | Vincent | Dec 2005 | B1 |
7014641 | Kobayashi et al. | Mar 2006 | B2 |
7025782 | Kobayashi et al. | Apr 2006 | B2 |
7033366 | Brady | Apr 2006 | B2 |
7037312 | Kikuchi et al. | May 2006 | B2 |
7074227 | Portney | Jul 2006 | B2 |
7097649 | Meyer | Aug 2006 | B2 |
7131976 | Kobayashi et al. | Nov 2006 | B2 |
7156854 | Brown et al. | Jan 2007 | B2 |
7348038 | Makker et al. | Mar 2008 | B2 |
7422604 | Vaquero et al. | Sep 2008 | B2 |
7429263 | Vaquero et al. | Sep 2008 | B2 |
7458976 | Peterson et al. | Dec 2008 | B2 |
7476230 | Ohno et al. | Jan 2009 | B2 |
7494505 | Kappelhof et al. | Feb 2009 | B2 |
7645300 | Tsai | Jan 2010 | B2 |
8273122 | Anderson | Sep 2012 | B2 |
8382769 | Inoue | Feb 2013 | B2 |
8460311 | Ishii | Jun 2013 | B2 |
8470032 | Inoue et al. | Jun 2013 | B2 |
8475528 | Ichinohe et al. | Jul 2013 | B2 |
8523877 | Ichinohe et al. | Sep 2013 | B2 |
8523941 | Ichinohe et al. | Sep 2013 | B2 |
8535375 | Ichinohe et al. | Sep 2013 | B2 |
8545512 | Ichinohe et al. | Oct 2013 | B2 |
8574239 | Ichinohe et al. | Nov 2013 | B2 |
8603103 | Kudo et al. | Dec 2013 | B2 |
8647382 | Kudo et al. | Feb 2014 | B2 |
8702795 | Shoji et al. | Apr 2014 | B2 |
8747465 | Someya et al. | Jun 2014 | B2 |
20010007942 | Kikuchi et al. | Jul 2001 | A1 |
20020103490 | Brady | Aug 2002 | A1 |
20020151904 | Feingold et al. | Oct 2002 | A1 |
20020165610 | Wadlaock | Nov 2002 | A1 |
20020193805 | Ott et al. | Dec 2002 | A1 |
20030036765 | Van Noy | Feb 2003 | A1 |
20030040755 | Meyer | Feb 2003 | A1 |
20030050647 | Brady | Mar 2003 | A1 |
20030088253 | Seil | May 2003 | A1 |
20030139749 | Kikuchi et al. | Jul 2003 | A1 |
20030181921 | Jeannin | Sep 2003 | A1 |
20030195522 | McNicholas | Oct 2003 | A1 |
20030212406 | Kobayashi et al. | Nov 2003 | A1 |
20030212407 | Kikuchi | Nov 2003 | A1 |
20030212409 | Kobayashi et al. | Nov 2003 | A1 |
20040111094 | Meyer | Jun 2004 | A1 |
20040117012 | Vincent | Jun 2004 | A1 |
20040127911 | Figueroa | Jul 2004 | A1 |
20040186428 | Ray | Sep 2004 | A1 |
20040238392 | Peterson et al. | Dec 2004 | A1 |
20040243141 | Brown et al. | Dec 2004 | A1 |
20050033308 | Callahan et al. | Feb 2005 | A1 |
20050049605 | Vaquero et al. | Mar 2005 | A1 |
20050049606 | Vaquero et al. | Mar 2005 | A1 |
20050055011 | Enggaard | Mar 2005 | A1 |
20050125000 | Tourrette et al. | Jun 2005 | A1 |
20050143750 | Vaquero | Jun 2005 | A1 |
20050182419 | Tsai | Aug 2005 | A1 |
20050222578 | Vaquero | Oct 2005 | A1 |
20050261703 | Feingold et al. | Nov 2005 | A1 |
20060085013 | Dusek | Apr 2006 | A1 |
20060142781 | Pynson et al. | Jun 2006 | A1 |
20060167466 | Dusek | Jul 2006 | A1 |
20060229633 | Shepherd | Oct 2006 | A1 |
20060235429 | Lee et al. | Oct 2006 | A1 |
20060293694 | Futamura | Dec 2006 | A1 |
20080033449 | Cole et al. | Feb 2008 | A1 |
20080058830 | Cole et al. | Mar 2008 | A1 |
20080086146 | Ishii et al. | Apr 2008 | A1 |
20080097459 | Kammerlander et al. | Apr 2008 | A1 |
20080221584 | Downer | Sep 2008 | A1 |
20090036898 | Ichinohe | Feb 2009 | A1 |
20090043313 | Ichinohe | Feb 2009 | A1 |
20090112223 | Downer et al. | Apr 2009 | A1 |
20090125034 | Pynson | May 2009 | A1 |
20090138022 | Tu et al. | May 2009 | A1 |
20090204122 | Ichinohe et al. | Aug 2009 | A1 |
20090216244 | Pynson | Aug 2009 | A1 |
20090248031 | Ichinohe | Oct 2009 | A1 |
20100161049 | Inoue | Jun 2010 | A1 |
20100185206 | Ichinohe et al. | Jul 2010 | A1 |
20100217273 | Someya et al. | Aug 2010 | A1 |
20100286704 | Ichinohe et al. | Nov 2010 | A1 |
20100331808 | Py et al. | Dec 2010 | A1 |
20110082463 | Inoue | Apr 2011 | A1 |
20110098717 | Inoue | Apr 2011 | A1 |
20110264101 | Inoue et al. | Oct 2011 | A1 |
20110270264 | Shoji et al. | Nov 2011 | A1 |
20110288557 | Kudo et al. | Nov 2011 | A1 |
20120022549 | Someya et al. | Jan 2012 | A1 |
20120071887 | Ichinohe et al. | Mar 2012 | A1 |
20130006259 | Sanger | Jan 2013 | A1 |
20130018460 | Anderson | Jan 2013 | A1 |
20130226193 | Kudo et al. | Aug 2013 | A1 |
20130245635 | Inoue | Sep 2013 | A1 |
20140081284 | Ichinohe et al. | Mar 2014 | A1 |
20140114323 | Kudo et al. | Apr 2014 | A1 |
Number | Date | Country |
---|---|---|
3610925 | Oct 1987 | DE |
4110278 | Oct 1992 | DE |
0363213 | Apr 1990 | EP |
0727966 | Sep 2003 | EP |
1360945 | Nov 2003 | EP |
1832247 | Sep 2007 | EP |
1338254 | Dec 2008 | EP |
2749752 | Dec 1997 | FR |
63-197453 | Aug 1988 | JP |
4-212350 | Aug 1992 | JP |
5-103808 | Apr 1993 | JP |
5-103809 | Apr 1993 | JP |
8-024282 | Jan 1996 | JP |
8-505540 | Jun 1996 | JP |
9-506285 | Jun 1997 | JP |
11-113939 | Apr 1999 | JP |
11-506357 | Jun 1999 | JP |
2000-516487 | Dec 2000 | JP |
2000-516488 | Dec 2000 | JP |
2001-502563 | Feb 2001 | JP |
2001-104347 | Apr 2001 | JP |
2002-516709 | Jun 2002 | JP |
2002-355268 | Dec 2002 | JP |
2002-541912 | Dec 2002 | JP |
2003-144480 | May 2003 | JP |
3412106 | Jun 2003 | JP |
2003-210498 | Jul 2003 | JP |
2003-325569 | Nov 2003 | JP |
2003-325570 | Nov 2003 | JP |
2003-325572 | Nov 2003 | JP |
2004-024854 | Jan 2004 | JP |
2004-188194 | Jul 2004 | JP |
2004-351196 | Dec 2004 | JP |
2006-181269 | Jul 2006 | JP |
2006-297146 | Nov 2006 | JP |
2006-333924 | Dec 2006 | JP |
2006-333981 | Dec 2006 | JP |
2007-503872 | Mar 2007 | JP |
2007-152010 | Jun 2007 | JP |
2007-181604 | Jul 2007 | JP |
2007-526091 | Sep 2007 | JP |
2008-521535 | Jun 2008 | JP |
2008-212689 | Sep 2008 | JP |
WO9407436 | Apr 1994 | WO |
WO9513022 | May 1995 | WO |
WO9628122 | Sep 1996 | WO |
WO9715253 | May 1997 | WO |
WO9812969 | Apr 1998 | WO |
WO9958086 | Nov 1999 | WO |
WO9959668 | Nov 1999 | WO |
WO0045746 | Aug 2000 | WO |
WO0062712 | Oct 2000 | WO |
WO02071982 | Sep 2002 | WO |
WO02096322 | Dec 2002 | WO |
WO2005023154 | Mar 2005 | WO |
WO2005070341 | Aug 2005 | WO |
WO2005084588 | Sep 2005 | WO |
WO2006070628 | Jul 2006 | WO |
WO2006080191 | Aug 2006 | WO |
WO2006090531 | Aug 2006 | WO |
WO2007037223 | Apr 2007 | WO |
WO2007097221 | Apr 2007 | WO |
WO2007080869 | Jul 2007 | WO |
WO2008149794 | Dec 2008 | WO |
WO2008149795 | Dec 2008 | WO |
WO2009058929 | Jul 2009 | WO |
WO2009148091 | Dec 2009 | WO |
WO2011126144 | Oct 2011 | WO |
WO2011155636 | Dec 2011 | WO |
Entry |
---|
EPO Extended Search Report dated May 15, 2014 for EP App. Ser. No. 06823533.2. |
Number | Date | Country | |
---|---|---|---|
20140107660 A1 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12095172 | US | |
Child | 14011018 | US |