Instrument for inserting intraocular lens

Information

  • Patent Grant
  • 8523941
  • Patent Number
    8,523,941
  • Date Filed
    Friday, December 1, 2006
    18 years ago
  • Date Issued
    Tuesday, September 3, 2013
    11 years ago
Abstract
An intraocular lens insertion instrument capable of smoothly pushing out a preset lens is provided. An intraocular lens insertion instrument comprises: a main body including a lens setting section on which a lens is set, a transition section that deforms the lens, and a nozzle piece that releases the lens; and a lens push-out mechanism that pushes out the lens set on the lens setting section. The instrument further includes a releasing means for releasing the lens pushed by the lens push-out mechanism from the lens setting section. The releasing means has a posture holding mount that holds the lens with a forward tilt relative to an axial line of lens movement. The posture holding mount has a passage through which the lens push-out mechanism passes.
Description
CROSS-REFERENCE TO PRIOR APPLICATIONS

This is a U.S. national phase application under 35 U.S.C. ยง371 of International Patent Application No. PCT/JP2006/324054, filed Dec. 1, 2006, and claims the benefit of Japanese Application No. 2005-354968, filed Dec. 8, 2005, both of which are incorporated by reference herein. The International Application was published in Japanese on Jun. 14, 2007 as International Publication No. WO 2007/066586 A1 under PCT Article 21(2).


TECHNICAL FIELD

The present invention relates to an intraocular lens insertion instrument used to insert an intraocular lens into an aphakic eye after cataract surgery or to an intraocular lens insertion instrument used to insert an intraocular lens to a phakic eye during refractive surgery. More specifically, the present invention relates to a preset intraocular lens insertion instrument wherein a lens has been preset in an injector.


BACKGROUND ART

In cataract surgery, there has been widely performed removal of opacified lenses by phacoemulsification (PEA) followed by implantation of intraocular lenses into aphakic eyes. Intraocular lenses are classified into hard intraocular lenses whose optics are made of a hard material such as PMMA and soft intraocular lenses whose optics are made of a flexible material such as silicone elastomer or soft acrylic. Upon use of a hard intraocular lens, the lens needs to be inserted through an incision having been cut in a cornea or sclera in a width approximately the same as the diameter of the optic of the lens. On the other hand, by folding the optic of a soft intraocular lens, the lens can be inserted through an incision smaller than the diameter of the optic. In order to reduce the risk of post-surgery corneal astigmatism or infection, insertion of a lens through a small incision is preferable. Consequently, soft intraocular lenses tend to be preferred. In addition, dedicated injectors having a mechanism to lead a lens to an eye through a slender tube are used in some cases in order to insert lenses into eyes. By using such injectors dedicated to intraocular lens insertion, a lens can be inserted through an incision smaller than 3 mm.


Recently, in order to eliminate the possibility of microbial contamination and operational mishandling at the time of dealing with lenses, preset injectors having lenses preset therein have been available on the market. Some of such preset injectors have a lens holding mechanism and a lens moving mechanism. The lens holding mechanism holds a lens inside of an injector in a state of non-stress on the optic of the lens so that the lens can be changed from a stationary state at the time of shipment to an operable state upon use. The lens moving mechanism moves the lens to a position where the lens can be moved by a push-out mechanism (see Patent Documents 1 and 2, for example).

  • Patent Document 1: Japanese Patent Application Laid-Open (JP-A) Publication No. 2003-325570
  • Patent Document 2: JP-A No. 2003-325572


DISCLOSURE OF INVENTION
Problems to be Solved by the Invention

Nonetheless, the moving mechanism to move the lens from the preset position to the releasable position is complex in the preset injectors described in the above-mentioned Patent Documents 1 and 2, which increases the production cost thereof. Moreover, the possibility of malfunctioning is not eliminated. In order to solve these problems, the inventors of the invention have invented a mechanism whereby a lens can be pushed out as it is at a preset position.


However, even in this mechanism, the lens may stick to the setting section in the case where an intraocular lens has been stored in close contact with a lens setting section of an injector. In this case, the lens is stressed excessively if the lens is pushed out parallel to a surface thereof, and may be damaged or become behaviorally unstable. Specifically, in the case where the lens is made of a soft acrylic material or a silicone material, the lens tends to stick more to the lens setting section. Furthermore, in a combination of the lens made of such a material and polypropylene or polyethylene generally used as a material of disposable injectors, the lens tends to stick even more to the lens setting section.


The present invention has been conceived in view of the above-mentioned problems, and an object of the present invention is therefore to provide an intraocular lens insertion instrument that enables smooth push-out operation of a preset lens.


Means for Solving the Problems

In order to achieve the object described above, the invention according to a first aspect thereof is an intraocular lens insertion instrument having: a main body comprising a lens setting section for setting an intraocular lens thereon, a transition section for deforming the intraocular lens, and a nozzle piece for discharging the intraocular lens; and a lens push-out mechanism for pushing out the intraocular lens set on the lens setting section, characterized in that the instrument further comprises a releasing means for releasing the intraocular lens pushed by the lens push-out mechanism from the lens setting section.


The invention according to a second aspect thereof is characterized in that the releasing means has a posture holding mount for holding the lens with a forward tilt relative to an axial line of lens movement.


The invention according to a third aspect thereof is characterized in that the posture holding mount has a passage through which the lens push-out mechanism passes.


The invention according to a fourth aspect thereof is characterized in that the lens push-out mechanism has a scooping surface for scooping the lens.


Effects of the Invention

According to the intraocular lens insertion instrument as the first aspect of the invention, the presence of the releasing means enables the lens in close contact with the lens setting section to be released from the lens setting section when the lens push-out mechanism pushes the lens. Therefore, the lens can be pushed out smoothly, and damage to the lens and unstable behavior of the lens can be prevented.


According to the intraocular lens insertion instrument as the second aspect of the present invention, the presence of the posture holding mount enables the lens to be held with the forward tilt relative to the axial line of lens movement. Therefore, when the lens push-out mechanism pushes the lens, the rear end of the lens is lifted, enabling air to move in between the lens and the lens setting section. In this manner, the lens can be released from the lens setting section and pushed out smoothly.


According to the intraocular lens insertion instrument as the third aspect of the present invention, the presence of the passage prevents the posture holding mount from hindering movement of the lens push-out mechanism at the time the lens push-out mechanism pushes the lens out. Therefore, the lens can be pushed out more smoothly.


According to the intraocular lens insertion instrument as the fourth aspect of the present invention, scooping the rear end of the lens by the scooping surface at the time of lens push-out enables air to move in between the lens and the lens setting section. Consequently, the lens is released from the lens setting section and can be pushed out more smoothly.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows the overall structure of an intraocular lens insertion instrument of the present invention, in which (A) is a front view thereof and (B) is a plan view thereof.



FIG. 2 is a perspective view showing the structure around a lens setting section.



FIG. 3 shows the structure of the lens setting section, in which (A) is a longitudinal cross-sectional view thereof while (B) is a transverse cross-sectional view thereof.



FIG. 4 shows modifications to a lens contact area, in which (A) is a longitudinal cross-sectional view thereof with a protruding lower end while (B) is a longitudinal cross-sectional view thereof with a diagonally cut lower end.



FIG. 5 is a perspective view showing a state in which a lens has been set on the lens setting section.





BEST MODE FOR CARRYING OUT THE INVENTION

Hereinafter, a preferred embodiment of the present invention will be described with reference to the accompanying drawings.


An intraocular lens insertion instrument 1 shown in FIG. 1 is used to discharge a deformable intraocular lens 2 (hereinafter simply referred to as the lens 2) safely and swiftly into an eye. The intraocular lens insertion instrument 1 is specifically a preset intraocular lens insertion instrument in which the lens 2 has been preset inside the instrument 1. More specifically, the intraocular lens insertion instrument 1 comprises a main body 3 that houses the lens 2 and inserts the lens 2 into an eye, and a lens push-out mechanism 4 that pushes out the lens 2. In this embodiment, a lens having an optic 2a and looped haptic elements 2b is used as the lens 2.


The main body 3 comprises a tubular proximal member 5 and a distal member 6 whose tapered end is relatively narrower than the proximal member 5. The proximal member 5 and the distal member 6 are united with each other in a detachable manner in an engagement section 7. Various materials can be used for the main body 3. For example, not only a metal such as stainless steel or titanium but also a synthetic resin or the like can be used for the main body 3.


The proximal member 5 has a lens setting section 8 at one end thereof and a slit 9 formed in a tubular sidewall thereof along a longitudinal direction thereof. Engagement projections 10 to engage with a grip unit that will be described later are formed on an outer periphery surface of the proximal member 5. The slit 9 is formed between an edge of the one end and a substantial center of the proximal member 5.


The intraocular lens insertion instrument 1 has a releasing means 11 as shown in FIG. 2, whereby the lens 2 in close contact with the lens setting section 8 can be released and moved smoothly at the time the lens push-out mechanism 4 pushes the lens 2 having been set on the lens setting section 8.


The releasing means 11 releases the lens 2 from the lens setting section 8 by pushing forward the lens 2 stored on the lens setting section 8 with a forward tilt. The releasing means 11 comprises the lens push-out mechanism 4 and a posture holding mount 12 for holding the lens 2 on the lens setting section 8 with the forward tilt.


The lens setting section 8 comprises a setting section body 13 protruding from the one end of the proximal member 5, the posture holding mount 12 formed on an upper surface of the section body 13, and sidewalls 14 formed outside the posture holding mount 12. The setting section body 13 is made of a plate member whose surface is smooth and parallel to an axial line A of lens movement so that the lens 2 set thereon can be held stably.


The posture holding mount 12 is configured so as to hold the lens 2 with the forward tilt. On an upper surface of the posture holding mount 12, the mount 12 has slopes 12a inclined downward toward the distal end of the lens setting section 8. A passage 15 through which the lens push-out mechanism 4 passes is also provided in the center of the posture holding mount 12. The passage 15 comprises an elongated groove that is parallel to the axial line A of lens movement.


The sidewalls 14 are formed so that the center of the lens 2 can align with the axial line A of lens movement. The sidewalls 14 can also prevent the lens 2 from falling sideways when the lens 2 is placed on the lens setting section 8. Therefore, assembling the instrument becomes easy. The sidewalls 14 are made of plate members that protrude from both sides of the setting section body 13 and are elongated along a longitudinal direction of the body 13.


The distal member 6 comprises a nozzle piece 21 for inserting the lens 2 set on the lens setting section 8 into an eye, and a transition section 22 that connects the nozzle piece 21 with the proximal member 5. The transition section 22 is substantially funnel-shaped, tapering toward the distal end thereof, and connects the nozzle piece 21 at the distal end. The nozzle piece 21 is formed in such a size that an outside diameter thereof enables insertion thereof into an incision. The lens 2 is folded while passing through the transition section 22 by being pushed by the lens push-out mechanism 4. The distal member 6 also has a stopper 23 for stopping a hereinafter-described slider, at a predetermined position. The stopper 23 comprises projections that lock a hereinafter-described handling element of the slider.


As shown in FIG. 1, the lens push-out mechanism 4 comprises the slider 25 used for an initial operation to insert the lens 2, and a plunger 26 for inserting the lens 2 into an eye.


The plunger 26 is to insert the lens 2 folded by the slider 25 into an eye, and comprises a push rod 27 for pushing out the lens 2 and the grip unit 28 located at the proximal end of the push rod 27. The push rod 27 is loosely fitted into a hole 29 formed in the grip unit 28, and pivotally supported by the grip unit 28 at the bottom of the hole 29. A female screw 29a is formed in the hole 29. The female screw 29a formed in the grip unit 28 is to be screwed together with the engagement projections 10. The engagement projections 10 are made up of portions of a male screw that is to be screwed into the female screw 29a. Forming the engagement projections 10 as the male screw portions enables not only preventing of the engagement projections 10 from interfering with the slit 9 or the like but also secure screwing into the female screw 29a for pushing in the grip unit. The grip unit 28 thus pushes the push rod 27 along the axial line A of lens movement. The grip unit 28 is formed into a shape that enables easy push of the plunger 26.


As shown in FIG. 3, the slider 25 is formed so as to enable the lens 2 set on the lens setting section 8 to be pushed out toward the distal end of the main body 3 without local stress on the lens 2 and to be folded in a predetermined direction. The slider 25 engages with the slit 9 in the main body 3. The slider 25 comprises a slider body 30 that supports the slider 25 along the axial line A of lens movement, a lens contact area 31 in contact with the lens 2 in an area larger than the plunger 26, a guide groove 32 that supports the plunger 26 along the axial line A of lens movement and functions as an insertion passage, and a looped-element guide 34 that catches one of the looped haptic elements 2b of the lens 2.


The lens contact area 31 is formed by an arc whose curvature radius is substantially the same as that of the outside diameter of the lens 2. The form of the lens contact area 31 enables smooth execution of the initial operation without locally stressing the lens 2, by contacting the lens 2 in a larger area.


The lens contact area 31 also has a scooping surface 31a. The scooping surface 31a enables scooping of the rear end of the lens 2 set on the lens setting section 8. The scooping surface 31a is shaped into a downward slope toward the distal end thereof. By having the sloped shape, the scooping surface 31a can gradually scoop up the lens 2, which enables more secure release of the lens 2.


As shown in FIG. 4(A), the scooping surface 31a may protrude from the lower end of the lens contact area 31. By having the protrusion at the distal end of the scooping surface 31a, the end of the scooping surface 31a can be pushed in between the lens 2 and the lens setting section 8. Consequently, air can move to around the center of the lens 2, enabling the lens 2 to be easily released from the lens setting section 8.


Alternatively, the scooping surface 31a may be formed to have a wedge-like shape, as shown in FIG. 4(B). By pushing in the wedge-shaped scooping surface 31a between the lens 2 and the lens setting section 8, the rear end of the lens 2 can be lifted upward. Consequently, the lens 2 can be easily released from the lens setting section 8.


The guide groove 32 is formed so as to allow the plunger 26 to slide thereon, and to allow the distal end of the plunger 26 to protrude from the lens contact area 31. The guide groove 32 is formed substantially in the center of one surface of the slider 25 over the entire length thereof, and comprises a groove that is parallel to the axial line A of lens movement. A cross section of the guide groove 32 is formed substantially in the same shape as the contour of the plunger 26. A fan-shaped leading passage 21a is formed at the proximal end of the guide groove 32. Thus, the push rod 27 is inserted through the guide groove 32 formed in the slider 25, and slides within the guide groove 32 in a longitudinal direction of the slider 25. Alternatively, the guide groove 32 may be a hole that pierces parallel to the axial line A of lens movement.


The slider body 30 enables the slider 25 to be held substantially in the center of the main body 3 while enabling the slider 25 to move along the axial line A of lens movement, by engaging with the slit 9. Therefore, the plunger 26 is held in the center of the main body 3, and movable along the axial line A of lens movement due to the presence of the guide groove 32. The handling element 33 enables easy movement of the slider 25.


The looped-member guide 34 is formed on another surface of the slider 25 on which the guide groove 32 is not formed. The looped-element guide 34 fixes the lens 2 by catching one of the looped haptic elements 2b. The looped-member guide 34 is formed by a groove similar to the curvature of the looped haptic elements 2b. The looped-member guide 34 is formed in the curvature on the side of the distal end of the slider 25 so as not to physically stress the looped haptic elements 2b.


As shown in FIG. 5, the slider 25 has the handling element 33 for pushing the slider 25 in and out. The handling element 33 is a pair located on right and left sides of the axial line A of lens movement, and connected to an end of the slider body 30 while protruding from the proximal member 5. The handling element 33 is formed so as to bulge more when viewed toward the distal end of the main body 3. Although not shown in the drawings, the handling element 33 may have a corrugated surface formed by a plurality of grooves that are substantially perpendicular to the axial line A of lens movement. Alternatively, an arrow indicating a direction of movement may be shown on the surface.


Procedures of assembling the intraocular lens insertion instrument 1 of the above configuration will be described next. The slider 25 is firstly attached to the proximal member 5. In order to join the slider 25 and the proximal member 5, the slider body 30 is engaged with the slit 9 from the one end of the proximal member 5, and the slider 25 is pushed in to the proximal end of the slit 9. The plunger 26 is then inserted from the other end of the proximal member 5. At this time, the distal end of the plunger 26 is aligned with a position where the distal end does not project beyond the distal end of the slider 25 having been set in the proximal member 5. Thereafter, as shown in FIG. 3, one of the looped haptic elements 2b of the lens 2 is caught by the looped-element guide 34 of the slider 25, and the lens 2 is set on the lens setting section 8. At this time, as shown in FIG. 3(A), the lens 2 is held with the forward tilt by being set on the posture holding mount 12. By keeping the forward tilt of the lens 2, the looped haptic element 2b at the rear is set above the lens push-out mechanism 4. Furthermore, since the lens setting section 8 has the sidewalls 14, the center of the lens 2 can be easily aligned with the axial line A of lens movement. Thereafter, as shown in FIG. 5, the distal member 6 is united with the proximal member S in the engagement section 7. In this manner, the intraocular lens insertion instrument 1 can be securely assembled without stress on the lens 2.


Operation of the above configuration will be described next. The lens 2 has been set on the lens setting section 8 for some time, and in close contact with the lens setting section 8. Firstly, an operator holds the handling element 33 and pushes the slider 25 forward. When the slider 25 is pushed forward, the lens contact area 31 touches the lens 2. When the operator pushes the slider 25 forward in a state where the lens 2 is in contact with the lens contact area 31, the rear of the lens 2 is lifted since the lens 2 is held with the forward tilt. When the rear of the lens 2 is lifted, air comes in between the lens 2 and the lens setting section 8, releasing the lens 2 having been in close contact with the lens setting section 8 from the lens setting section 8. By pushing the slider 25 until the slider 25 hits the stopper that is not shown in FIG. 5, the lens 2 can be pushed out to the transition section 22.


When the slider 25 hits the stopper 23 and stops, the operator pushes the plunger 26. In order to push the plunger 26, the operator pushes the grip unit 28 to cause the female screw 29a to engage with the engagement projections 10 by screwing. Thereafter, the operator turns the grip unit 28. While being turned, the grip unit 28 moves from the proximal end of the proximal member 5 in a direction of the axial line A of lens movement. When the grip unit 28 is moved from the proximal end in the direction of the axial line A, the push rod 27 moves in the direction of the axial line A by being pushed by the grip unit 28, while pushing the plunger 26. In this manner, the lens 2 is folded while passing through the narrow nozzle piece 21 by being pushed by the plunger 26. By pushing the plunger 26 further in a state where the lens 2 is folded in such a manner, the lens 2 is inserted into an eye.


As has been described above, according to this embodiment, the intraocular lens insertion instrument 1 has the releasing means 11 for releasing the lens 2 pushed by the lens push-out mechanism 4 from the lens setting section 8. Therefore, the lens 2 in close contact with the lens setting section 8 can be released from the lens setting section 8 when the lens push-out mechanism 4 pushes the lens 2. Consequently, the lens 2 can be pushed out smoothly, which prevents damage to the lens 2 as well as unstable behavior of the lens 2.


Moreover, the releasing means 11 has the posture holding mount 12 for holding the lens 2 with the forward tilt along the direction of the axial line A of lens movement. Therefore, when the lens push-out mechanism 4 pushes the lens 2, the rear end of the lens 2 is lifted, allowing air to come in between the lens 2 and the lens setting section 8. In this manner, the lens 2 can be released from the lens setting section 8 and pushed out smoothly.


Since the posture holding mount 12 has the passage 15 through which the lens push-out mechanism 4 passes, the posture holding mount 12 does not hinder the movement of the lens push-out mechanism 4 when the lens push-out mechanism 4 pushes out the lens 2. Therefore, the lens 2 can be pushed out more smoothly.


Furthermore, the lens push-out mechanism 4 has the scooping surface 31a for scooping the lens 2. Therefore, when the lens 2 is pushed out, the scooping surface 31a scoops the rear end of the lens 2, allowing air to come in between the lens 2 and the lens setting section 8. Consequently, the lens 2 can be released from the lens setting section 8 and pushed out smoothly.


In addition, the posture holding mount 12 is configured to support the both sides of the lens 2. Therefore, even in the case where the lens 2 has been stored for a long time, deformation of the optic 2a can be prevented.


Since the posture holding mount 12 holds the lens 2 with the forward tilt, the looped haptic element 2b at the rear of the lens 2 can be placed above the lens push-out mechanism 4. Therefore, damage to the looped haptic elements 2b associated with the movement of the lens push-out mechanism 4 can be prevented.


Moreover, the lens setting section 8 has the sidewalls 14. Therefore, the lens 2 can be set easily at the center of the lens setting section 8. Consequently, the center of the lens 2 agrees with the axial line A of lens movement, which enables smoother push-out of the lens 2.


In a state of non-use, the lens 2 is in close contact with the lens setting section 8. Therefore, the lens 2 can be held safely and securely even in the case where the looped haptic element 2b is not caught by the looped-element guide 34 of the slider 25.


The present invention is not limited to the embodiment described above, and various modifications can be made thereto within the scope of the present invention.

Claims
  • 1. An intraocular lens insertion instrument comprising: a main body including a lens setting section that is configured to store an unstressed intraocular lens thereon, a transition section for deforming the intraocular lens, and a nozzle piece for discharging the intraocular lens;a slider that moves distally toward the transition section and pushes the unstressed intraocular lens distally from the lens setting section to the transition section, thereby folding the intraocular lens;a releasing device releasing the intraocular lens pushed by the slider from the lens setting section, wherein the releasing device includes a posture holding mount holding the lens such that an edge of the lens closest to the nozzle piece is lower in elevation relative to an opposite edge of the lens farthest from the nozzle piece, resulting in the lens having a forward tilt relative to an axial line of lens movement,wherein the posture holding mount includes a slope inclined downwards toward the nozzle piece; anda groove through which the slider passes; anda plunger that pushes the folded intraocular lens distally from the transition section and through the nozzle piece;wherein the slider and the plunger are associated with one another such that the slider is distally movable relative to the plunger, and the plunger is distally movable relative to and distal of the slider.
  • 2. The intraocular lens insertion instrument according to claim 1, wherein the posture holding mount has a passage through which the slider passes.
  • 3. The intraocular lens insertion instrument according to claim 2, wherein the slider has a scooping surface for scooping the lens.
  • 4. The intraocular lens insertion instrument according to claim 1, wherein the slider has a scooping surface for scooping the lens.
  • 5. The intraocular lens insertion instrument according to claim 1, wherein the lens is disposed at the lens setting section beforehand when the intraocular lens insertion device is shipped.
  • 6. The intraocular lens insertion instrument according to claim 1, wherein the groove is parallel to the axial line of lens movement.
  • 7. An apparatus as claimed in claim 1, wherein the slider includes a guide groove in which a portion of the plunger is located.
  • 8. An apparatus, comprising: a main body defining a lens movement direction and including a lens setting section, a nozzle, and a tapered transition section between the lens setting section and the nozzle, the lens setting section having a first and second longitudinally extending members, separated by a groove, that slope downward toward the nozzle;an intraocular lens stored on the first and second longitudinally extending members in a substantially unstressed state with an edge closest to the nozzle lower in elevation than an opposite edge farthest from the nozzle;a slider carried within the main body and movable in the lens movement direction to drive the intraocular lens from the lens setting section to the tapered transition section; anda plunger carried within the main body and movable in the lens movement direction to drive the intraocular lens from the tapered transition section and through the nozzle;wherein the slider and the plunger are associated with one another such that the slider is distally movable relative to the plunger, and the plunger is distally movable relative to and distal of the slider.
  • 9. An apparatus as claimed in claim 8, wherein the slider is carried within the main body such that a portion of the slider will be located within the groove in the lens setting section as the slider drives the intraocular lens from the lens setting section to the tapered transition section.
  • 10. An apparatus as claimed in claim 8, wherein the slider includes a lens contact area; andthe plunger is narrower than the lens contact area.
  • 11. An apparatus as claimed in claim 8, wherein the slider includes a guide groove in which a portion of the plunger is located.
  • 12. An apparatus as claimed in claim 8, wherein the slider includes a scooping surface.
  • 13. An apparatus as claimed in claim 12, wherein the intraocular lens includes an outer surface with a radius of curvature; andthe slider scooping surface comprises an arcuate surface with a radius of curvature that is substantially the same as the intraocular lens outer surface radius of curvature.
  • 14. An apparatus as claimed in claim 8, further comprising: a slider handle located adjacent to the main body and connected to the slider; anda plunger grip located proximal of the main body and connected to the plunger.
  • 15. An apparatus as claimed in claim 14, wherein the slider handle includes first and second handle members located on opposite sides of the main body.
  • 16. An apparatus as claimed in claim 14, wherein the plunger grip is rotatable.
  • 17. An apparatus as claimed in claim 8, wherein the first and second longitudinally extending members support diametrically opposed edges of the intraocular lens.
Priority Claims (1)
Number Date Country Kind
2005-354968 Dec 2005 JP national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/JP2006/324054 12/1/2006 WO 00 5/28/2008
Publishing Document Publishing Date Country Kind
WO2007/066586 6/14/2007 WO A
US Referenced Citations (225)
Number Name Date Kind
2761446 Reed Sep 1956 A
4205747 Gilliam et al. Jun 1980 A
4269307 LaHaye May 1981 A
4423809 Mazzocco Jan 1984 A
4573998 Mazzocco Mar 1986 A
4608049 Kelman Aug 1986 A
4634423 Bailey Jan 1987 A
4681102 Bartell Jul 1987 A
4697697 Graham et al. Oct 1987 A
4699140 Holmes Oct 1987 A
4702244 Mazzocco Oct 1987 A
4715373 Mazzocco et al. Dec 1987 A
4747404 Jampel et al. May 1988 A
4750498 Graham Jun 1988 A
4759359 Willis et al. Jul 1988 A
4763650 Hauser Aug 1988 A
4765329 Cumming et al. Aug 1988 A
4769034 Poley Sep 1988 A
4781719 Kelman Nov 1988 A
4787904 Severin Nov 1988 A
4819631 Poley Apr 1989 A
4834094 Patton May 1989 A
4836201 Patton Jun 1989 A
4862885 Cumming Sep 1989 A
4880000 Holmes et al. Nov 1989 A
4919130 Stoy et al. Apr 1990 A
4934363 Smith et al. Jun 1990 A
4955889 Van Gent Sep 1990 A
4976716 Cumming Dec 1990 A
4988352 Poley Jan 1991 A
4994028 Leonard et al. Feb 1991 A
5066297 Cumming Nov 1991 A
5098439 Hill et al. Mar 1992 A
5123905 Kelman Jun 1992 A
5139501 Klaas Aug 1992 A
5171241 Buboltz et al. Dec 1992 A
5176686 Poley Jan 1993 A
5190552 Kelman Mar 1993 A
5190553 Kanert et al. Mar 1993 A
5222972 Hill et al. Jun 1993 A
5242450 McDonald Sep 1993 A
5275604 Rheinish et al. Jan 1994 A
5281227 Sussman Jan 1994 A
5304182 Rheinish et al. Apr 1994 A
5354333 Kammann et al. Oct 1994 A
5395378 McDonald Mar 1995 A
5425734 Blake Jun 1995 A
5454818 Hambleton et al. Oct 1995 A
5468246 Blake Nov 1995 A
5474562 Orchowski et al. Dec 1995 A
5494484 Feingold Feb 1996 A
5496328 Nakajima et al. Mar 1996 A
5499987 Feingold Mar 1996 A
5562676 Brady et al. Oct 1996 A
5571113 McDonald Nov 1996 A
5578042 Cumming Nov 1996 A
5582613 Brady Dec 1996 A
5582614 Feingold Dec 1996 A
5584304 Brady Dec 1996 A
5616148 Eagles et al. Apr 1997 A
5620450 Eagles et al. Apr 1997 A
5643275 Blake Jul 1997 A
5643276 Zaleski Jul 1997 A
5653715 Reich et al. Aug 1997 A
5653753 Brady et al. Aug 1997 A
5702402 Brady Dec 1997 A
5702441 Zhou Dec 1997 A
5716364 Makker et al. Feb 1998 A
5728102 Feingold et al. Mar 1998 A
5735858 Makker et al. Apr 1998 A
5766181 Chambers et al. Jun 1998 A
5772666 Feingold et al. Jun 1998 A
5772667 Blake Jun 1998 A
5776138 Vidal et al. Jul 1998 A
5800442 Wolf et al. Sep 1998 A
5803925 Yang et al. Sep 1998 A
5807400 Chambers et al. Sep 1998 A
5810833 Brady et al. Sep 1998 A
5810834 Heyman Sep 1998 A
5860984 Chambers et al. Jan 1999 A
5860986 Reich et al. Jan 1999 A
5868751 Feingold Feb 1999 A
5868752 Makker et al. Feb 1999 A
5873879 Figueroa et al. Feb 1999 A
5876406 Wolf et al. Mar 1999 A
5876407 Makker et al. Mar 1999 A
5876440 Feingold Mar 1999 A
5891152 Feingold Apr 1999 A
5902307 Feingold et al. May 1999 A
5919197 McDonald Jul 1999 A
5921989 Deacon et al. Jul 1999 A
5928245 Wolf et al. Jul 1999 A
5941886 Feingold Aug 1999 A
5942277 Makker et al. Aug 1999 A
5944725 Cicenas Aug 1999 A
5947974 Brady et al. Sep 1999 A
5947975 Kikuchi et al. Sep 1999 A
5957748 Ichiha Sep 1999 A
6001107 Feingold Dec 1999 A
6010510 Brown et al. Jan 2000 A
6022358 Wolf et al. Feb 2000 A
6048348 Chambers et al. Apr 2000 A
6051000 Heyman Apr 2000 A
6056757 Feingold et al. May 2000 A
6056758 Vidal et al. May 2000 A
6059791 Chambers May 2000 A
6074397 Chambers et al. Jun 2000 A
6083230 Makker et al. Jul 2000 A
6093193 Makker et al. Jul 2000 A
6129733 Brady et al. Oct 2000 A
6142999 Brady et al. Nov 2000 A
6143000 Feingold Nov 2000 A
6162229 Feingold et al. Dec 2000 A
6174315 Chambers et al. Jan 2001 B1
6214015 Reich et al. Apr 2001 B1
6241737 Feingold Jun 2001 B1
6248111 Glick et al. Jun 2001 B1
6251114 Farmer et al. Jun 2001 B1
6254607 Makker et al. Jul 2001 B1
6267768 Deacon Jul 2001 B1
6283975 Glick et al. Sep 2001 B1
6283976 Portney Sep 2001 B1
6312433 Butts Nov 2001 B1
6334862 Vidal et al. Jan 2002 B1
6336932 Figueroa et al. Jan 2002 B1
6355046 Kikuchi et al. Mar 2002 B2
6371960 Heyman et al. Apr 2002 B2
6386357 Egawa May 2002 B1
6387101 Butts et al. May 2002 B1
6398788 Makker et al. Jun 2002 B1
6406481 Feingold et al. Jun 2002 B2
6428545 Portney Aug 2002 B2
6447519 Brady et al. Sep 2002 B1
6447520 Ott et al. Sep 2002 B1
6468282 Kikuchi et al. Oct 2002 B2
6471708 Green Oct 2002 B2
6491697 Clark et al. Dec 2002 B1
6497708 Cumming Dec 2002 B1
6500181 Portney Dec 2002 B1
6506195 Chambers et al. Jan 2003 B2
6537283 Van Noy Mar 2003 B2
6540754 Brady Apr 2003 B2
6554839 Brady Apr 2003 B2
6558395 Hjertman et al. May 2003 B2
6607537 Binder Aug 2003 B1
6629979 Feingold Oct 2003 B1
6666871 Kikuchi et al. Dec 2003 B2
6679891 Makker et al. Jan 2004 B2
6685740 Figueroa et al. Feb 2004 B2
6712848 Wolf et al. Mar 2004 B1
6723104 Ott Apr 2004 B2
6733507 McNicholas et al. May 2004 B2
6793674 Zapata Sep 2004 B2
6858033 Kobayashi Feb 2005 B2
6921405 Feingold et al. Jul 2005 B2
6923815 Brady et al. Aug 2005 B2
6976989 Vincent Dec 2005 B1
7014641 Kobayashi et al. Mar 2006 B2
7025782 Kobayashi et al. Apr 2006 B2
7033366 Brady Apr 2006 B2
7037312 Kikuchi et al. May 2006 B2
7074227 Portney Jul 2006 B2
7097649 Meyer Aug 2006 B2
7131976 Kobayashi et al. Nov 2006 B2
7156854 Brown et al. Jan 2007 B2
7348038 Makker et al. Mar 2008 B2
7422604 Vaquero et al. Sep 2008 B2
7429263 Vaquero et al. Sep 2008 B2
7458976 Peterson et al. Dec 2008 B2
7476230 Ohno et al. Jan 2009 B2
7494505 Kappelhof et al. Feb 2009 B2
7645300 Tsai Jan 2010 B2
8273122 Anderson Sep 2012 B2
8382769 Inoue Feb 2013 B2
20010007942 Kikuchi et al. Jul 2001 A1
20020103490 Brady Aug 2002 A1
20020151904 Feingold et al. Oct 2002 A1
20020165610 Waldock Nov 2002 A1
20020193805 Ott et al. Dec 2002 A1
20030036765 Van Noy Feb 2003 A1
20030040755 Meyer Feb 2003 A1
20030050647 Brady Mar 2003 A1
20030139749 Kikuchi et al. Jul 2003 A1
20030181921 Jeannin Sep 2003 A1
20030195522 McNicholas Oct 2003 A1
20030212406 Kobayashi et al. Nov 2003 A1
20030212407 Kikuchi Nov 2003 A1
20030212409 Kobayashi et al. Nov 2003 A1
20040111094 Meyer Jun 2004 A1
20040117012 Vincent Jun 2004 A1
20040238392 Peterson et al. Dec 2004 A1
20040243141 Brown et al. Dec 2004 A1
20050033308 Callahan et al. Feb 2005 A1
20050049605 Vaquero et al. Mar 2005 A1
20050049606 Vaquero et al. Mar 2005 A1
20050125000 Tourrette et al. Jun 2005 A1
20050182419 Tsai Aug 2005 A1
20050222578 Vaquero Oct 2005 A1
20050261703 Feingold et al. Nov 2005 A1
20060085013 Dusek Apr 2006 A1
20060167466 Dusek Jul 2006 A1
20060293694 Futamura Dec 2006 A1
20080033449 Cole et al. Feb 2008 A1
20080058830 Cole et al. Mar 2008 A1
20080086146 Ishii et al. Apr 2008 A1
20080097459 Kammerlander et al. Apr 2008 A1
20080221584 Downer Sep 2008 A1
20090036898 Ichinohe et al. Feb 2009 A1
20090043313 Ichinohe et al. Feb 2009 A1
20090112223 Downer et al. Apr 2009 A1
20090204122 Ichinohe et al. Aug 2009 A1
20090216244 Pynson Aug 2009 A1
20100161049 Inoue Jun 2010 A1
20100185206 Ichinohe et al. Jul 2010 A1
20100217273 Someya et al. Aug 2010 A1
20100286704 Ichinohe et al. Nov 2010 A1
20110082463 Inoue Apr 2011 A1
20110098717 Inoue Apr 2011 A1
20110264101 Inoue et al. Oct 2011 A1
20110270264 Shoji et al. Nov 2011 A1
20110288557 Kudo et al. Nov 2011 A1
20120022549 Someya et al. Jan 2012 A1
20120071887 Ichinohe et al. Mar 2012 A1
20130006259 Sanger Jan 2013 A1
20130018460 Anderson Jan 2013 A1
Foreign Referenced Citations (66)
Number Date Country
3610925 Oct 1987 DE
4110278 Oct 1992 DE
0363213 Apr 1990 EP
0727966 Sep 2003 EP
1832247 Sep 2007 EP
1338254 Dec 2008 EP
2749752 Dec 1997 FR
63-197453 Aug 1988 JP
4-212350 Aug 1992 JP
5-103808 Apr 1993 JP
5-103809 Apr 1993 JP
08-024282 Jan 1996 JP
8-505540 Jun 1996 JP
09-506285 Jun 1997 JP
11-113939 Apr 1999 JP
11-506357 Jun 1999 JP
2000-516487 Dec 2000 JP
2000-516488 Dec 2000 JP
2001-502563 Feb 2001 JP
2001-104347 Apr 2001 JP
2002-516709 Jun 2002 JP
2002-355268 Dec 2002 JP
2002-541912 Dec 2002 JP
2003-144480 May 2003 JP
3412106 Jun 2003 JP
2003-210498 Jul 2003 JP
2003-325569 Nov 2003 JP
2003-325570 Nov 2003 JP
2003-325572 Nov 2003 JP
2004-024854 Jan 2004 JP
2004-188194 Jul 2004 JP
2004-351196 Dec 2004 JP
2006-181269 Jul 2006 JP
2006-297146 Nov 2006 JP
2006-333924 Dec 2006 JP
2006-333981 Dec 2006 JP
2007-503872 Mar 2007 JP
2007-152010 Jun 2007 JP
2007-181604 Jul 2007 JP
2007-526091 Sep 2007 JP
2008-521535 Jun 2008 JP
2008-212689 Sep 2008 JP
WO9407436 Apr 1994 WO
WO9513022 May 1995 WO
WO9628122 Sep 1996 WO
WO9715253 May 1997 WO
WO9812969 Apr 1998 WO
WO0045746 Aug 2000 WO
WO0062712 Oct 2000 WO
WO02071982 Sep 2002 WO
WO02096322 Dec 2002 WO
2005023154 Mar 2005 WO
WO2005070341 Aug 2005 WO
WO2005084588 Sep 2005 WO
WO2006070628 Jul 2006 WO
WO2006080191 Aug 2006 WO
WO2006090531 Aug 2006 WO
WO2007037223 Apr 2007 WO
WO2007097221 Apr 2007 WO
WO2007080869 Jul 2007 WO
WO2008149794 Dec 2008 WO
WO2008149795 Dec 2008 WO
WO2009058929 Jul 2009 WO
WO2009148091 Dec 2009 WO
WO2011126144 Oct 2011 WO
WO2011155636 Dec 2011 WO
Non-Patent Literature Citations (2)
Entry
U.S. Appl. No. 13/757,790, filed Feb. 2, 2012.
U.S. Appl. No. 13/699,708, filed Jun. 8, 2011.
Related Publications (1)
Number Date Country
20090248031 A1 Oct 2009 US