The present invention relates generally to endoscopes and endoscopic medical procedures. More particularly, it relates to methods and apparatus for tracking the insertion and/or withdrawal of a flexible endoscope along a tortuous path, such as for colonoscopic examination and treatment.
An endoscope is a medical instrument for visualizing the interior of a patient's body. Endoscopes can be used for a variety of different diagnostic and interventional procedures, including colonoscopy, bronchoscopy, thoracoscopy, laparoscopy and video endoscopy.
Colonoscopy is a medical procedure in which a flexible endoscope, or colonoscope, is inserted into a patient's colon for diagnostic examination and/or surgical treatment of the colon. A standard colonoscope is typically 135-185 cm in length and 12-19 mm in diameter, and includes a fiberoptic imaging bundle or a miniature camera located at the instrument's tip, illumination fibers, one or two instrument channels that may also be used for insufflation or irrigation, air and water channels, and vacuum channels. The colonoscope is usually inserted via the patient's anus and advanced through the colon, allowing direct visual examination of the colon, the ileocecal valve and portions of the terminal ileum. Insertion of the colonoscope is complicated by the fact that the colon represents a tortuous and convoluted path. Considerable manipulation of the colonoscope is often necessary to advance the colonoscope through the colon, making the procedure more difficult and time consuming and adding to the potential for complications, such as intestinal perforation. Steerable colonoscopes have been devised to facilitate selection of the correct path though the curves of the colon. However, as the colonoscope is inserted farther and farther into the colon, it becomes more difficult to advance the colonoscope along the selected path. At each turn, the wall of the colon must maintain the curve in the colonoscope. The colonoscope rubs against the mucosal surface of the colon along the outside of each turn. Friction and slack in the colonoscope build up at each turn, making it more and more difficult to advance and withdraw the colonoscope. In addition, the force against the wall of the colon increases with the buildup of friction. In cases of extreme tortuosity, it may become impossible to advance the colonoscope all of the way through the colon.
Another problem which arises, for example, in colonoscope procedures, is the formation of loops in the long and narrow tube of the colonoscope. Such loops may arise when the scope encounters an obstacle, or gets stuck in a narrow passage. Instead of progressing, the scope forms loops within the patient. In an attempt to proceed in insertion of the colonoscope, excess force may be exerted, damaging delicate tissue in the patient's body. The physician may proceed with the attempted insertion of the endoscope without realizing there is a problem.
Through a visual imaging device the user can observe images transmitted from the distal end of the endoscope. From these images and from knowledge of the path the endoscope has followed, the user can ordinarily determine the position of the endoscope. However, it is difficult to determine the endoscope position within a patient's body with any great degree of accuracy. This becomes even more difficult when attempting to determine endoscopic positioning using, e.g., automatically controlled endoscopic devices, as described in U.S. Pat. No. 6,468,203; U.S. patent application Ser. No. 09/969,927 filed Oct. 2, 2001; U.S. patent application Ser. No. 10/229,577 filed Aug. 27, 2002; U.S. patent application Ser. No. 10/087,100 filed Mar. 1, 2002; and U.S. patent application Ser. No. 10/139,289 filed May 2, 2002, each of which is incorporated herein by reference in its entirety.
Another method used to determine the configuration of the endoscope is x-ray imaging. Yet another method used is magnetic field positioning, which avoids the x-ray exposure to the patient and the operator. Such a method typically uses magnetic position determination via low frequency magnetic fields to determine the position of a miniature sensor embedded within the endoscope tube. Based on the position of the sensor at sequential time periods, an image of the configuration of the endoscope tube is produced.
Another method involves the placement of a series of markings on the endoscope that can aid the physician in proper placement of the device in the patient's body during a procedure. These markings can include bands, dots, lettering, numbering, colors, or other types of indicia to indicate position or movement of the device within the body. Visually distinguishable marks are often located at regular predetermined intervals. Such a system of indicia can be made to be visible under fluoroscopy by the use of certain radiopaque metals, or compounds incorporated into or printed on the device.
However, each of these methods are limited in their flexibility and applicability when the position of the endoscope within a patient's body is desired with any accuracy. Furthermore, such conventional position determination methods in many cases may also fail to account for the real-time position of the endoscope during advancement and/or withdrawal into the patient.
The information on the length of an endoscope or colonoscope inserted into a body organ within a patient may be used to aid in mapping the body organ, anatomical landmarks, anomalies, etc., and/or to maintain real-time knowledge along the entire length of the endoscope position within the body. This is particularly useful when used in conjunction with various endoscopes and/or colonoscopes having a distal steerable portion and an automatically controlled proximal portion which may be automatically controlled by, e.g., a controller. Examples of such devices are described in detail in the following granted patents and co-pending applications: U.S. Pat. No. 6,468,203; U.S. patent application Ser. No. 09/969,927 filed Oct. 2, 2001; U.S. patent application Ser. No. 10/229,577 filed Aug. 27, 2002; U.S. patent application Ser. No. 10/087,100 filed Mar. 1, 2002; and U.S. patent application Ser. No. 10/139,289 filed May 2, 2002, each of which has been incorporated by reference above.
One method for determining endoscopic insertion depth and/or position is to utilize a fully instrumented endoscopic device which incorporates features or elements configured to determine the endoscope's depth of insertion without the need for a separate or external sensing device and to relay this information to the operator, surgeon, nurse, or technician involved in carrying out a procedure. Another method is to utilize a sensing device separate from and external to the endoscope that may or may not be connected to the endoscope and which interacts with the endoscope to determine which portion of the endoscope has passed through or by a reference boundary. The external sensing device may also be referred to herein interchangeably as a datum or datum device as it may function, in part, as a point of reference relative to a position of the endoscope and/or patient. This datum may be located externally of the endoscope and either internally or externally to the body of the patient; thus, the interaction between the endoscope and the datum may be through direct contact or through non-contact interactions.
An instrumented endoscope may accomplish measurement by polling the status of the entire scope (or at least a portion of the scope length), and then determining the endoscope position in relation to an anatomical boundary or landmark such as, e.g., the anus in the case of a colonoscope. The polled information may be obtained by a number of sensors located along the length of the device. Because the sensed information may be obtained from the entire endoscope length (or at least a portion of its length), the direction of endoscope insertion or withdrawal from the body may be omitted because the instantaneous status of the endoscope may be provided by the sensors.
Aside from endoscopes being instrumented to measure insertion depth, other endoscope variations may be used in conjunction with a separate and external device that may or may not be attached to the body and which is configured to measure and/or record endoscope insertion depth. This device may be referred to as an external sensing device or as a datum or datum device. These terms are used interchangeably herein as the external sensing device may function, in part, as a point of reference relative to a position of the endoscope and/or patient. This datum may be located externally of the endoscope and either internally or externally of the body of the patient; thus, the interaction between the endoscope and the datum may be through direct contact or through non-contact interactions. Moreover, the datum may be configured to sense or read positional information by polling the status of sensors, which may be located along the body of the endoscope, as the endoscope passes into the body through, e.g., the anus. The datum may be positioned external to the patient and located, e.g., on the bed or platform that the patient is positioned upon, attached to a separate cart, or removably attached to the patient body, etc.
If the patient is positioned so that they are unable to move with any significant movement during a procedure, the datum may function as a fixed point of reference by securing it to another fixed point in the room. Alternatively, the datum may be attached directly to the patient in a fixed location relative to the point of entry of the endoscope into the patient's body. For instance, for colonoscopic procedures the datum may be positioned on the patient's body near the anus. The location where the datum is positioned is ideally a place that moves minimally relative to the anus because during such a procedure, the patient may shift position, twitch, flex, etc., and disturb the measurement of the endoscope. Therefore, the datum may be positioned in one of several places on the body.
One location may be along the natal cleft, i.e., the crease defined between the gluteal muscles typically extending from the anus towards the lower back. The natal cleft generally has little or no fat layers or musculature and does not move appreciably relative to the anus. Another location may be directly on the gluteal muscle adjacent to the anus.
In one alternative embodiment, there is provided an instrument having an elongate body; and a plurality of uniquely identified radio frequency identification chips spaced along the length of the elongate body. Additionally, the instrument may include a covering over the elongate body that contains the plurality of radio frequency identification chips. Additionally, the instrument may include a plurality of hinged segments along the length of the elongate body wherein each hinged segment of the plurality of hinged segments contains at least one uniquely identified radio frequency identification chip of the plurality of uniquely identified radio frequency identification chips. Alternatively, an antenna of at least one radio frequency identification chip of the plurality of radio frequency identification chips wraps at least partially around at least one hinged segment of the plurality of hinged segments. In another embodiment, the plurality of uniquely identified radio frequency identification chips are evenly spaced along the length of the elongate body. In another alternative, the plurality of uniquely identified radio frequency identification chips are spaced at different intervals along the length of the elongate body. Additionally, the plurality of uniquely identified radio frequency identification chips operate at a frequency of about 13.56 MHz or a frequency of about 2.45 GHz. In one embodiment, the one or more one radio frequency identification chips are contained within a 2 mm spacing along the length of the elongate body. In another embodiment, the one or more radio frequency identification chips are contained within a 1 cm spacing along the length of the elongate body. In yet another alternative, each radio frequency identification chip of the plurality of uniquely identified radio frequency identification chips is encoded with position information about the location of the radio frequency identification chip on the elongate body.
In another alternative embodiment, there is provided a system for determining the position of an instrument including an instrument; a plurality of uniquely identified radio frequency identification chips attached to the instrument; a reader connected to an antenna and adapted to communicate with each radio frequency identification chip in the plurality of uniquely identified radio frequency identification chips using the antenna. In another embodiment, the system includes a uniquely identified radio frequency identification chip separate from the radio frequency identification chips attached to the instrument and positioned within the detectable field of the antenna to always be detected by the reader without regard to the position of the instrument. In another alternative, least one radio frequency identification chip in the plurality of uniquely identified radio frequency identification chips attached to the instrument is configured to transmit an authentication code. In another alternative, the antenna and the radio frequency identification chips are configured to operate at a frequency of about 13.56 MHz or 2.45 GHz. In one embodiment, the instrument is an endoscope or a colonoscope. In another embodiment, the instrument is a segmented instrument having a controllable distal tip and a plurality of controllable proximal segments. In one embodiment, the antenna in the system is straight. In another alternative, the antenna has a circular shape sized to allow the instrument to pass through the circular shape. In one aspect, the circular shape is a circle. In another alternative, there is provided a flexible substrate wherein the uniquely identified radio frequency identification chip separate from the radio frequency identification chips attached to the instrument and the antenna are mounted. In one aspect, the flexible substrate includes an aperture sized to allow the passage of the instrument.
In yet another aspect, there is provided a method for determining the position of an instrument using radio frequency identification chips by providing a radio frequency identification chip reader and antenna; providing an instrument having a longitudinal axis and comprising a plurality of radio frequency identification chips placed along the longitudinal axis; moving the instrument relative to the antenna; and using information about a radio frequency identification chip detected by the antenna to determine the position of the instrument. In one aspect, the moving step includes passing the instrument through a hoop formed by the antenna. Another aspect includes providing information about the position of the instrument relative to the antenna to a system used to control the instrument. In one aspect, the step of providing a radio frequency identification chip reader and antenna comprises placing the antenna adjacent an opening in the body of a mammal. Additionally, the opening may be a natural opening or a surgically created opening. In another aspect, the using step comprises using information about a radio frequency identification chip detected by the antenna to determine the position of the instrument relative to the antenna. In another aspect, the information about a radio frequency identification chip includes an indication that the radio frequency identification chip has entered the opening in the body of the mammal. In one embodiment, the indication is that the reader no longer detects the radio frequency identification chip.
A determination of the length of an endoscope or colonoscope inserted into a body organ within a patient, or generally into any enclosed space, is useful information which may be used to aid in mapping the body organ, anatomical landmarks, anomalies, etc., and/or to maintain real-time knowledge of the endoscope position within the body. The term endoscope and colonoscope may be used herein interchangeably but shall refer to the same type of device. This is particularly useful when used in conjunction with various endoscopes and/or colonoscopes having a distal steerable portion and an automatically controlled proximal portion which may be automatically controlled by, e.g., a controller. Examples of such devices are described in detail in the following granted patents and co-pending applications: U.S. Pat. No. 6,468,203; U.S. patent application Ser. No. 09/969,927 filed Oct. 2, 2001; U.S. patent application Ser. No. 10/229,577 filed Aug. 27, 2002; U.S. patent application Ser. No. 10/087,100 filed Mar. 1, 2002; and U.S. patent application Ser. No. 10/139,289 filed May 2, 2002, each of which has been incorporated by reference above.
There are at least two different approaches which may be utilized in determining endoscopic insertion depth and/or position when an endoscope has been inserted within the body. One method is to utilize a fully instrumented endoscopic device which incorporates features or elements which are configured to determine the endoscope's depth of insertion and to relay this information to the operator, surgeon, nurse, or technician involved in carrying out a procedure.
Another method is to utilize a sensing device separate from and external to the endoscope and which interacts with the endoscope to determine which portion of the endoscope has passed through or by a reference boundary. The external sensing device may also be referred to herein interchangeably as a datum or datum device as it may function, in part, as a point of reference relative to a position of the endoscope and/or patient. This datum may be located externally of the endoscope and either internally or externally to the body of the patient; thus, the interaction between the endoscope and the datum may be through direct contact or through non-contact interactions.
Instrumented Endoscopes
One method of determination for endoscopic insertion depth and/or position is through an endoscopic device which may be configured to determine its depth of insertion. That is, an endoscopic device may be configured to indicate the portion of the endoscope that has been inserted into a body organ without the need for a separate or external sensing device. This type of determination may reflect an endoscope configured such that its depth measurement is independent of its progress during insertion or withdrawal into the body organ and instead reflects its depth instantaneously without regards to its insertion history.
Such an endoscopic device may accomplish this, in part, by polling the status of the entire scope (or at least a portion of the scope length), and then determining the endoscope position in relation to an anatomical boundary or landmark such as, e.g., the anus in the case of a colonoscope. The polled information may be obtained by a number of sensors located along the length of the device, as described in further detail below. Because the sensed information may be obtained from the entire endoscope length (or at least a portion of its length), the direction of endoscope insertion or withdrawal from the body may be omitted because the instantaneous status of the endoscope may be provided by the sensors. Directional information or history of the endoscope position during an exploratory or diagnostic procedure may optionally be recorded and/or stored by reviewing the endoscope time history of insertion depth.
One variation is seen in
Endoscope 12 may alternatively be configured to detect and correlate the length of the endoscope 12 remaining outside the body rather than inside the body to indirectly calculate the insertion depth. Moreover, the endoscope 12 may additionally detect and correlate both the length of the endoscope 12 remaining outside the body as well as the length of endoscope 12 inserted within the body. Alternatively, endoscope 12 may sense the location of the orifice or anus 20 along the length of the device and then calculate either the length remaining outside the body or the insertion length relative to the position of anus 20.
Another example of changing environmental factors leading to a change in an output variable is shown in
Another variation on endoscopic sensing may utilize resistivity rather than capacitance. For instance, continuous circuit 14 may be configured into a single printed circuit with an overlay of conductive printed carbon.
Another variation is shown in
Another variation on the type of switch which may be used is light-detecting transducers. The switches S1 to SN, may be configured as one of a variety of different types of photo-sensitive switches, e.g., photoemissive detectors, photoconductive cells, photovoltaic cells, photodiodes, phototransistors, etc. The switches S1 to SN, may be located at predetermined positions along the length of the endoscope 30. As the endoscope 30 is inserted into the patient 18, the change in ambient light from outside the patient 18 to inside the patient 18 may result in a voltage change in the switches inserted within the body 18. This transition may thereby indicate the insertion depth of the endoscope 30 within the body 18 or the length of the endoscope 30 still located outside the body 18. The types of photo-sensitive switches aforementioned may have a current running through them during a procedure, with the exception of photovoltaic switches, which may be powered entirely by the ambient light outside the body 18.
Another variation is shown in
Yet another example is shown in
As mentioned above, other output variables aside from pressure or force, capacitance, and resistance measurements may also be employed to determine endoscopic insertion depth. For instance, moisture or pH sensors may be utilized since moisture or pH values change dramatically with insertion into the body. Temperature or heat flux sensing may also be utilized by placing temperature sensors, e.g., thermistors, thermocouples, etc., at varying locations along the endoscope body. Temperature sensing may take advantage of the temperature differences between air and the body. Another alternative may include heating or cooling the interior of the endoscope at ranges above or below body temperature. Thus, the resultant heat flux into or out of the endoscope, depending upon the interior endoscope temperature, may be monitored to determine which portion of the endoscope are in contact with the body tissue. Another alternative may include light sensing by positioning light sensors at locations along the endoscope body. Thus, light intensity differences may be determined between outside and inside the body to map endoscope insertion depth. Alternatively, sound waves or other pressure waves, ultrasound, inductive proximity sensors, etc., may also be utilized.
In utilizing sensors positioned upon the endoscope body, an algorithm may be utilized for determining and recording the insertion depth of the endoscope within a patient, as shown in
Such an algorithm may be implemented with any of the devices described above to eliminate false measurements and to maintain accurate insertion depth measurements. Step 80 indicates the start of the algorithm as the endoscope waits for a sensor to be triggered 82. If a sensor has not been triggered 84, the algorithm would indicate a “No” and the device would continue to wait for a trigger signal. Upon an indication that a sensor has been triggered 84, a comparison of the triggered signal takes place to compare whether the sensed signal is from an adjacent sensor 85 by comparing the triggered sensor information to stored register information in sensor register 88. If the triggered signal is not from an adjacent sensor, the signal is rejected as a false signal 87 and the endoscope goes back to waiting for a sensor to be triggered 82. However, if the triggered signal is from an adjacent sensor when compared to the value stored in register 88, register 88 is updated 86 with the new sensor information and the endoscope then continues to wait for another sensor to be triggered 82.
Endoscopes Using External Sensing Devices
Aside from endoscopes being instrumented to measure insertion depth, other endoscopes may be used in conjunction with a separate device configured to measure and/or record endoscope insertion depth. This separate device may be referred to as an external sensing device or as a datum or datum device. These terms are used interchangeably herein as the external sensing device may function, in part, as a point of reference relative to a position of the endoscope and/or patient. This datum may be located externally of the endoscope and either internally or externally to the body of the patient; thus, the interaction between the endoscope and the datum may be through direct contact or through non-contact interactions. Moreover, the datum may be configured to sense or read positional information by polling the status of sensors or transponders, which may be located along the body of the endoscope, as the endoscope passes into the body through, e.g., the anus. Alternatively, the datum may be configured to detect sensors or transponders only within a limited region or area. The datum may be positioned external to the patient and located, e.g., on the bed or platform that the patient is positioned upon, attached to a separate cart, or removably attached either internally or externally to the patient body, etc.
Any number of technologies may be utilized with tags 94. For instance, one variation may have tags 94 configured as RF identification tags or antennas. Reader 98 may accordingly be configured as a RF receiving device. Each tag 94 may be encoded with, e.g., position information such as the distance of a particular tag 94 from the distal end of endoscope 92. The reader 98 may be configured to thus read in only certain regions or zones, e.g., reader 98 may read only those RF tags passing through opening 100 or only those tags adjacent to anus 20. Alternatively, the RF tags may be configured to transmit the status of, e.g., pressure switches as described above, to datum 96 to determine the length of insertion.
Another variation on tags 94 may be to configure the tags for ultrasonic sensing. For example, each tag 94 may be configured as piezoelectric transducers or speakers positioned along the endoscope 92. The reader 98 may thus be configured as an ultrasonic receiver for receiving positional information from tuned transducers or tags 94 each of which relay its positional information. Alternatively, optical sensors may be used as tags 94. In this variation, each tag 94 may be configured as a passive encoded marker located on an outer surface of endoscope 92. These markers may be in the form of a conventional bar code, custom bar code, color patterns, etc., and each may be further configured to indicate directional motion, i.e., insertion or withdrawal. Furthermore, each tag 94 may be configured as active encoded markers, e.g., LEDs which may be blinking in coded patterns. Reader 98 may thus be configured as an optical sensor.
Another alternative may be to configure tags 94 and reader 98 for infrared (IR) sensing in which case IR emitters may be positioned along the length of endoscope 92 such that each IR emitter or tag 94 is configured to emit light at a specific frequency according to its position along the endoscope 92. Reader 98 may thus be configured as an IR receiver for receiving the different frequencies of light and mapping the specific frequency detected against the length of endoscope 92. Yet another alternative may be to have tags 94 configured magnetically such that a magnetic reader in datum 96 can read the position of the device, as described in further detail below.
Yet another alternative may be to configure the datum and endoscope assembly as a linear cable transducer assembly. In this variation, reader 98 may be configured as a transducer having a cable, wire, or some other flexible member extending from reader 98 and attached to the distal end of endoscope 92. While the datum 96 remains external to the patient and further remains in a fixed position relative to the patient, the endoscope 92 may be advanced within the patient while pulling the cable or wire from reader 98. The proximal end of the cable or wire may be attached to a spool of cable or wire in electrical communication with a multi-turn potentiometer. To retract the cable or wire when the endoscope 92 is withdrawn, the spool may be biased to urge the retraction of the cable or wire back onto the spool. Thus, the change of wire length may be correlated to an output of the reader 98 or of the potentiometer to a length of the extended cable and thus the length of the endoscope 92 inserted within the patient.
Yet another alternative may be to mount rollers connected to, e.g., multi-turn potentiometers, encoders, etc., on datum 96. These rollers may be configured to be in direct contact with the endoscope 92 such that the rollers rotate in a first direction when endoscope 92 is advanced and the rollers rotate in the opposite direction when endoscope 92 is withdrawn. The turning and number of revolutions turned by the rollers may be correlated into a length of the insertion depth of endoscope 92.
Yet another alternative may be to use the endoscopes, or any of the endoscopes described herein, in conjunction with conventional imaging technologies which are able to produce images within the body of a patient. For instance, any one of the imaging technologies such as x-ray, fluoroscopy, computed tomography (CT), magnetic resonance imaging (MRI), magnetic field location systems, etc., may be used in conjunction with the endoscopes described herein for determining the insertion depth.
In yet another alternative, the datum may be used to sense the positional information from the endoscope through the use of one or several pressure sensors located on the datum, e.g., datum 96. The pressure sensor may be positioned upon datum 96 such that it may press up against the endoscope 92 as it is advanced or withdrawn. This pressure sensor may be configured, e.g., as a switch, or it alternatively be configured to sense certain features on the endoscope 92, e.g., patterned textures, depressions, detents, etc., which are located at predetermined lengths or length intervals to indicate to the pressure switch the insertion depth of endoscope 92.
Yet another alternative is to sense changes in the diameter of the endoscope body inserted into the patient, as seen in
If reader 118 were configured as an optical sensor, it may further utilize a light source, e.g., LED, laser, carbon, etc., within datum 116. This light source may be utilized along with a CCD or CMOS imaging system connected to a digital signal processor (DSP) within reader 118. The light may be used to illuminate markings located at predetermined intervals along endoscope 112. Alternatively, the markings may be omitted entirely and the CCD or CMOS imaging system may be used to simply detect irregularities normally present along the surface of an endoscope. While the endoscope is moved past the light source- and reader 118, the movement of the endoscope may be detected and correlated accordingly to indicate insertion depth.
In order to determine the direction of the endoscope when it is either advanced or withdrawn from the patient, directional information may be obtained using any of the examples described above. Another example is to utilize at least two or more sensors positioned at a predetermined distance from one another.
A more detailed description for determining the endoscope's direction of travel follows below.
If, however, first sensor 150 does not measure a voltage greater than second sensor 152 in step 172, another determination may be performed in step 176 to determine whether the voltages measured by sensors 150, 152 are equal. If the voltages are not equivalent, the algorithm proceeds to step 180 where yet another determination may be performed in step 180 to determine if both voltages are increasing. If they are not, then step 178 is performed, as described above. If both voltages are increasing, then step 184 may indicate that the endoscope is being withdrawn. At this point, the position of the endoscope and its fractional position, i.e., the distance traveled by the endoscope since its last measurement, may again be determined and the algorithm may then return to step 172 to await the next measurement.
In step 176, if the voltages measured by first sensor 150 and second sensor 152 are equivalent, then the algorithm may await to determine whether a peak voltage is detected in step 182. If a peak voltage is detected, step 186 increments the insertion count. However, if a peak is not detected, then step 188 decrements the insertion count. Regardless of whether the insertion count is incremented or decremented, the algorithm may return to step 172 to await the next measurement.
Endoscopes Using Magnetic Sensing Devices
One particular variation on measuring endoscopic insertion depth may utilize magnetic sensing, in particular, taking advantage of the Hall effect. Generally, the Hall effect is the appearance of a transverse voltage difference in a sensor, e.g., a conductor, carrying a current perpendicular to a magnetic field. This voltage difference is directly proportional to the flux density through the sensing element. A permanent magnet, electromagnet, or other magnetic field source may be incorporated into a Hall effect sensor to provide the magnetic field. If a passing object, such as another permanent magnet, ferrous material, or other magnetic field-altering material, alters the magnetic field, the change in the Hall-effect voltage may be measured by the transducer.
Another variation is shown in
Alternatively, a number of magnets each having a unique magnetic signature may be placed at predetermined positions along the length of the endoscope. Each magnet 248 may be mapped to its location along the endoscope so when a magnet having a specific magnetic signature is detected, the insertion depth of the endoscope may be correlated. The magnets 248 may have unique magnetic signatures, e.g., measurable variations in magnetic field strength, alternating magnetic fields (if electromagnets are utilized), reversed polarity, etc.
Another alternative for utilizing Hall sensors is seen in
Yet another variation is shown in
The rotation of datum wheel 382 that results when endoscope 386 is moved past can be sensed by a variety of methods. One example includes rotary optical encoders, another example includes sensing the movement of magnets 398 on datum wheel 382 as they rotate relative to a fixed point as measured by, e.g., Hall effect sensors or magnetoresistive sensors. As datum wheel 382 rotates with the linear movement of endoscope 386, datum wheel 382 may directly touch endoscope 386 or a thin material may separate the wheel 382 from the body of endoscope 386.
Examples of External Sensing Devices
The external sensing devices, or datum, may function in part as a point of reference relative to a position of the endoscope and/or patient, as described above. The datum may accordingly be located externally of the endoscope and either internally or externally to the body of the patient. If the patient is positioned so that they are unable to move with any significant movement during a procedure, the datum may function as a fixed point of reference by securing it to another fixed point in the room, e.g., examination table, procedure cart, etc. Alternatively, the datum may be attached directly to the patient in a fixed location relative to the point of entry of the endoscope into the patient's body. The datum variations described herein may utilize any of the sensing and measurement methods described above.
For instance, for colonoscopic procedures the datum may be positioned on the patient's body near the anus. The location where the datum is positioned is ideally a place that moves minimally relative to the anus because during such a procedure, the patient may shift position, twitch, flex, etc., and disturb the measurement of the endoscope. Therefore, the datum may be positioned in one of several places on the body.
One location may be along the natal cleft, i.e., the crease defined between the gluteal muscles typically extending from the anus towards the lower back. The natal cleft generally has little or no fat layers or musculature and does not move appreciably relative to the anus. Another location may be directly on the gluteal muscle adjacent to the anus.
One variation for the datum for positioning along the natal cleft 408 is shown in
Another variation is shown in
Another variation is shown in
Another variation for positioning a datum is directly on the gluteal muscle adjacent to the anus. Generally, the sensor and associated circuitry may be incorporated into a patch or small chassis that may then be attached to the muscle adjacent to the anus. The entire datum assembly may optionally be mounted onto a bandage-like package with an adhesive backing.
Another variation is shown in
A datum device may also be configured to encircle an endoscope as it passes into the body. Such a datum configuration may be useful when using sensing technology such as RF. In the case of RF, the datum may be in a looped configuration to facilitate the exchange of RF signals with components or sensors mounted along the endoscope, as described above. One variation of a looped datum configuration is shown in
Yet another variation is shown in
Aside from colonoscopy, other applications may include uses in minimally invasive surgery (MIS). MIS typically depends upon the use of long, thin tools for insertion into the body via small incisions, e.g., often through a cannula. Instruments typically employed during MIS may include rigid endoscopes, laparoscopes, thoracoscopes, needle drivers, clamps, etc. Because each of these tools must pass through an opening in the body, a datum device may be used adjacent to that body opening for tracking instrument insertion depth. In situations where cannulas are used, the cannula itself may be instrumented through one of the methods described above.
For other types of endoscopy procedures, various types of flexible endoscopes may be used, e.g., upper endoscopes, duodenoscopes, sigmoidscopes, bronchoscopes, neuroscopes, ENT scopes, etc. Any of the devices and methods described above may be utilized and configured to maintain insertion depth for any of these types of endoscopes. For instance, for flexible endoscopes that enter the body transorally, a mouthpiece configured as a datum may be utilized.
In another embodiment of the present invention, there is provided an instrument, system and method for the use of RFID technology to the sensing of position. A series of RFID tags are affixed to an object that passes in close proximity to an RFID reader & antenna. The passage of the series of RFID tags allows the position of the object to be determined by identifying the RFID tags that respond to queries by the reader.
Specifically, one application of this concept relates to sensing the depth of insertion of a flexible endoscope into a patient during an endoscopic procedure. This application describes an application specific to colonoscopy. The techniques, methods, components and systems described herein may be used with any flexible endoscope and any endoscopic procedure. Other related concepts are described in U.S. patent application Ser. No. 10/384,252 published as U.S. Patent Application No. 2004/0176683, which is incorporated herein by reference in its entirety.
There are 4 major families of RFID technologies, categorized by their operating frequencies:
Other RFID families share some of these advantages; however HF is the only family that combines them all at the same time. The primary advantage of microwave RFID is the relatively small size of the RFID chip. The Hitachi μ-chip, for example, is about 0.4 mm×0.4 mm. This size allows the chip to be placed in nearly any location along, within or about an instrument.
RFID tags, readers and antennas are well known and widely commercially available. A typical RFID (Radio Frequency Identification) system is comprised of 4 basic elements: (1) RFID reader module; (2) RFID reader antenna, (3) RFID reader antenna cable and (4) RFID tag, chip or sensor.
RFID Reader Module
The RFID reader module is the source of the RF carrier wave used both to provide power to responding RFID tags, and to create the base carrier over which RF communications are achieved. The reader module can be off-the-shelf module such as the OBID® RFID Reader System provided by FEIG Electronic GmbH located in Weilburg, Germany or the Skyemodule M1 provided by SkyeTek, Inc. located in Westminster, Colo. The reader may include an anti-collision mechanism that allows for the orderly processing of responses from two or more RFID tags within the reader field range. Reader modules may be designed from conventional modular components or custom designed. Typically RFID readers are configured to operate with RFID tags that comply with ISO-15693, ISO-14443 and HF EPC, for example. Readers have a read range based on a number of factors such as antenna type (internal vs. external), surrounding structure that may interfere with operation and operating frequency. For example, an HF RFID reader may have a read range or reader field range of 9 cm with an internal antenna or 20 cm with an external antenna. In another example, a microwave RFID reader may have a reader field range of 1 m or more. Embodiments of the present invention utilize the entry and departure of individual RFID tags from a reader field range to determine the position of an instrument.
RFID Reader Antenna
The RFID reader antenna is the antenna used to broadcast the RF carrier wave created by the RFID reader module, and to receive the signal created by the RFID tag. The antenna is selected based on the operating frequency for the RFID system.
RFID Reader Antenna Cable
The RFID reader antenna cable is a conventional wired connection between the reader module and the reader antenna, typically impedance matched.
RFID Tags
An RFID tag is a conventional transponder that is excited and queried by an appropriate RFID reader assembly based on the operating frequency of the RFID system in use. RFID tags are passive ICs that receive power from the RF signal from the reader and generate electric power from the received RF signal. The RFID tag then transmits its ID or data to the reader. The response of a typical RFID tag may include but is not limited to: tag serial number, tag data field, placement within an item (i.e., distance from the distal end of an instrument or placement about the perimeter of an instrument) and/or sensor inputs. A typical RFID tag is comprised of an RFID integrated circuit (chip), an antenna, and discrete electronic components (e.g. inductors, capacitors, resistors, etc.). RFID tags are also referred to as short range contactless memory chips. Numerous various chips are commercially available and manufactured by STMicroelectronics of Geneva, Switzerland, among others. Another RFID IC is the μ-chip provided by Hitachi, Ltd., Japan. The RFID tag and reader may also be programmed to provide a number of other features such as: anti-clone, authentication, unique ID, and/or challenge/response. RFID tags may also include writable memory. One use of the writable memory would be to write the position orientation or other position information onto a specific tag as the instrument is assembled or as part of a tag initiation process. In this manner, the unique identification of a tag may be associated with a position on, in or about an instrument or component of an instrument. One exemplary write application would be to write onto tag memory the location of the tag relative to the distal end of the instrument. The write process may also include information related to the orientation of the tag on a portion of the instrument. Exemplary orientations may include 0, 90, 180 or 270 degree relative positions on a component of the instrument such as a vertebra or other structural member.
A plurality of RFID tags are provided on, in, about or along an instrument.
In addition to providing a number of RFID tags on, in, along or about an instrument, it is to be appreciated that different function and types of RFID tags can be used, such as, for example:
In some embodiments, the reader antenna is designed in the form of a “patch,” or a flexible substrate or structure (see, for example,
An RFID reader antenna may also optionally be provided with an RFID tag built into or located near the antenna. Many details of various reader antenna alternatives are illustrated in
The system described herein provides a programmable device that is manufactured as part of a single-use medical device for the purpose of determining calibration, manufacturer, operator and other information. These functions are accomplished without a conventional wired interface. Instead, these functions are accomplished using a radiofrequency interface provided by the reader antenna and the RFID tag for real time device operation or performance monitoring. Additionally, the use of a “known good” tag provides an operational check of RFID reader antenna circuitry to verify integrity of the cable and antenna.
Another feature is an anti-counterfeiting or anti-clone feature: An RFID tag may be assigned a code unique to the system. System software could be require identification of a “recognized” tag prior to operation of the system. An embedded RFID tag in the flexible antenna substrate may be used to prevent counterfeiting and ensure that the device remains a single-use medical device. Counterfeiting is prevented or discouraged because of the unique code that can be programmed into the memory of the RFID tag thereby making the single-use medical device difficult for others to copy.
In order to prevent counterfeiting, an RFID tag integrated circuit and antenna may be fabricated into a single-use device. The single use device has an integrated RFID antenna. When connected to an RFID reader, the RFID antenna can read tags in the vicinity as well as the integrated tag. Software inside the RFID reader will perform a check of the single-use device by reading the RFID tag to ensure the attached single-use devices in genuine. If a known RFID tag is not read, the software will prevent use of the single-use device. In addition, the RFID tag embedded the antenna serves as an indicator that the RFID reader antenna is connected to the RFID reader. When the RFID reader is unconnected, the RFID tag in the single-use device will not be seen by the RFID reader. RFID reader antenna mount, patch or substrate could be, preferably, disposable, but could also be made to be reusable.
An antenna 614A is provided for each chip 614. The drawing is not to scale and the antenna 614A may be longer and have a different shape or orientation relative to the elongate body than illustrated. The covering 607 is placed over the elongate body and contains the plurality of radio frequency identification chips 614. An additional optional covering (not shown) may be placed over the covering 607 and chips 614. The chips 614 may also be embedded within a covering 607, between layers of a multilayered laminate structure. Alternatively, the chips 614 and antennas 614A could be mounted on an adhesive backing and secured to the covering 607. Optionally, the chips 614 and antennas 614A on the adhesive backing could be encapsulated in a protective biocompatible covering.
An RFID bobbin 613A is best seen in
When the reader 705 provides energy to the antenna 710 a field F (indicated by the arrows looping around antenna 710). The field F is used by the reader 705 to power and communicate with the RFID chips SA-SK. The reader 705 has a reader field range 715 (indicated by the dashed lines) within which the reader can communicate with the RFID chips. If the antenna 710 is used to create a reference position R that approximately divides the reader field range into a +d direction and a −d direction. In this convention, +d indicates that the instrument 640 is moving to an increased depth with relation to the reference position R. Movement by the instrument in the opposition direction, −d, indicates decreasing depth or withdrawal of the instrument with regard to the reference position R. In this way, the position of an individual RFID chip may be determined relative a reference position R or with respect to the reader field range 715. Knowing the position of individual RFID tags can then be used to determine the position of the instrument 640.
In one alternative embodiment, the moving step 5115 includes passing the instrument through a hoop formed by the antenna. The step of providing a radio frequency identification chip reader and antenna may also include placing the antenna adjacent an opening in the body of a mammal. The opening in the body of a mammal may be a natural opening or an opening that is created surgically.
In another alternative embodiment, the using step 5120 includes using information about a radio frequency identification chip detected by the antenna to determine the position of the instrument relative to the antenna. Additionally or alternatively, the information about a radio frequency identification chip may include an indication that the radio frequency identification chip has entered the opening in the body of the mammal. One indication may be that the reader no longer detects the radio frequency identification chip. The reader would not be able to detect a tag if the RF energy is being absorbed by the surrounding tissue as in the case of using RFID systems in some UHF and microwave frequencies.
The applications of the devices and methods discussed above are not limited to regions of the body but may include any number of further treatment applications. Other treatment sites may include other areas or regions of the body. Additionally, the present invention may be used in other environments such as exploratory procedures on piping systems, ducts, etc. Modification of the above-described assemblies and methods for carrying out the invention, and variations of aspects of the invention that are obvious to those of skill in the art are intended to be within the scope of the claims.
This application claims the benefit of U.S. Provisional Patent application Ser. No. 60/755,255 entitled “Endoscope Having Radio Frequency Identification Systems and Methods” filed Dec. 30, 2005 and is a continuation in part of U.S. patent application Ser. No. 10/384,252 entitled: “Method and Apparatus For Tracking Insertion Depth” filed Mar. 7, 2003, now abandoned each of which are incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
616672 | Kelling | Dec 1898 | A |
2510198 | Tesmer | Jun 1950 | A |
2533494 | Mitchell, Jr. | Dec 1950 | A |
2767705 | Moore | Oct 1956 | A |
3060972 | Sheldon | Oct 1962 | A |
3071161 | Ulrich | Jan 1963 | A |
3096962 | Meijs | Jul 1963 | A |
3162214 | Bazinet, Jr. | Dec 1964 | A |
3168274 | Street | Feb 1965 | A |
3190286 | Stokes | Jun 1965 | A |
3266059 | Stelle | Aug 1966 | A |
3430662 | Guarnaschelli | Mar 1969 | A |
3497083 | Anderson | Feb 1970 | A |
3546961 | Marton | Dec 1970 | A |
3610231 | Takahashi | Oct 1971 | A |
3625084 | Low | Dec 1971 | A |
3643653 | Takahashi et al. | Feb 1972 | A |
3739770 | Mori | Jun 1973 | A |
3773034 | Burns et al. | Nov 1973 | A |
3780740 | Rhea | Dec 1973 | A |
3858578 | Milo | Jan 1975 | A |
3871358 | Fukuda et al. | Mar 1975 | A |
3897775 | Furihata | Aug 1975 | A |
3913565 | Kawahara | Oct 1975 | A |
3946727 | Okada | Mar 1976 | A |
3990434 | Free | Nov 1976 | A |
4054128 | Seufert | Oct 1977 | A |
4176662 | Frazer | Dec 1979 | A |
4233981 | Schomacher | Nov 1980 | A |
4236509 | Takahashi | Dec 1980 | A |
4240435 | Yazawa et al. | Dec 1980 | A |
4273111 | Tsukaya | Jun 1981 | A |
4299230 | Kubota | Nov 1981 | A |
4327711 | Takagi | May 1982 | A |
4366810 | Slanetz, Jr. | Jan 1983 | A |
4393728 | Larson | Jul 1983 | A |
4432349 | Oshiro | Feb 1984 | A |
4483326 | Yamaka et al. | Nov 1984 | A |
4489826 | Dubson | Dec 1984 | A |
4494417 | Larson | Jan 1985 | A |
4499895 | Takayama | Feb 1985 | A |
4503842 | Takayama | Mar 1985 | A |
4543090 | McCoy | Sep 1985 | A |
4551061 | Olenick | Nov 1985 | A |
4559928 | Takayama | Dec 1985 | A |
4566843 | Iwatsuka | Jan 1986 | A |
4577621 | Patel | Mar 1986 | A |
4592341 | Omagari et al. | Jun 1986 | A |
4601283 | Chikama | Jul 1986 | A |
4601713 | Fuqua | Jul 1986 | A |
4621618 | Omagari | Nov 1986 | A |
4624243 | Lowery et al. | Nov 1986 | A |
4630649 | Oku | Dec 1986 | A |
4643184 | Mobin-Uddin | Feb 1987 | A |
4646722 | Silverstein et al. | Mar 1987 | A |
4648733 | Merkt | Mar 1987 | A |
4651718 | Collins et al. | Mar 1987 | A |
4655257 | Iwashita | Apr 1987 | A |
4683773 | Diamond | Aug 1987 | A |
4686963 | Cohen et al. | Aug 1987 | A |
4712969 | Kimura | Dec 1987 | A |
4726355 | Okada | Feb 1988 | A |
4753222 | Morishita | Jun 1988 | A |
4753223 | Bremer | Jun 1988 | A |
4754909 | Barker et al. | Jul 1988 | A |
4784117 | Miyazaki | Nov 1988 | A |
4787369 | Allred, III | Nov 1988 | A |
4788967 | Ueda | Dec 1988 | A |
4793326 | Shishido | Dec 1988 | A |
4796607 | Allred, III | Jan 1989 | A |
4799474 | Ueda | Jan 1989 | A |
4800890 | Cramer | Jan 1989 | A |
4807593 | Ito | Feb 1989 | A |
4815450 | Patel | Mar 1989 | A |
4832473 | Ueda | May 1989 | A |
4834068 | Gottesman | May 1989 | A |
4873965 | Danieli | Oct 1989 | A |
4873990 | Holmes et al. | Oct 1989 | A |
4879991 | Ogiu | Nov 1989 | A |
4884557 | Takehana et al. | Dec 1989 | A |
4890602 | Hake | Jan 1990 | A |
4895431 | Tsujiuchi et al. | Jan 1990 | A |
4899731 | Takayama et al. | Feb 1990 | A |
4904048 | Sogawa et al. | Feb 1990 | A |
4917114 | Green et al. | Apr 1990 | A |
4919112 | Siegmund | Apr 1990 | A |
4930494 | Takehana et al. | Jun 1990 | A |
4949927 | Madocks et al. | Aug 1990 | A |
4957486 | Davis | Sep 1990 | A |
4969709 | Sogawa et al. | Nov 1990 | A |
4971035 | Ito | Nov 1990 | A |
4977886 | Takehana et al. | Dec 1990 | A |
4977887 | Gouda | Dec 1990 | A |
4987314 | Gotanda et al. | Jan 1991 | A |
5005558 | Aomori | Apr 1991 | A |
5005559 | Blanco et al. | Apr 1991 | A |
5014709 | Bjelkhagen et al. | May 1991 | A |
5018509 | Suzuki et al. | May 1991 | A |
5025778 | Silverstein et al. | Jun 1991 | A |
5060632 | Hibino et al. | Oct 1991 | A |
5092901 | Hunter et al. | Mar 1992 | A |
5125395 | Adair | Jun 1992 | A |
5127393 | McFarlin et al. | Jul 1992 | A |
5159446 | Hibino et al. | Oct 1992 | A |
5166787 | Irion | Nov 1992 | A |
5174276 | Crockard | Dec 1992 | A |
5174277 | Matsumaru | Dec 1992 | A |
5188111 | Yates et al. | Feb 1993 | A |
5207695 | Trout, III | May 1993 | A |
5217001 | Nakao et al. | Jun 1993 | A |
5220911 | Tamura | Jun 1993 | A |
5228429 | Hatano | Jul 1993 | A |
5234448 | Wholey et al. | Aug 1993 | A |
5243967 | Hibino | Sep 1993 | A |
5250058 | Miller et al. | Oct 1993 | A |
5251611 | Zehel et al. | Oct 1993 | A |
5253647 | Takahashi | Oct 1993 | A |
5254809 | Martin | Oct 1993 | A |
5257617 | Takahashi | Nov 1993 | A |
5259364 | Bob et al. | Nov 1993 | A |
5271381 | Ailinger et al. | Dec 1993 | A |
5271382 | Chikama | Dec 1993 | A |
5279610 | Park et al. | Jan 1994 | A |
5297443 | Wentz | Mar 1994 | A |
5325845 | Adair | Jul 1994 | A |
5337732 | Grundfest et al. | Aug 1994 | A |
5337733 | Bauerfeind | Aug 1994 | A |
5343874 | Picha | Sep 1994 | A |
5347987 | Feldstin et al. | Sep 1994 | A |
5348259 | Blanco et al. | Sep 1994 | A |
5370108 | Miura et al. | Dec 1994 | A |
5383467 | Auer et al. | Jan 1995 | A |
5383852 | Stevens-Wright | Jan 1995 | A |
5389222 | Shahinpoor | Feb 1995 | A |
5394864 | Kobayashi et al. | Mar 1995 | A |
5400769 | Tanii et al. | Mar 1995 | A |
5402768 | Adair | Apr 1995 | A |
5411508 | Bessler et al. | May 1995 | A |
5413108 | Alfano | May 1995 | A |
5421337 | Richards-Kortum et al. | Jun 1995 | A |
5425738 | Gustafson et al. | Jun 1995 | A |
5429118 | Cole et al. | Jul 1995 | A |
5437290 | Bolger et al. | Aug 1995 | A |
5439000 | Gunderson et al. | Aug 1995 | A |
5451221 | Cho et al. | Sep 1995 | A |
5456714 | Owen | Oct 1995 | A |
5460166 | Yabe et al. | Oct 1995 | A |
5460168 | Masubuchi et al. | Oct 1995 | A |
5469840 | Tanii et al. | Nov 1995 | A |
5482029 | Sekiguchi et al. | Jan 1996 | A |
5487757 | Truckai et al. | Jan 1996 | A |
5489256 | Adair | Feb 1996 | A |
5507287 | Palcic et al. | Apr 1996 | A |
5507717 | Kura et al. | Apr 1996 | A |
5531664 | Adachi et al. | Jul 1996 | A |
5551945 | Yabe et al. | Sep 1996 | A |
5558619 | Kami et al. | Sep 1996 | A |
5558665 | Kieturakis | Sep 1996 | A |
5577992 | Chiba et al. | Nov 1996 | A |
5586968 | Grundl et al. | Dec 1996 | A |
5590660 | MacAulay et al. | Jan 1997 | A |
5599347 | Hart et al. | Feb 1997 | A |
5601087 | Gunderson et al. | Feb 1997 | A |
5602449 | Krause | Feb 1997 | A |
5608639 | Twardowski et al. | Mar 1997 | A |
5620408 | Vennes et al. | Apr 1997 | A |
5624380 | Takayama et al. | Apr 1997 | A |
5624381 | Kieturakis | Apr 1997 | A |
5626553 | Frassica et al. | May 1997 | A |
5645520 | Nakamura et al. | Jul 1997 | A |
5647368 | Zeng et al. | Jul 1997 | A |
5651769 | Waxman et al. | Jul 1997 | A |
5653690 | Booth et al. | Aug 1997 | A |
5658238 | Suzuki et al. | Aug 1997 | A |
5662585 | Willis et al. | Sep 1997 | A |
5662587 | Grundfest et al. | Sep 1997 | A |
5665050 | Benecke | Sep 1997 | A |
5667476 | Frassica et al. | Sep 1997 | A |
5679216 | Takayama et al. | Oct 1997 | A |
5728044 | Shan | Mar 1998 | A |
5733245 | Kawano | Mar 1998 | A |
5749828 | Solomon et al. | May 1998 | A |
5752912 | Takahashi et al. | May 1998 | A |
5759151 | Sturges | Jun 1998 | A |
5762613 | Sutton et al. | Jun 1998 | A |
5765561 | Chen et al. | Jun 1998 | A |
5769792 | Palcic et al. | Jun 1998 | A |
5772597 | Goldberg | Jun 1998 | A |
5773835 | Sinofsky | Jun 1998 | A |
5779624 | Chang | Jul 1998 | A |
5807241 | Heimberger | Sep 1998 | A |
5810715 | Moriyama | Sep 1998 | A |
5810716 | Mukherjee | Sep 1998 | A |
5810717 | Maeda | Sep 1998 | A |
5810776 | Bacich et al. | Sep 1998 | A |
5813976 | Filipi et al. | Sep 1998 | A |
5827190 | Palcic et al. | Oct 1998 | A |
5842973 | Bullard | Dec 1998 | A |
5860581 | Robertson et al. | Jan 1999 | A |
5860914 | Chiba et al. | Jan 1999 | A |
5876329 | Harhen | Mar 1999 | A |
5876373 | Giba et al. | Mar 1999 | A |
5885208 | Moriyama | Mar 1999 | A |
5893369 | LeMole | Apr 1999 | A |
5897417 | Grey | Apr 1999 | A |
5897488 | Ueda | Apr 1999 | A |
5902254 | Magram | May 1999 | A |
5906591 | Dario et al. | May 1999 | A |
5908381 | Aznoian et al. | Jun 1999 | A |
5916147 | Boury | Jun 1999 | A |
5921915 | Aznoian et al. | Jul 1999 | A |
5928136 | Barry | Jul 1999 | A |
5936527 | Isaacman et al. | Aug 1999 | A |
5941815 | Chang | Aug 1999 | A |
5941908 | Goldsteen et al. | Aug 1999 | A |
5957833 | Shan | Sep 1999 | A |
5968052 | Sullivan et al. | Oct 1999 | A |
5971767 | Kaufman et al. | Oct 1999 | A |
5976074 | Moriyama | Nov 1999 | A |
5989182 | Hori et al. | Nov 1999 | A |
5989230 | Frassica | Nov 1999 | A |
5993381 | Ito | Nov 1999 | A |
5993447 | Blewett et al. | Nov 1999 | A |
5996346 | Maynard | Dec 1999 | A |
6016440 | Simon et al. | Jan 2000 | A |
6033359 | Doi | Mar 2000 | A |
6036636 | Motoki et al. | Mar 2000 | A |
6042155 | Lockwood | Mar 2000 | A |
6048307 | Grundl et al. | Apr 2000 | A |
6063022 | Ben-Haim | May 2000 | A |
6066102 | Townsend et al. | May 2000 | A |
6066132 | Chen et al. | May 2000 | A |
6068638 | Makower | May 2000 | A |
6069564 | Hatano et al. | May 2000 | A |
6096289 | Goldenberg | Aug 2000 | A |
6099464 | Shimizu et al. | Aug 2000 | A |
6099465 | Inoue | Aug 2000 | A |
6099485 | Patterson | Aug 2000 | A |
6106510 | Lunn et al. | Aug 2000 | A |
6119913 | Adams et al. | Sep 2000 | A |
6129667 | Dumoulin et al. | Oct 2000 | A |
6129683 | Sutton et al. | Oct 2000 | A |
6141577 | Roland | Oct 2000 | A |
6149581 | Klingenstein | Nov 2000 | A |
6162171 | Ng et al. | Dec 2000 | A |
6174280 | Oneda | Jan 2001 | B1 |
6174291 | McMahon et al. | Jan 2001 | B1 |
6179776 | Adams | Jan 2001 | B1 |
6185448 | Borovsky | Feb 2001 | B1 |
6201989 | Whitehead | Mar 2001 | B1 |
6203493 | Ben-Haim | Mar 2001 | B1 |
6203494 | Moriyama | Mar 2001 | B1 |
6210337 | Dunham et al. | Apr 2001 | B1 |
6221006 | Dubrul et al. | Apr 2001 | B1 |
6232870 | Garber et al. | May 2001 | B1 |
6241657 | Chen et al. | Jun 2001 | B1 |
6249076 | Madden et al. | Jun 2001 | B1 |
6270453 | Sakai | Aug 2001 | B1 |
6306081 | Ishikawa et al. | Oct 2001 | B1 |
6309346 | Farhadi | Oct 2001 | B1 |
6315714 | Akiba | Nov 2001 | B1 |
6319197 | Tsuji et al. | Nov 2001 | B1 |
6327492 | Lemelson | Dec 2001 | B1 |
6332089 | Acker | Dec 2001 | B1 |
6333699 | Zierolf | Dec 2001 | B1 |
6335686 | Goff et al. | Jan 2002 | B1 |
6348058 | Melkent | Feb 2002 | B1 |
6352503 | Matsui et al. | Mar 2002 | B1 |
6366799 | Acker | Apr 2002 | B1 |
6396438 | Seal | May 2002 | B1 |
6402687 | Ouchi | Jun 2002 | B1 |
6408889 | Komachi | Jun 2002 | B1 |
6428203 | Danley | Aug 2002 | B1 |
6432041 | Taniguchi et al. | Aug 2002 | B1 |
6443888 | Ogura et al. | Sep 2002 | B1 |
6453190 | Acker | Sep 2002 | B1 |
6459481 | Schaack | Oct 2002 | B1 |
6468203 | Belson | Oct 2002 | B2 |
6482149 | Torii | Nov 2002 | B1 |
6485413 | Boppart | Nov 2002 | B1 |
6490467 | Bucholz | Dec 2002 | B1 |
6511417 | Taniguchi et al. | Jan 2003 | B1 |
6511418 | Shahidi | Jan 2003 | B2 |
6517477 | Wendlandt | Feb 2003 | B1 |
6527706 | Ide | Mar 2003 | B2 |
6537211 | Wang et al. | Mar 2003 | B1 |
6544215 | Bencini et al. | Apr 2003 | B1 |
6554793 | Pauker et al. | Apr 2003 | B1 |
6569173 | Blatter et al. | May 2003 | B1 |
6610007 | Benson et al. | Aug 2003 | B2 |
6616600 | Pauker | Sep 2003 | B2 |
6638213 | Ogura et al. | Oct 2003 | B2 |
6641528 | Torii | Nov 2003 | B2 |
6656110 | Irion et al. | Dec 2003 | B1 |
6689049 | Miyagi et al. | Feb 2004 | B1 |
6699183 | Wimmer | Mar 2004 | B1 |
6750769 | Smith | Jun 2004 | B1 |
6761685 | Adams et al. | Jul 2004 | B2 |
6783491 | Saadat et al. | Aug 2004 | B2 |
6790173 | Saadat et al. | Sep 2004 | B2 |
6800056 | Tartaglia et al. | Oct 2004 | B2 |
6808499 | Churchill et al. | Oct 2004 | B1 |
6808520 | Fourkas et al. | Oct 2004 | B1 |
6817973 | Merril et al. | Nov 2004 | B2 |
6837846 | Jaffe | Jan 2005 | B2 |
6837847 | Ewers et al. | Jan 2005 | B2 |
6837849 | Ogura et al. | Jan 2005 | B2 |
6843793 | Brock et al. | Jan 2005 | B2 |
6850794 | Shahidi | Feb 2005 | B2 |
6858005 | Ohline et al. | Feb 2005 | B2 |
6869396 | Belson | Mar 2005 | B2 |
6875170 | Francois et al. | Apr 2005 | B2 |
6890297 | Belson | May 2005 | B2 |
6902528 | Garibaldi et al. | Jun 2005 | B1 |
6942613 | Ewers et al. | Sep 2005 | B2 |
6960161 | Amling et al. | Nov 2005 | B2 |
6960162 | Saadat et al. | Nov 2005 | B2 |
6960163 | Ewers et al. | Nov 2005 | B2 |
6974411 | Belson | Dec 2005 | B2 |
6984203 | Tartaglia et al. | Jan 2006 | B2 |
7018331 | Chang et al. | Mar 2006 | B2 |
7087013 | Belson et al. | Aug 2006 | B2 |
7618374 | Barnes et al. | Nov 2009 | B2 |
20010051766 | Gazdzinski | Dec 2001 | A1 |
20020016607 | Bonadio et al. | Feb 2002 | A1 |
20020062062 | Belson et al. | May 2002 | A1 |
20020120254 | Julian | Aug 2002 | A1 |
20020147385 | Butler et al. | Oct 2002 | A1 |
20020151767 | Sonnenschein | Oct 2002 | A1 |
20020169361 | Taniguchi | Nov 2002 | A1 |
20020193662 | Belson | Dec 2002 | A1 |
20030045798 | Hular et al. | Mar 2003 | A1 |
20030083550 | Miyagi | May 2003 | A1 |
20030099158 | De la Huerga | May 2003 | A1 |
20030130598 | Manning et al. | Jul 2003 | A1 |
20030156401 | Komine et al. | Aug 2003 | A1 |
20030167007 | Belson | Sep 2003 | A1 |
20030182091 | Kukuk | Sep 2003 | A1 |
20030195387 | Kortenbach et al. | Oct 2003 | A1 |
20030233056 | Saadat et al. | Dec 2003 | A1 |
20030236505 | Bonadio et al. | Dec 2003 | A1 |
20030236549 | Bonadio et al. | Dec 2003 | A1 |
20040019254 | Belson | Jan 2004 | A1 |
20040044270 | Barry | Mar 2004 | A1 |
20040049251 | Knowlton | Mar 2004 | A1 |
20040097788 | Mourlas et al. | May 2004 | A1 |
20040106852 | Windheuser et al. | Jun 2004 | A1 |
20040176683 | Whitin et al. | Sep 2004 | A1 |
20040186350 | Brenneman et al. | Sep 2004 | A1 |
20040193008 | Jaffe et al. | Sep 2004 | A1 |
20040193009 | Jaffe et al. | Sep 2004 | A1 |
20040204645 | Saadat et al. | Oct 2004 | A1 |
20040210109 | Jaffe et al. | Oct 2004 | A1 |
20040220450 | Jaffe et al. | Nov 2004 | A1 |
20040230096 | Stefanchik et al. | Nov 2004 | A1 |
20040250819 | Blair et al. | Dec 2004 | A1 |
20050020901 | Belson et al. | Jan 2005 | A1 |
20050085693 | Belson et al. | Apr 2005 | A1 |
20050124855 | Jaffe et al. | Jun 2005 | A1 |
20050137454 | Saadat et al. | Jun 2005 | A1 |
20050137455 | Ewers et al. | Jun 2005 | A1 |
20050137456 | Saadat et al. | Jun 2005 | A1 |
20050154258 | Tartaglia et al. | Jul 2005 | A1 |
20050154261 | Ohline et al. | Jul 2005 | A1 |
20050165276 | Belson | Jul 2005 | A1 |
20050168571 | Lia et al. | Aug 2005 | A1 |
20050203339 | Butler et al. | Sep 2005 | A1 |
20050209506 | Butler et al. | Sep 2005 | A1 |
20050209509 | Belson | Sep 2005 | A1 |
20050222497 | Belson | Oct 2005 | A1 |
20050222498 | Belson | Oct 2005 | A1 |
20050250990 | Le et al. | Nov 2005 | A1 |
20060009678 | Jaffe et al. | Jan 2006 | A1 |
20060009679 | Ito et al. | Jan 2006 | A1 |
20060052664 | Julian et al. | Mar 2006 | A1 |
20060173289 | Aizawa et al. | Aug 2006 | A1 |
20060187044 | Fabian et al. | Aug 2006 | A1 |
20060235457 | Belson | Oct 2006 | A1 |
20060235458 | Belson | Oct 2006 | A1 |
20060258912 | Belson et al. | Nov 2006 | A1 |
20070043259 | Jaffe et al. | Feb 2007 | A1 |
20070093858 | Gambale et al. | Apr 2007 | A1 |
20070129602 | Bettesh et al. | Jun 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070161291 | Swinehart et al. | Jul 2007 | A1 |
20070161857 | Durant et al. | Jul 2007 | A1 |
20070270650 | Eno et al. | Nov 2007 | A1 |
20080154288 | Belson | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
2823025 | Dec 1979 | DE |
3707787 | Sep 1988 | DE |
4102211 | Aug 1991 | DE |
19626433 | Jan 1998 | DE |
19729499 | Jan 1999 | DE |
0165718 | Dec 1985 | EP |
0382974 | Aug 1990 | EP |
0478394 | Apr 1992 | EP |
0497781 | Jan 1994 | EP |
0993804 | Apr 2000 | EP |
1101442 | May 2001 | EP |
1681013 | Jul 2006 | EP |
2732225 | Oct 1996 | FR |
2347685 | Sep 2000 | GB |
20000225 | Mar 2000 | IE |
20000559 | Jul 2000 | IE |
20020170 | Mar 2002 | IE |
47-12705 | May 1972 | JP |
55116330 | Sep 1980 | JP |
63136014 | Jun 1988 | JP |
63194218 | Aug 1988 | JP |
63272322 | Nov 1988 | JP |
1152413 | Jun 1989 | JP |
1229220 | Sep 1989 | JP |
01-262372 | Oct 1989 | JP |
2246986 | Oct 1990 | JP |
2296209 | Dec 1990 | JP |
3136630 | Jun 1991 | JP |
4054970 | Feb 1992 | JP |
4259438 | Sep 1992 | JP |
5011196 | Jan 1993 | JP |
5111458 | May 1993 | JP |
5305073 | Nov 1993 | JP |
06-007287 | Jan 1994 | JP |
07-116104 | May 1995 | JP |
08-322786 | Dec 1996 | JP |
09-028662 | Feb 1997 | JP |
10337274 | Dec 1998 | JP |
11042258 | Feb 1999 | JP |
2000051216 | Feb 2000 | JP |
2000508223 | Jul 2000 | JP |
2001-046318 | Feb 2001 | JP |
3322356 | Sep 2002 | JP |
871786 | Oct 1981 | SU |
1256955 | Sep 1986 | SU |
1301701 | Apr 1987 | SU |
WO 9317751 | Sep 1993 | WO |
WO 9419051 | Sep 1994 | WO |
WO 9504556 | Feb 1995 | WO |
WO 9509562 | Apr 1995 | WO |
WO 9605768 | Feb 1996 | WO |
WO 9710746 | Mar 1997 | WO |
WO 9725101 | Jul 1997 | WO |
WO 9729701 | Aug 1997 | WO |
WO 9729710 | Aug 1997 | WO |
WO 9817185 | Apr 1998 | WO |
WO 9824017 | Jun 1998 | WO |
WO 9829032 | Jul 1998 | WO |
WO 9849938 | Nov 1998 | WO |
WO 9916359 | Apr 1999 | WO |
WO 9933392 | Jul 1999 | WO |
WO 9951283 | Oct 1999 | WO |
WO 9959664 | Nov 1999 | WO |
WO 0010456 | Mar 2000 | WO |
WO 0027462 | May 2000 | WO |
WO 0054653 | Sep 2000 | WO |
WO 0074565 | Dec 2000 | WO |
WO 0149353 | Jul 2001 | WO |
WO 0167964 | Sep 2001 | WO |
WO 0170096 | Sep 2001 | WO |
WO 0170097 | Sep 2001 | WO |
WO 0174235 | Oct 2001 | WO |
WO 0180935 | Nov 2001 | WO |
WO 0224058 | Mar 2002 | WO |
WO 0239909 | May 2002 | WO |
WO 0247549 | Jun 2002 | WO |
WO 02064028 | Aug 2002 | WO |
WO 02068988 | Sep 2002 | WO |
WO 02069841 | Sep 2002 | WO |
WO 02089692 | Nov 2002 | WO |
WO 02096276 | Dec 2002 | WO |
WO 03028547 | Apr 2003 | WO |
WO 03073920 | Sep 2003 | WO |
WO 03073921 | Sep 2003 | WO |
WO 03092476 | Nov 2003 | WO |
WO 2004006980 | Jan 2004 | WO |
WO 2004019769 | Mar 2004 | WO |
WO 2004049905 | Jun 2004 | WO |
WO 2004071284 | Aug 2004 | WO |
WO 2004080313 | Sep 2004 | WO |
WO 2004084702 | Oct 2004 | WO |
WO 2005084542 | Sep 2005 | WO |
WO2006134881 | Dec 2006 | WO |
Entry |
---|
Belson et al; U.S. Appl. No. 11/796,220 entitled “Steerable segmented endoscope and method of insertion,” filed Apr. 27, 2007. |
Woodley et al; U.S. Appl. No. 11/871,104 entitled “System for managing bowden cables in articulating instruments,” filed Oct. 11, 2007. |
Berger, W. L. et al. Sigmoid Stiffener for Decompression Tube Placement in Colonic Pseudo-Obstruction. Endoscopy. 2000; 32 (1): 54-57. |
Hasson, H.M. “Technique of open laparoscopy:equipment and technique. (from step 1 to step 9).” May 1979, 2424 North Clark Street, Chicago, IL 60614. 3 pages. |
Lee, et al. A highly redundant robot system for inspection. Proceedings of Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS ″94). Mar. 21-24, 1994. 1:142-148. Houston, Texas. |
McKernan, et al. Laparoscopic general surgery. Journal of the Medical Association of Georgia. 1990; 79 (3):157-159. |
Science & Technology, Laptop Magazine. Oct. 2002. p. 98. |
Slatkin, et al. The development of a robotic endoscope. Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Aug. 5-9, 1995. 2:162-171. Pittsburgh, Pennsylvania. |
Durant, et al.; U.S. Appl. No. 12/036,976 entitled “Systems and methods for articulating an elongate body,” filed Feb. 25, 2008. |
EP04749353 Office Action dated Oct. 1, 2009, 5 pages. |
EP04749353 Office Action dated Sep. 17, 2010, 3 pages. |
EP04749353 Supplementary Partial European Search Report dated Mar. 31, 2008, 9 pages. |
EP10004306 Office Action dated Sep. 19, 2011, 5 pages. |
EP10004306 Search Report and Search Opinion dated Jun. 16, 2010, 8 pages. |
Japanese Application No. 2006-509221 Final Rejection mailed Apr. 26, 2011, 6 pages including translation. |
Japanese Application No. 2006-509221 Final Rejection mailed Jun. 1, 2010, 5 pages including translation. |
Japanese Application No. 2006-509221 Rejection mailed Oct. 27, 2009, 9 pages including translation. |
PCT/US04/06939 International Search Report and Written Opinion of the International Search Authority, mailed Feb. 28, 2005, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20070249901 A1 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
60755255 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10384252 | Mar 2003 | US |
Child | 11648408 | US |