Instrument seal for surgical access assembly

Information

  • Patent Grant
  • 11642153
  • Patent Number
    11,642,153
  • Date Filed
    Thursday, March 19, 2020
    4 years ago
  • Date Issued
    Tuesday, May 9, 2023
    a year ago
Abstract
A surgical access assembly includes a housing, a tubular member, and a valve assembly. The tubular member extends from the housing. The valve assembly is positioned in the housing and includes a centering mechanism, a guard assembly disposed on a first side of the centering mechanism, and an instrument seal disposed on a second side of the centering mechanism. The instrument seal including petals that are arrange in an overlapping arrangement.
Description
FIELD

The present disclosure relates generally to access assemblies including seals for minimally invasive surgery. More particularly, the present disclosure relates to instrument seals for surgical access assemblies.


BACKGROUND

In order to facilitate minimally invasive surgery, a working space must be created at a surgical site. An insufflation fluid, typically CO2, is introduced into the abdomen of the patient to create an inflated state called pneumoperitoneum. Surgical access assemblies are utilized to allow the introduction of surgical instrumentation and endoscopes (or other visualization tools). These surgical access assemblies maintain the pressure for the pneumoperitoneum, as they have one or more seals that adapt to the surgical instrumentation. Typically, a “zero-seal” in the surgical access assembly seals the surgical access assembly in the absence of a surgical instrument in the surgical access assembly, and an instrument seal seals around a surgical instrument that has been inserted through the surgical access assembly.


The breadth of surgical instrumentation on the market today requires a robust seal capable adjusting to multiple sizes and withstanding multiple insertions and withdrawals of surgical instrumentation. Some of the surgical instrumentation can include sharp edges that can tear or otherwise damage seals. Therefore, it would be beneficial to have an access assembly with improved seal durability.


SUMMARY

In an embodiment, a surgical access assembly includes a housing, a tubular member extending from the housing, and a valve assembly disposed in the housing. The valve assembly includes a centering mechanism, a guard assembly, and an instrument seal. The centering mechanism has a central opening. The guard assembly has a central orifice that is alignable with the central opening of the centering mechanism. The guard assembly is disposed on a first side of the centering mechanism. The instrument seal includes a central hole alignable with the central opening of the centering mechanism and is disposed on a second side of the centering mechanism opposite the first side of the centering mechanism and proximate the tubular member. The instrument seal includes petals that are arranged such that a portion of one petal covers a portion of a first adjacent petal and is covered by a portion of a second adjacent petal.


The surgical access assembly may also include a retainer having first and second rings. The first ring may be disposed on the first side of the centering mechanism and the second side may be disposed on the second side of the centering mechanism. The retainer may sandwich the centering mechanism between the guard assembly and the instrument seal. The first ring may include pins extending therefrom and the second ring may include openings for receiving the pins therein.


The central opening of the centering mechanism may be circumscribed by a lip with pores extending therethrough, the guard assembly may include a ring with bores extending therethrough, and the instrument seal may include holes extending therethrough. The pins of the first ring may extend through the bores of the guard assembly, the pores of the centering mechanism, and the holes of the instrument seal to maintain the guard assembly, the centering mechanism, and the instrument seal in an aligned relationship. The pins of the first ring may be received in the openings of the second ring.


The instrument seal may have a frame that defines the central hole. The petals may be flexibly coupled to the frame. The petals may be coupled to the frame with living hinges.


In embodiments, a surgical access assembly has a housing, a tubular member extending from the housing, and a valve assembly disposed in the housing. The valve assembly includes a guard assembly with a central orifice and an instrument seal having a central hole aligned with the central orifice of the guard assembly. The instrument seal includes a frame with petals that are flexibly coupled to the frame. The instrument seal has an unfolded configuration defined by the petals extending away from a center of the frame and a folded configuration defined by the petals folded towards the central hole of the instrument seal such that each petal at least partially overlaps an adjacent petal such that the petals interlock.


The folded configuration of the instrument seal may define a diameter of the central hole that is configured to seal against a surgical instrument.


The petals may be flexibly coupled to the frame with living hinges.


The folded configuration of the instrument seal may allow the petals to flex relative to the frame while the frame may remain axially stationary relative to the housing.


The valve assembly may include a centering mechanism with a central opening. The guard assembly may be disposed on a first side of the centering mechanism and the instrument seal may be disposed on a second side of the centering mechanism that is opposite the first side.


The valve assembly may also include a retainer with first and second rings. The first ring may be disposed on the first side of the centering mechanism and the second ring may be disposed on the second side of the centering mechanism. The retainer may sandwich the centering mechanism between the guard assembly and the instrument seal.


The first ring of the retainer may include pins and the second ring of the retainer may include openings for receiving the pins. The pins of the first ring may be insertable through bores of the guard assembly, pores of the centering mechanism, and holes of the instrument seal to maintain the guard assembly, the centering mechanism, and the instrument seal in an aligned relationship.


In another embodiment, a surgical access assembly has a housing, a tubular member extending from the housing, and a valve assembly disposed in the housing. The valve assembly includes a centering mechanism with a central opening and an instrument seal in an abutting relationship with the centering mechanism. The instrument seal has a frame and petals. A first end of each petal is flexibly coupled to an outer surface of the frame and a second end of each petal is repositionable between a first position where the second end is outside a perimeter of the frame and a second position where the second end is inside the perimeter of the frame. Each petal partially overlaps an adjacent petal such that the petals interlock.


The instrument seal may have a central hole defined by the second position of the petals. The central hole may define a diameter configured to seal against a surgical instrument. The central hole of the instrument seal may be alignable with the central opening of the centering mechanism.


The valve assembly may also include first and second rings. The first ring may be disposed adjacent the centering mechanism and the second ring may be disposed adjacent the instrument seal. The centering mechanism and the instrument seal may be sandwiched between the first and second rings.


The first ring may have pins extending therefrom and the second ring may have openings for receiving the pins therein.


The valve assembly may also include a guard assembly with a central orifice. The guard assembly may be disposed between the first ring and the centering mechanism.


In a further embodiment, a surgical access assembly includes a housing, a tubular member extending from the housing, and an instrument seal disposed in the housing. The instrument seal has a frame with a plurality of frame arms. Each frame arm of the plurality of frame arms is flexibly coupled to at least one other frame arm of the plurality of frame arms. The instrument seal also includes a plurality of petals corresponding to the plurality of frame arms. The plurality of petals is arranged such that a portion of a first petal of the plurality of petals covers a portion of a first adjacent petal of the plurality of petals and is covered by a portion of a second adjacent petal of the plurality of petals. Each petal of the plurality of petals is flexibly coupled to the corresponding frame arm of the plurality of frame arms. The instrument seal further includes a plurality of fins flexibly coupled to the plurality of frame arms. Each fin of the plurality of fins is biased away from the corresponding frame arm of the plurality of frame arms. The plurality of fins is configured to engage an inner surface of the housing.


The plurality of fins may be configured to urge the instrument seal towards a center of the housing.


Movement of the instrument seal relative to a central longitudinal axis of the housing may compress one or more of the fins of the plurality of fins.


The instrument seal may further include a central hole aligned with a central longitudinal axis of the housing. The central hole may be configured to seal against a surgical instrument.


The surgical access assembly may further include a guard assembly with a central orifice. The guard assembly may be disposed on a first side of the instrument seal.


The surgical access assembly may further include a retainer. The retainer may have first and second discs sandwiching the guard assembly and the instrument seal therebetween.


The instrument seal may include orifices extending through each petal of the plurality of petals and the guard assembly may include bores extending therethrough.


The first disc may include pins and the second disc may include openings for receiving the pins. The pins may be insertable through the bores and the orifices to maintain the guard assembly and the instrument seal in an aligned relationship.


Each petal of the plurality of petals may be adapted to flex relative to the frame while the frame remains axially stationary relative to the housing.





BRIEF DESCRIPTION OF DRAWINGS

Embodiments of an instrument seal are disclosed herein with reference to the drawings, wherein:



FIG. 1 is a perspective view of a surgical access assembly according to an embodiment of the present disclosure;



FIG. 2 is a cross-sectional view of the surgical access assembly of FIG. 1 taken along section line 2-2 of FIG. 1;



FIG. 3 is a top perspective view of an instrument seal in an unfolded configuration according to an embodiment of the present disclosure;



FIG. 4 is a top plan view of the instrument seal of FIG. 3;



FIG. 5 is a side elevational view of the instrument seal of FIG. 4;



FIG. 6 is a top perspective view of the instrument seal of FIG. 4 in a partially folded configuration;



FIG. 7 is a top perspective view of the instrument seal of FIG. 4 in a fully folded configuration illustrating the folding sequence of the petals;



FIG. 8 is a bottom perspective view of a valve assembly according to an embodiment of the present disclosure;



FIG. 9 is an exploded view, with parts separated, of the valve assembly of FIG. 8 including a centering mechanism, a guard assembly, a retainer, and the instrument seal of FIG. 3;



FIG. 10. is a top perspective view of an instrument seal according to an alternate embodiment of the present disclosure;



FIG. 11 is a top perspective view of the instrument seal of FIG. 10 in an unfolded configuration;



FIG. 12 is a top plan view of the instrument seal of FIG. 11 with a link severed;



FIG. 13 is a top plan view of the instrument seal of FIG. 12 in a partially folded configuration illustrating the folding sequence of the petals;



FIG. 14 is a top plan view of the instrument seal of FIG. 12 in a fully folded configuration illustrating the folding sequence of the petals; and



FIG. 15 is a top cross-sectional view of an instrument housing of the surgical access assembly taken along section line 15-15 of FIG. 1 showing the placement of the instrument seal of FIG. 10 disposed therein.





DETAILED DESCRIPTION

Embodiments of the presently disclosed instrument seal for a surgical access assembly will now be described in detail with reference to the drawings wherein like numerals designate identical or corresponding elements in each of the several views. As is common in the art, the term “proximal” refers to that part or component closer to the user or operator, i.e. surgeon or physician, while the term “distal” refers to that part or component farther away from the user.


Surgical access assemblies are employed during minimally invasive surgery, e.g., laparoscopic surgery, and provide for the sealed access of surgical instruments into an insufflated body cavity, such as the abdominal cavity. The surgical access assemblies of the present disclosure include an instrument valve housing mounted on a cannula tube, and include an obturator (not shown) inserted through the instrument valve housing and cannula tube. The obturator can have a blunt distal end, or a bladed or non-bladed penetrating distal end and can be used to incise the abdominal wall so that the surgical access assembly can be introduced into the abdomen. The handle of the obturator can engage or selectively lock into the instrument valve housing of the surgical access assembly.


Surgical access assemblies with a trocar obturator are employed to tunnel through an anatomical structure, e.g., the abdominal wall, either by making a new passage through the structure or by passing through an existing opening through the anatomical structure. Once the surgical access assembly with the trocar has tunneled through the anatomical structure, the trocar obturator is removed, leaving the surgical access assembly in place. The instrument valve housing of the surgical access assembly includes valves that prevent the escape of insufflation fluid from the body cavity, while also allowing surgical instruments to be inserted into the cavity and minimizing the escape of insufflation fluid.


In various embodiments, a bladeless optical trocar obturator may be provided that permits separation of tissue planes in a surgical procedure and visualization of body tissue fibers as they are being separated, thereby permitting a controlled traversal across a body wall. In other embodiments, the trocar obturator may be bladeless without being optical, e.g., without providing contemporaneous visualization thereof through the distal tip of the obturator. The bladeless obturator may be provided for the blunt dissection of the abdominal lining during a surgical procedure.


Various trocar obturators suitable for use with the surgical access assemblies of the present disclosure are known and include, for example, bladed, bladeless, blunt, optical, and non-optical. For a detailed description of the structure and function of exemplary trocar assemblies, including exemplar trocar obturators and exemplar cannulas, please refer to PCT Publication No. WO 2016/186905 (“the '905 publication”), the content of which is hereby incorporated by reference herein in its entirety.


With initial reference now to FIG. 1, a surgical access assembly according to aspects of the present disclosure is shown generally as cannula assembly 100. The cannula assembly 100 includes a cannula 102 and an instrument valve housing 110 secured to the cannula 102. For a detailed description of an exemplary cannula assembly, please refer to the '905 publication.


With additional reference to FIG. 2, the instrument valve housing 110 of the cannula assembly 100 includes an upper housing section 112, a lower housing section 114, and an inner housing section 116. The upper, lower, and inner housing sections 112, 114, 116 are configured to support a valve assembly 120 on a proximal end of the cannula 102. More particularly, the inner housing section 116 is secured between the upper and lower housing sections 112, 114, and the valve assembly 120 is received between the inner and lower housing sections 116, 114. The upper and lower housing sections 112, 114 of the instrument valve housing 110 may be selectively attachable to, and detachable from, the inner housing section 116. The lower housing section 114 may be releasably or permanently attached to a cannula tube 104 of the cannula assembly 102. In embodiments, either or both of the upper and lower housing sections 112, 114 of the instrument valve housing 110 may include knurls, indentations, tabs, or be otherwise configured to facilitate engagement by a clinician.


The cannula assembly 100 may also include features for the stabilization of the surgical access assembly. For example, the distal end of the cannula tube 104 can carry a balloon anchor or another expandable member that engages the abdomen from the interior side. For example, see U.S. Pat. No. 7,300,448, the entire disclosure of which is hereby incorporated by reference herein. A feature on the opposite side of the abdominal wall can be used to further stabilize the surgical access assembly, such as adhesive tabs or adjustable foam collars.


The upper, lower, and inner housing sections 112, 114, 116 of the instrument valve housing 110 define a longitudinal passage 111 for receipt of a surgical instrument (not shown). The valve assembly 120 is supported within the instrument valve housing 110 to provide sealed passage of the surgical instrument through the cannula assembly 100.


Referring now to FIGS. 3-5, an instrument seal 160, according to an embodiment of the present disclosure, is illustrated. The instrument seal 160, as illustrated, includes a hexagonal frame 170 that may be integrally formed (i.e., monolithic or unitary) or may be formed from six discrete segments that are joined together to form the frame 170. The segments may be joined to each other by welding, adhesives, mechanical joints, or other techniques as known in the art. The sides or segments 172a-f of the frame 170 form a boundary that defines a passage 178 having a center through the instrument seal 160. The center of the passage 178 is coaxial with a central hole 176 of the instrument seal 160. A corresponding number of petals 162 are attached to the frame 170. Although depicted with six petals 162a-f coupled to a hexagonal frame 170, the instrument seal may include a frame with more sides or discrete segments and a corresponding number of petals (e.g., 8). Alternatively, the presently disclosed instrument seal may include a frame with fewer sides or discrete segments and a corresponding number of petals (e.g., 4). The frame 170 and the petals 162a-f may be fabricated from a polyisoprene, a liquid silicone rubber, or another suitable polymeric material. The instrument seal 160 may be molded, stamped, or formed in any other suitable manner. Each petal 162a-f is flexibly coupled to a side 172a-f of the frame 170 via a living hinge 174a-f. Further, as shown in FIGS. 3 and 5, each petal 162a-f is attached to the corresponding side 172a-f of the frame 170 via the living hinge 174a-f such that each petal 162a-f and the corresponding living hinge 174a-f define an acute angle with respect to either a top or bottom surface of the side or segment of the frame 170. The acute angle may be in the range of about 3° to about 10°. By angling each petal 162a-f relative to the top or bottom surface of the frame 170, interweaving the petals 162a-f of the instrument seal 160 is easier than if each petal 162a-f was parallel with the top or bottom surface of the frame 170.


Each petal 162a-f is a five sided main panel 150a-f with holes 168 extending therethrough. Although shown with five sides, each main panel 150a-f may have more or less than five sides. A first or connection side 161a-f is coupled to a side or segment 172a-f of the frame 170 with the corresponding living hinge 174a-f. This arrangement allows the petal 162a-f to be transitioned from an unfolded configuration (FIG. 3) to a folded configuration (FIG. 7). Each living hinge 174a-f may be formed from the same material as the frame 170 and the petals 162a-f or may be formed from another suitable polymeric material. In the unfolded configuration, each petal 162a-f extends away from an outer surface of the frame 170 outside a perimeter defined by the frame 170. In the folded configuration, each petal 162a-f is bounded by the frame 170 and is within the perimeter defined by the frame 170. Each main panel 150a-f has angled second and third sides 163a-f, 165a-f that extend from the connection side 161a-f in a divergent manner. Fourth and fifth sides 167a-f, 169a-f of main panels 150a-f interconnect the angled second and third sides 163a-f, 165a-f. The fourth and fifth sides 167a-f, 169a-f of the main panels 150a-f of each petal 162a-f have equal lengths and are angled towards the corresponding connection side 161a-f such that they meet a point that would bisect the connection side 161a-f. Additionally, the fourth and fifth sides 167a-f, 169a-f are oriented such that they define an angle between 120° and 160°. First and second extenders 164a-f, 166a-f are attached to the fourth and fifth sides 167a-f, 169a-f. Each extender 164a-f, 166a-f includes a hole 168 extending therethrough. The first and second extenders 164a-f, 166a-f have equal lengths and meet at wedges 173a-f that also is located at a point that would bisect the connection side 161a-f. The extenders 164a-f, 166a-f and the main panels 150a-f of each petal 162a-f bend at a midpoint between the second and third sides 163a-f, 165a-f of each petal 162a-f such that, when viewed from the end (i.e., from the extenders towards the connection side) (see FIG. 5), the petal 162a-f has a slight curvature of about 3° to about 10°. The combination of the petals' 162a-f curvature, the angled relationship between each petal 162a-f and the side or segment 172a-f of the frame 170, and the material of construction, facilitates folding the petals 162a-f in an interlocking pattern when transitioning the instrument seal 160 from the unfolded configuration to the folded configuration.


With reference now to FIGS. 3, 6, and 7, transitioning the instrument seal 160 from the unfolded configuration (FIG. 3) to the folded configuration (FIG. 7) includes folding the petals 162a-f sequentially such that they interlock by having each petal 162a-f partially overlap an adjacent petal 162a-f. Initially, as seen in FIG. 3, the instrument seal 160 is in the unfolded configuration with the extenders 164a-f, 166a-f of the petals 162a-f facing away from the frame 170. Each petal 162a-f is folded along a line defined by the associated living hinge 174a-f which defines an angle between the connection side 161a-f of the respective petal 162a-f and the corresponding side or segment 172a-f of the frame 170. Thus, the intersection of the connection side 161a-f and the corresponding third side 165a-f of each petal 162a-f is closer to the side or segment 172a-f of the frame 170 than the intersection of the connection side 161a-f and the second side 163a-f of each petal 162a-f is to the side or segment 172a-f of the frame 170. The petals 162a-f are folded sequentially in the direction of arrows “A” such that all of the petals 162a-f are in a near vertical orientation (FIG. 6). In this arrangement, the second side 163a-f of one petal 162a-f partially overlaps the third side 165a-f of the adjacent petal 162a-f. In particular, as illustrated in FIG. 6, the third side 165a of the first petal 162a partially overlaps the second side 163f of the sixth petal 162f, the third side 165b of the second petal 162b partially overlaps the second side 163a of the first petal 162a, the third side 165 of the third petal 162c partially overlaps the second side of the second petal 162b, the third side 165d of the fourth petal 162d partially overlaps the second side 163c of the third petal 162c, the third side 165e of the fifth petal 162e partially overlaps the second side 163d of the fourth petal 162d, the third side 165f of the sixth petal 162f partially overlaps the second side 163e of the fifth petal 162e, and the third side 165a of the first petal 162a partially overlaps the second side 163f of the sixth petal 162f. This defines a partially folded configuration of the instrument seal 160. Subsequently, the user continues to fold the petals 162a-f towards a center of the frame 170 in the direction of arrows “A” while maintaining the overlapping arrangement between the second and third sides 163a-f, 165a-f of the petals 162a-f. Once all the petals 162a-f are folded such that they are substantially flush with a top surface of the frame 170, the overlapping arrangement of the second and third sides 163a-f, 165a-f of the petals 162a-f maintains the petals 162a-f in contact with one another thereby maintaining the instrument seal 160 in the folded configuration. Further, once all the petals 162a-f are folded over, the holes 168 of the petals 162a-f are aligned thereby allowing pins 186 of a retainer 180 to pass therethrough as will be discussed in detail hereinbelow. As seen in FIG. 7, the folded configuration of the instrument seal 160 defines a central hole 176 for slidably receiving a surgical instrument therethrough. The central hole 176 may have a diameter between 0.025 inches to 0.100 inches (i.e., 0.0635 cm to 0.254 cm).


With reference now to FIGS. 2, 8, and 9, the valve assembly 120, according to an embodiment of the present disclosure, is illustrated. The valve assembly 120 is located in the instrument valve housing 110 and includes a centering mechanism 130, a guard assembly 140, the instrument seal 160, and a retainer 180. The centering mechanism 130 of the valve assembly 120 permits radial movement of the valve assembly 120 relative to a central longitudinal axis “X” of the instrument valve housing 110 in response to insertion of a surgical instrument (not shown) through the valve assembly 120 and radial movement of the surgical instrument relative to the central longitudinal axis “X”. In the absence of a surgical instrument or in the absence of radial movement of a surgical instrument relative to the central longitudinal axis “X”, the centering mechanism 130, as will be described in detail hereinbelow, returns the valve assembly 120 to a generally centered position such that a central opening 133 of the centering mechanism 130 and the central longitudinal axis “X” are coaxial. The guard assembly 140 protects the instrument seal 160 during insertion and withdrawal of a surgical instrument through the instrument seal 160, which, as discussed hereinabove, provides for sealed passage of the surgical instrument through the instrument valve housing 110. The retainer 180 includes first and second rings 182, 184 that are located on opposing sides of the centering mechanism 130 for maintaining relative positions of the guard assembly 140, the centering mechanism 130, and the instrument seal 160. Additionally, the retainer maintains 180 an aligned relationship of the guard assembly 140, the centering mechanism 130, and the instrument seal 160. In particular, the first ring 182 of the retainer 180 includes pins 186 that extend from a bottom surface of the first ring 182 while the second ring 184 of the retainer 180 includes complementary openings 188 for receiving the pins 186 of the first ring 182. The pins 186 may be releasably engaged with the openings 188 or the pins 186 may be secured within the openings 188 by welding, adhesives, friction fit, or other techniques as are known in the art. The pins 186 are insertable through bores 148 of the guard assembly 140, pores 138 of the centering mechanism 130, the holes 168 of the instrument seal 160, and the openings 188 of the second ring 184 of the retainer 180. This arrangement aligns the relative positions of the guard assembly 140, the centering mechanism 130, and the instrument seal 160. Although illustrated with pins 186 extending from the first ring 182 towards openings 188 in the second ring 184, the retainer may have the pins located on the second ring and the openings on the first ring. Alternatively, the first and second rings may have an alternating arrangement of pins and openings that are complementary such that the pins of one of the rings align with openings of the other of the rings allowing the rings to be attached to one another and define the retainer. The first ring 182 defines a central opening 185 extending therethrough and the second ring 184 defines a central opening 187 extending therethrough.


The centering mechanism 130 of the instrument valve housing 110 is configured to maintain the valve assembly 120 centered within the instrument valve housing 110. More particularly, the centering mechanism 130 includes an outer annular ring 132, an inner annular ring 134, and a bellows 136 disposed between the outer annular ring 132 and the inner annular ring 134. As shown in FIG. 2, the outer annular ring 132 is received between the inner housing section 116 and the lower housing section 114 to retain the centering mechanism 130 within the instrument valve housing 110. The inner annular ring 134 supports the guard assembly 140. For a detailed description of the structure and function of an exemplary centering mechanism, please refer to U.S. Pat. No. 6,702,787, the content of which is incorporated herein by reference in its entirety.


The guard assembly 140 may be formed from a sheet of a plastic or other suitable polymeric material by stamping with a tool that forms a ring 142 and blades 144a-d. The ring 142 surrounds the blades 144a-d and includes bores 148 extending therethrough for slidably receiving the pins 186 of the first ring 182 of the retainer 180. Further, when the valve assembly 120 is assembled, the guard assembly 140 is positioned between one side of the centering mechanism 130 and the first ring 182 of the retainer 180. The blades 144a-d are configured to flex towards the centering mechanism 130 in response to insertion of a surgical instrument (not shown) through a central orifice 146 of the guard assembly 140 and return to a generally planar configuration (i.e., parallel with the ring) once the surgical instrument is removed. The blades 144a-d extend towards a center of the ring 142 and define the central orifice 146 which has a diameter greater than an outside diameter of the surgical instrument.


During a surgical procedure utilizing cannula assembly 100, a surgical instrument (not shown) is introduced into the instrument valve housing 110 through the longitudinal passage 111 in the upper, lower, and inner housing sections 112, 114, 116. As described above, the distal end of the surgical instrument engages one or more of the blades 144a-d of the guard assembly 140 causing the blades 144a-d to flex downward into contact with the petals 162a-f of the instrument seal 160. This causes the central hole 176 of the instrument seal 160 to dilate such that the diameter of the central hole 176 is sufficiently large enough to accommodate passage of the surgical instrument therethrough. The guard assembly 140 minimizes damage to the instrument seal 160 during insertion and/or removal of the surgical instrument through the valve assembly 120. The guard assembly 140 operates to protect the instrument seal 160 and minimizes tearing or other damage as the surgical instrument is received through and withdrawn from the instrument seal 160.


With reference now to FIGS. 10-12, an alternate embodiment of an instrument seal is illustrated and identified generally as instrument seal 260. Instrument seal 260 may be a direct replacement for both the instrument seal 160 and the centering mechanism 130 in valve assembly 120 as illustrated in the previous embodiment. The instrument seal 260, as illustrated, includes a frame 270 having six sides 272a-f The frame 270 may have fewer sides (e.g., 4) or more sides (e.g., 8). Each side 272a-f is generally rectangular and extends along a length of a corresponding petal 262a-f The number of petals 262 is equal to the number of sides 272 of the frame 270. Links 278 extend between adjacent side 272 defining a plurality of living hinges. In particular, links 278 define living hinges between sides 272a-b, between sides 272b-c, between sides 272c-d, between sides 272d-e, and between sides 272e-f. A gap is defined between sides 272a and 272f allowing sides 272a and 272f to move relative to each other. This arrangement facilitates folding the seal 270 thereby transitioning the seal 270 from the unfolded or initial configuration as shown in FIG. 12 to the folded or final configuration as shown in FIG. 10. Since sides 272a and 272f have a gap therebetween and lack a living hinge, one of sides 272a or 272f may be repositioned without disturbing the position of the other of sides 272a or 272f. The instrument seal 260 also includes a plurality of fins 280a-f that extends from respective sides 272a-f on the side of the side 272a-f opposite that of the petals 262a-f. Each fin 280a-f is a flexible and resilient structure that is normally biased towards a center of the unfolded instrument seal 260 (FIG. 12) and normally biased away from the center of the folded instrument seal 260 (FIG. 14). The biasing and resilience of the fins 280a-f acts to center the instrument seal 260 when the instrument seal is positioned in the valve housing 110 (FIG. 15) as will be discussed in further detail hereinbelow.


Each petal 262a-f is a five sided main panel 250a-f with holes 268 extending therethrough. Although shown with five sides, each main panel 250a-f may have more or less than five sides. A first or connection side 261a-f is coupled to a side or segment 272a-f of the frame 270. In the unfolded configuration (FIGS. 11 and 12), each petal 262a-f extends away from an outer surface of the frame 270 outside a perimeter defined by the frame 270. In the folded configuration (FIGS. 10 and 14), each petal 262a-f is bounded by the frame 270 and is within the perimeter defined by the frame 270. Each main panel 250a-f has angled second and third sides 263a-f, 265a-f that extend from the connection side 261a-f in a divergent manner. Fourth and fifth sides 267a-f, 269a-f of main panels 250a-f interconnect the angled second and third sides 263a-f, 265a-f. The fourth and fifth sides 267a-f, 269a-f of the main panels 250a-f of each petal 262a-f have equal lengths and are angled towards the corresponding connection side 261a-f such that they meet a point that would bisect the connection side 261a-f. Additionally, the fourth and fifth sides 267a-f, 269a-f are oriented such that they define an angle between 120° and 160°. First and second extenders 264a-f, 266a-f are attached to the fourth and fifth sides 267a-f, 269a-f. Each extender 264a-f, 266a-f includes a hole 268 extending therethrough. The extenders 264a-f, 266a-f and the main panels 250a-f of each petal 262a-f bend at a midpoint between the second and third sides 263a-f, 265a-f of each petal 262a-f such that, when viewed from the end (i.e., from the extenders towards the connection side) (similar to FIG. 5), the petal 62a-f has a slight curvature of about 5° to about 10°.


The first petal 262a is folded by pivoting the first side 272a and the first petal 262a about the living hinge defined by the link 278 that is disposed between the first and second sides 272a, 272b in the direction of arrow “B”. As such, the first petal 262a partially overlaps the second petal 262b. Subsequently, the first and second petals 262a, 262b are pivoted by pivoting the second side 272b about the living hinge defined by the link 278 that is disposed between the second side 272b and the third side 272c such that the second petal 262b partially overlaps the third petal 262c (FIG. 13). Next, the first, second, and third petals 262a-c are pivoted by pivoting the third side 272c about the living hinge defined by the link 278 that is disposed between the third side 272c and the fourth side 272d such that the third petal 262c partially overlaps the fourth petal 262d. Subsequently, the first, second, third, and fourth petals 262a-d are pivoted by pivoting the fourth side 272d about the living hinge defined by the link 278 that is disposed between the fourth side 272d and the fifth side 272e such that the fourth petal 262d partially overlaps the fifth petal 262e. The first, second, third, fourth, and fifth petals 262a-e are pivoted by pivoting the fifth side 272e about the living hinge defined by the link 278 that is disposed between the fifth side 272e and the sixth side 272f such that the fifth petal 262e partially overlaps the sixth petal 262f and the sixth petal 262f partially overlaps the first petal 262a. The fully folded seal 260 is illustrated in FIG. 14. All the folds occur in the direction identified by arrow “B”.


After all the petals 262a-f are folded, a center orifice 266 is defined and is configured to engage an outer surface of a surgical instrument (not shown) inserted through the seal 260 such that the center orifice 266 surrounds the surgical instrument in a sealing manner to inhibit the passage of insufflation fluids and defines a fluid tight barrier. Further, once the petals 262a-f are folded over, the holes 268 of the petals 262a-f are aligned thereby allowing pins 186 of the retainer 180 to pass through the holes 268. In this embodiment, the pins 186 are insertable through bores 148 of the guard assembly 140, the holes 268 of the instrument seal, and the openings 188 of the second ring 184 of the retainer 180. This arrangement aligns the relative positions of the guard assembly 140 and the instrument seal 260. Although illustrated with pins 186 extending from the first ring 182 towards openings 188 in the second ring 184, the retainer may have the pins located on the second ring and the openings on the first ring. Alternatively, the first and second rings may have an alternating arrangement of pins and openings that are complementary such that the pins of one of the rings align with openings of the other of the rings allowing the rings to be attached to one another and define the retainer.


As each petal 262a-f at least partially overlaps a first adjacent petal 262 and is at least partially overlapped by a second adjacent petal 262, the petals 262a-f of the seal are interwoven. This interwoven arrangement of the petals 262a-f facilitates the seal 260 maintaining its shape during insertion and withdrawal of a surgical instrument through the center orifice 266. For example, with additional reference to FIG. 2, the seal 260 would replace the seal 160 and the centering mechanism 130. FIG. 15 illustrates the placement of the instrument seal 260 in vale housing 110 of the cannula assembly 100. During insertion of the surgical instrument through the valve housing 110 of the surgical access assembly 100, a shaft of the surgical instrument passes through the central opening 185 of the first ring 182, the central orifice 146 of the guard assembly 140, the center orifice 266 of the instrument seal 260, and the central opening 187 of the second ring 184. As the shaft of the surgical instrument passes through the center orifice 266 of the seal 260 during insertion, the petals 262a-f of the seal 260 flex towards the second ring 184 and surround an outer surface of the shaft of the surgical instrument providing a fluid tight barrier between the petals 262a-f of the seal 260 and the shaft of the surgical instrument. During withdrawal of the surgical instrument, the petals 262a-f of the seal 260 flex towards a proximal portion of the valve housing 110 in response to proximal movement of the shaft of the surgical instrument. The petals 262a-f of the seal 260 resiliently return to their initial or rest configuration (FIG. 10) once the shaft of the surgical instrument is removed from the center orifice 266 of the seal 260. Due to the petals 262a-f being interwoven, they return to their initial configuration. In the event that the petals 262a-f have slightly different rates of movement, the interwoven arrangement of the petals 262a-f results in the slowest moving petal 262 acting as a governor and limiting the rate of movement of the remaining petals 262. This tends to maintain contact between the petals 262a-f and the outer surface of the shaft of the surgical instrument thereby maintaining the fluid tight boundary of the seal 260 with respect to the surgical instrument during movement of the shaft relative to the seal 260.


Referring now to FIG. 15, the instrument seal 260 is positioned in the valve housing 110 and the fins 280a-f contact an inner wall 115 of the valve housing 110. In an initial state, the normal biasing force exerted by the fins 280a-f act to center the instrument seal 260 in the valve housing 110 such that the center orifice 266 is aligned with the central longitudinal axis “X” of the cannula assembly 100 (FIG. 2). When a surgical instrument is inserted through the valve housing 110 and the center orifice 266, any radial movement of the surgical instrument relative to the longitudinal axis “X” moves the instrument seal 260 in the same radial direction. This results in the center orifice 266 being radially offset from the central longitudinal axis “X”. In particular, when the instrument seal 260 is moved radially, the fins 280a-f in the direction of movement are compressed more while the fins 280a-f on the opposing side a relaxed more. Thus, when the force is removed, the compressed fins 280a-f will move towards their initial position and return the instrument seal 260 to its at rest position where the center orifice 266 is aligned with the central longitudinal axis “X”. It is contemplated that all of the fins 280a-f will be slightly compressed when the instrument seal 260 is disposed within the valve housing 110.


Each petal 262a-f is connected to a corresponding side 272a-f of the frame 270 along a first or connection side 261a-f. Each petal 262a-f also includes angled second and third sides 263a-f, 265a-f that extend from the corresponding connection side 261a-f in a divergent manner. Fourth and fifth sides 267a-f, 269a-f of each petal 262a-f interconnect the angled second and third sides 263a-f, 265a-f. The fourth and fifth sides 267a-f, 269a-f of the petals 262a-f have equal lengths and are angled towards the corresponding connection side 261a-f such that they meet at a point that would bisect the connection side 261a-f. The fourth and fifth sides are oriented such that they that they define an angle of 150°. The fourth and fifth sides may define an angle between about 120° and about 165°. First and second extenders 262a-f, 264a-f are attached to the fourth and fifth sides 267a-f, 269a-f. The first and second extenders 262a-f, 264a-f have equal lengths and meet at a taper 273a-f that also is located at a point that would bisect the corresponding connection side 261a-f.


It will be understood that various modifications may be made to the embodiments disclosed herein. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A surgical access assembly comprising: a housing;a tubular member extending from the housing; anda valve assembly disposed in the housing, the valve assembly having: a centering mechanism having a central opening circumscribed by a lip having pores,a guard assembly having a central orifice alignable with the central opening of the centering mechanism and a ring having bores, the guard assembly disposed on a first side of the centering mechanism,an instrument seal including a polygonal frame and peripheral holes, the frame having a plurality of segments and a plurality of petals defining a central hole that is alignable with the central opening of the centering mechanism, the instrument seal disposed on a second side of the centering mechanism opposite the first side of the centering mechanism and proximate the tubular member, the plurality of petals arranged such that a portion of one petal of the plurality of petals covers a portion of a first adjacent petal of the plurality of petals and is covered by a portion of a second adjacent petal of the plurality of petals, each petal of the plurality of petals coupled to a corresponding segment of the plurality of segments and defining an acute angle with respect to a top surface of the corresponding segment of the plurality of segments, anda retainer having a first ring having pins disposed on the first side of the centering mechanism and a second ring having openings for receiving the pins disposed on the second side of the centering mechanism, the retainer sandwiching the centering mechanism between the first ring and the second ring, the pins of the first ring extending through the bores of the guard assembly, the pores of the centering mechanism, and the peripheral holes of the instrument seal to maintain the guard assembly, the centering mechanism, and the instrument seal in an aligned relationship.
  • 2. The surgical access assembly of claim 1, wherein the pins of the first ring are received in the openings of the second ring.
  • 3. The surgical access assembly of claim 1, wherein each petal of the plurality of petals is coupled to the corresponding segment of the plurality of segments with a living hinge.
  • 4. The surgical access assembly of claim 1, wherein the centering mechanism includes a bellows.
  • 5. A surgical access assembly comprising: a housing;a tubular member extending from the housing;a valve assembly disposed in the housing, the valve assembly including: a centering mechanism,a guard assembly having a central orifice,an instrument seal having a central hole aligned with the central orifice of the guard assembly, the instrument seal including a polygonal frame having a plurality of segments and a plurality of petals that are flexibly coupled to corresponding segments of the plurality of segments such that each petal of the plurality of petals defines an acute angle with respect to a top surface of the corresponding segment of the plurality of segments, the instrument seal having an unfolded configuration defined by the plurality of petals extending away from a center of the frame and a folded configuration defined by the plurality of petals folded towards the central hole of the instrument seal wherein each petal of the plurality of petals at least partially overlaps an adjacent petal of the plurality of petals such that the plurality of petals interlock, anda retainer having a first ring disposed on a first side of the centering mechanism and a second ring disposed on a second side of the centering mechanism, the retainer sandwiching the centering mechanism between the first ring and the second ring to maintain the guard assembly, the centering mechanism, and the instrument seal in an aligned relationship.
  • 6. The surgical access assembly of claim 5, wherein the folded configuration of the instrument seal defines a diameter of the central hole, the diameter configured to seal against a surgical instrument.
  • 7. The surgical access assembly of claim 5, wherein each petal of the plurality of petals is flexibly coupled to the corresponding segment of the plurality of segments with a living hinge.
  • 8. The surgical access assembly of claim 5, wherein the folded configuration of the instrument seal allows the plurality of petals to flex relative to the frame while the frame remains axially stationary relative to the housing.
  • 9. The surgical access assembly of claim 5, wherein the centering mechanism has a central opening.
  • 10. The surgical access assembly of claim 5, wherein the first ring of the retainer includes pins and the second ring of the retainer includes openings for receiving the pins, the pins of the first ring insertable through bores of the guard assembly, pores of the centering mechanism, and peripheral holes of the instrument seal to maintain the guard assembly, the centering mechanism, and the instrument seal in the aligned relationship.
  • 11. The surgical access assembly of claim 5, wherein the centering mechanism includes a bellows.
  • 12. A surgical access assembly comprising: a housing;a tubular member extending from the housing; anda valve assembly disposed in the housing, the valve assembly having: a centering mechanism having a central opening, andan instrument seal in an abutting relationship with the centering mechanism, the instrument seal including a polygonal frame having a plurality of segments and a plurality of petals, a first end of each petal of the plurality of petals flexibly coupled to an outer surface of a corresponding segment of the plurality of segments of the frame and a second end of each petal of the plurality of petals repositionable between a first position where the second end is outside a perimeter of the frame and a second position where the second end is inside the perimeter of the frame, each petal of the plurality of petals partially overlapping an adjacent petal of the plurality of petals such that the plurality of petals interlock, each petal of the plurality of petals coupled to the corresponding segment of the plurality of segments of the frame at an acute angle relative to a top surface of the frame to facilitate interweaving the plurality of petals.
  • 13. The surgical access assembly of claim 12, further including a central hole defined by the second position of the plurality of petals, the central hole defining a diameter configured to seal against a surgical instrument.
  • 14. The surgical access assembly of claim 13, wherein the central hole of the instrument seal is alignable with the central opening of the centering mechanism.
  • 15. The surgical access assembly of claim 12, further including first and second rings, the first ring disposed adjacent the centering mechanism and the second ring disposed adjacent the instrument seal, the centering mechanism and the instrument seal sandwiched between the first and second rings.
  • 16. The surgical access assembly of claim 15, wherein the first ring includes pins extending from the first ring and the second ring includes openings for receiving the pins.
  • 17. The surgical access assembly of claim 15, furthering including a guard assembly having a central orifice, the guard assembly disposed between the first ring and the centering mechanism.
US Referenced Citations (621)
Number Name Date Kind
3402710 Paleschuck Sep 1968 A
3495586 Regenbogen Feb 1970 A
4016884 Kwan-Gett Apr 1977 A
4112932 Chiulli Sep 1978 A
4183357 Bentley et al. Jan 1980 A
4356826 Kubota Nov 1982 A
4402683 Kopman Sep 1983 A
4619643 Bai Oct 1986 A
4653476 Bonnet Mar 1987 A
4737148 Blake Apr 1988 A
4863430 Klyce et al. Sep 1989 A
4863438 Gauderer et al. Sep 1989 A
4984564 Yuen Jan 1991 A
5002557 Hasson Mar 1991 A
5073169 Raiken Dec 1991 A
5082005 Kaldany Jan 1992 A
5122122 Allgood Jun 1992 A
5159921 Hoover Nov 1992 A
5176697 Hasson et al. Jan 1993 A
5183471 Wilk Feb 1993 A
5192301 Kamiya et al. Mar 1993 A
5209741 Spaeth May 1993 A
5209754 Ahluwalia May 1993 A
5217466 Hasson Jun 1993 A
5242409 Buelna Sep 1993 A
5242415 Kantrowitz et al. Sep 1993 A
5257973 Villasuso Nov 1993 A
5257975 Foshee Nov 1993 A
5269772 Wilk Dec 1993 A
5271380 Riek et al. Dec 1993 A
5290245 Dennis Mar 1994 A
5290249 Foster et al. Mar 1994 A
5308336 Hart et al. May 1994 A
5312391 Wilk May 1994 A
5312417 Wilk May 1994 A
5314417 Stephens et al. May 1994 A
5318516 Cosmescu Jun 1994 A
5330486 Wilk Jul 1994 A
5334143 Carroll Aug 1994 A
5334150 Kaali Aug 1994 A
5336169 Divilio et al. Aug 1994 A
5336203 Goldhardt et al. Aug 1994 A
5337937 Remiszewski et al. Aug 1994 A
5345927 Bonutti Sep 1994 A
5346459 Mien Sep 1994 A
5360417 Gravener et al. Nov 1994 A
5366478 Brinkerhoff et al. Nov 1994 A
5375588 Yoon Dec 1994 A
5378588 Tsuchiya Jan 1995 A
5380291 Kaali Jan 1995 A
5385552 Haber et al. Jan 1995 A
5385553 Hart et al. Jan 1995 A
5391156 Hildwein et al. Feb 1995 A
5394863 Sanford et al. Mar 1995 A
5395367 Wilk Mar 1995 A
5407433 Loomas Apr 1995 A
5431151 Riek et al. Jul 1995 A
5437683 Neumann et al. Aug 1995 A
5445615 Yoon Aug 1995 A
5451222 De Maagd et al. Sep 1995 A
5460170 Hammerslag Oct 1995 A
5464409 Mohajer Nov 1995 A
5480410 Cuschieri et al. Jan 1996 A
5490843 Hildwein et al. Feb 1996 A
5507758 Thomason et al. Apr 1996 A
5511564 Wilk Apr 1996 A
5514133 Golub et al. May 1996 A
5514153 Bonutti May 1996 A
5520610 Giglio et al. May 1996 A
5520698 Koh May 1996 A
5522791 Leyva Jun 1996 A
5524501 Patterson et al. Jun 1996 A
5524644 Crook Jun 1996 A
5538509 Dunlap et al. Jul 1996 A
5540648 Yoon Jul 1996 A
5545150 Danks et al. Aug 1996 A
5545179 Williamson, IV Aug 1996 A
5549565 Ryan et al. Aug 1996 A
5551947 Kaali Sep 1996 A
5556385 Andersen Sep 1996 A
5569159 Anderson et al. Oct 1996 A
5569205 Hart et al. Oct 1996 A
5569291 Privitera et al. Oct 1996 A
5569292 Scwemberger et al. Oct 1996 A
5577993 Zhu et al. Nov 1996 A
5591192 Privitera et al. Jan 1997 A
5601581 Fogarty et al. Feb 1997 A
5609562 Kaali Mar 1997 A
5624399 Ackerman Apr 1997 A
5634911 Hermann et al. Jun 1997 A
5634937 Mollenauer et al. Jun 1997 A
5643285 Rowden et al. Jul 1997 A
5649550 Crook Jul 1997 A
5651771 Fangherlini et al. Jul 1997 A
5653705 de la Torre et al. Aug 1997 A
5656013 Yoon Aug 1997 A
5672168 de la Torre et al. Sep 1997 A
5683378 Christy Nov 1997 A
5685820 Riek et al. Nov 1997 A
5685857 Negus et al. Nov 1997 A
5685862 Mahurkar Nov 1997 A
5697946 Hopper et al. Dec 1997 A
5709671 Stephens et al. Jan 1998 A
5709675 Williams Jan 1998 A
5713858 Heruth et al. Feb 1998 A
5713869 Morejon Feb 1998 A
5720730 Blake, III Feb 1998 A
5720761 Kaali Feb 1998 A
5722962 Garcia Mar 1998 A
5728103 Picha et al. Mar 1998 A
5730748 Fogarty et al. Mar 1998 A
5735791 Alexander, Jr. et al. Apr 1998 A
5741298 MacLeod Apr 1998 A
5752970 Yoon May 1998 A
5776112 Stephens et al. Jul 1998 A
5782817 Franzel et al. Jul 1998 A
5792113 Kramer et al. Aug 1998 A
5795290 Bridges Aug 1998 A
5800451 Buess et al. Sep 1998 A
5803921 Bonadio Sep 1998 A
5810712 Dunn Sep 1998 A
5813409 Leahy et al. Sep 1998 A
5830191 Hildwein et al. Nov 1998 A
5836871 Wallace et al. Nov 1998 A
5836913 Orth et al. Nov 1998 A
5840077 Rowden et al. Nov 1998 A
5842971 Yoon Dec 1998 A
5848992 Hart et al. Dec 1998 A
5853417 Fogarty et al. Dec 1998 A
5857461 Levitsky et al. Jan 1999 A
5865817 Moenning et al. Feb 1999 A
5871471 Ryan et al. Feb 1999 A
5871474 Hermann et al. Feb 1999 A
5876413 Fogarty et al. Mar 1999 A
5893875 O'Connor et al. Apr 1999 A
5894843 Benetti et al. Apr 1999 A
5895377 Smith et al. Apr 1999 A
5899208 Bonadio May 1999 A
5899913 Fogarty et al. May 1999 A
5904703 Gilson May 1999 A
5906577 Beane et al. May 1999 A
5914415 Tago Jun 1999 A
5916198 Dillow Jun 1999 A
5941898 Moenning et al. Aug 1999 A
5951588 Moenning Sep 1999 A
5957913 de la Torre et al. Sep 1999 A
5964781 Mollenauer et al. Oct 1999 A
5976174 Ruiz Nov 1999 A
5997515 de la Torre et al. Dec 1999 A
6007481 Riek et al. Dec 1999 A
6017355 Hessel et al. Jan 2000 A
6018094 Fox Jan 2000 A
6024736 de la Torre et al. Feb 2000 A
6030402 Thompson et al. Feb 2000 A
6033426 Kaji Mar 2000 A
6033428 Sardella Mar 2000 A
6042573 Lucey Mar 2000 A
6048309 Flom et al. Apr 2000 A
6059816 Moenning May 2000 A
6068639 Fogarty et al. May 2000 A
6077288 Shimomura et al. Jun 2000 A
6086603 Termin et al. Jul 2000 A
6093176 Dennis Jul 2000 A
6099505 Ryan et al. Aug 2000 A
6099506 Macoviak et al. Aug 2000 A
6110154 Shimomura et al. Aug 2000 A
6142936 Beane et al. Nov 2000 A
6156006 Brosens et al. Dec 2000 A
6162196 Hart et al. Dec 2000 A
6171282 Ragsdale Jan 2001 B1
6197002 Peterson Mar 2001 B1
6213957 Milliman et al. Apr 2001 B1
6217555 Hart et al. Apr 2001 B1
6228063 Aboul-Hosn May 2001 B1
6234958 Snoke et al. May 2001 B1
6238373 de la Torre et al. May 2001 B1
6241768 Agarwal et al. Jun 2001 B1
6251119 Addis Jun 2001 B1
6254534 Butler et al. Jul 2001 B1
6264604 Kieturakis et al. Jul 2001 B1
6276661 Laird Aug 2001 B1
6293952 Brosens et al. Sep 2001 B1
6315770 de la Torre et al. Nov 2001 B1
6319246 de la Torre et al. Nov 2001 B1
6328720 McNally et al. Dec 2001 B1
6329637 Hembree et al. Dec 2001 B1
6355028 Castaneda et al. Mar 2002 B2
6371968 Kogasaka et al. Apr 2002 B1
6382211 Crook May 2002 B1
6423036 Van Huizen Jul 2002 B1
6440061 Wenner et al. Aug 2002 B1
6440063 Beane et al. Aug 2002 B1
6443957 Addis Sep 2002 B1
6447489 Peterson Sep 2002 B1
6450983 Rambo Sep 2002 B1
6454783 Piskun Sep 2002 B1
6464686 O'Hara et al. Oct 2002 B1
6468292 Mollenauer et al. Oct 2002 B1
6478806 McFarlane Nov 2002 B2
6485410 Loy Nov 2002 B1
6485467 Crook et al. Nov 2002 B1
6487806 Murello et al. Dec 2002 B2
6488620 Segermark et al. Dec 2002 B1
6488692 Spence et al. Dec 2002 B1
6524283 Hopper et al. Feb 2003 B1
6527787 Fogarty et al. Mar 2003 B1
6544210 Trudel et al. Apr 2003 B1
6551270 Bimbo et al. Apr 2003 B1
6551282 Exline et al. Apr 2003 B1
6558371 Dorn May 2003 B2
6562022 Hoste et al. May 2003 B2
6569120 Green et al. May 2003 B1
6572631 McCartney Jun 2003 B1
6578577 Bonadio et al. Jun 2003 B2
6582364 Butler et al. Jun 2003 B2
6589167 Shimomura et al. Jul 2003 B1
6589316 Schultz et al. Jul 2003 B1
6592543 Wortrich et al. Jul 2003 B1
6613038 Bonutti et al. Sep 2003 B2
6613952 Rambo Sep 2003 B2
6623426 Bonadio et al. Sep 2003 B2
6669674 Macoviak et al. Dec 2003 B1
6676639 Fernstrom Jan 2004 B1
6684405 Lezdey Feb 2004 B2
6702787 Racenet et al. Mar 2004 B2
6706050 Giannadakis Mar 2004 B1
6716201 Blanco Apr 2004 B2
6723044 Pulford et al. Apr 2004 B2
6723088 Gaskill, III et al. Apr 2004 B2
6725080 Melkent et al. Apr 2004 B2
6736797 Larsen et al. May 2004 B1
6740064 Sorrentino et al. May 2004 B1
6800084 Davison et al. Oct 2004 B2
6811546 Callas et al. Nov 2004 B1
6814078 Crook Nov 2004 B2
6830578 O'Heeron et al. Dec 2004 B2
6835201 O'Heeron et al. Dec 2004 B2
6837893 Miller Jan 2005 B2
6840946 Fogarty et al. Jan 2005 B2
6840951 de la Torre et al. Jan 2005 B2
6846287 Bonadio et al. Jan 2005 B2
6855128 Swenson Feb 2005 B2
6863674 Kasahara et al. Mar 2005 B2
6878110 Yang et al. Apr 2005 B2
6884253 McFarlane Apr 2005 B1
6890295 Michels et al. May 2005 B2
6913609 Yencho et al. Jul 2005 B2
6916310 Sommerich Jul 2005 B2
6916331 Mollenauer et al. Jul 2005 B2
6929637 Gonzalez et al. Aug 2005 B2
6939296 Ewers et al. Sep 2005 B2
6942633 Odland Sep 2005 B2
6942671 Smith Sep 2005 B1
6945932 Caldwell et al. Sep 2005 B1
6958037 Ewers et al. Oct 2005 B2
6960164 O'Heeron Nov 2005 B2
6972026 Caldwell et al. Dec 2005 B1
6986752 McGuckin, Jr. et al. Jan 2006 B2
6991602 Nakazawa et al. Jan 2006 B2
6997909 Goldberg Feb 2006 B2
7001397 Davison et al. Feb 2006 B2
7008377 Beane et al. Mar 2006 B2
7011645 McGuckin, Jr. et al. Mar 2006 B2
7014628 Bousquet Mar 2006 B2
7033319 Pulford et al. Apr 2006 B2
7052454 Taylor May 2006 B2
7056321 Pagliuca et al. Jun 2006 B2
7077852 Fogarty et al. Jul 2006 B2
7081089 Bonadio et al. Jul 2006 B2
7083626 Hart et al. Aug 2006 B2
7100614 Stevens et al. Sep 2006 B2
7101353 Lui et al. Sep 2006 B2
7104981 Elkins et al. Sep 2006 B2
7153261 Wenchell Dec 2006 B2
7160309 Voss Jan 2007 B2
7163510 Kahle et al. Jan 2007 B2
7192436 Sing et al. Mar 2007 B2
7195590 Butler et al. Mar 2007 B2
7201725 Cragg et al. Apr 2007 B1
7214185 Rosney et al. May 2007 B1
7217277 Parihar et al. May 2007 B2
7223257 Shubayev et al. May 2007 B2
7223278 Davison et al. May 2007 B2
7235064 Hopper et al. Jun 2007 B2
7235084 Skakoon et al. Jun 2007 B2
7238154 Ewers et al. Jul 2007 B2
7258712 Schultz et al. Aug 2007 B2
7276075 Callas et al. Oct 2007 B1
7294103 Bertolero et al. Nov 2007 B2
7300399 Bonadio et al. Nov 2007 B2
7300448 Criscuolo et al. Nov 2007 B2
7316699 McFarlane Jan 2008 B2
7320694 O'Heeron Jan 2008 B2
7331940 Sommerich Feb 2008 B2
7344547 Piskun Mar 2008 B2
7370694 Shimizu et al. May 2008 B2
7377898 Ewers et al. May 2008 B2
7390322 McGuckin, Jr. et al. Jun 2008 B2
7393322 Wenchell Jul 2008 B2
7412977 Fields et al. Aug 2008 B2
7440661 Kobayashi Oct 2008 B2
7445597 Butler et al. Nov 2008 B2
7452363 Ortiz Nov 2008 B2
7473221 Ewers et al. Jan 2009 B2
7481765 Ewers et al. Jan 2009 B2
7493703 Kim et al. Feb 2009 B2
7494481 Moberg et al. Feb 2009 B2
7513361 Mills, Jr. Apr 2009 B1
7513461 Reutenauer et al. Apr 2009 B2
7520876 Ressemann et al. Apr 2009 B2
7537564 Bonadio et al. May 2009 B2
7540839 Butler et al. Jun 2009 B2
7559893 Bonadio et al. Jul 2009 B2
7608082 Cuevas et al. Oct 2009 B2
7625361 Suzuki et al. Dec 2009 B2
7645232 Shluzas Jan 2010 B2
7650887 Nguyen et al. Jan 2010 B2
7678046 White et al. Mar 2010 B2
7686823 Pingleton et al. Mar 2010 B2
7704207 Albrecht et al. Apr 2010 B2
7708713 Albrecht et al. May 2010 B2
7717846 Zirps et al. May 2010 B2
7717847 Smith May 2010 B2
7721742 Kalloo et al. May 2010 B2
7727146 Albrecht et al. Jun 2010 B2
7730629 Kim Jun 2010 B2
7736306 Brustad et al. Jun 2010 B2
7744569 Smith Jun 2010 B2
7753901 Piskun et al. Jul 2010 B2
7758500 Boyd et al. Jul 2010 B2
7758603 Taylor et al. Jul 2010 B2
7762995 Eversull et al. Jul 2010 B2
7766824 Jensen et al. Aug 2010 B2
7787963 Geistert et al. Aug 2010 B2
7794644 Taylor et al. Sep 2010 B2
7798998 Thompson et al. Sep 2010 B2
7811251 Wenchell et al. Oct 2010 B2
7815567 Albrecht et al. Oct 2010 B2
7837612 Gill et al. Nov 2010 B2
7846123 Vassiliades et al. Dec 2010 B2
7850600 Piskun Dec 2010 B1
7850655 Pasqualucci Dec 2010 B2
7850667 Gresham Dec 2010 B2
7867164 Butler et al. Jan 2011 B2
7896889 Mazzocchi et al. Mar 2011 B2
7905829 Nishimura et al. Mar 2011 B2
7909760 Albrecht et al. Mar 2011 B2
7913697 Nguyen et al. Mar 2011 B2
7918827 Smith Apr 2011 B2
7947058 Kahle et al. May 2011 B2
7951076 Hart et al. May 2011 B2
7955257 Frasier et al. Jun 2011 B2
7955313 Boismier Jun 2011 B2
7985232 Potter et al. Jul 2011 B2
3002750 Smith Aug 2011 A1
3002786 Beckman et al. Aug 2011 A1
7998068 Bonadio et al. Aug 2011 B2
3012128 Franer et al. Sep 2011 A1
3021296 Bonadio et al. Sep 2011 A1
3025670 Sharp et al. Sep 2011 A1
8029475 Franer et al. Oct 2011 B2
8038652 Morrison et al. Oct 2011 B2
8052653 Gratwohl et al. Nov 2011 B2
8066673 Hart et al. Nov 2011 B2
8079986 Taylor et al. Dec 2011 B2
8092430 Richard et al. Jan 2012 B2
8092431 Lunn et al. Jan 2012 B2
8105234 Ewers et al. Jan 2012 B2
8109873 Albrecht et al. Feb 2012 B2
8118735 Voegele Feb 2012 B2
8128590 Albrecht et al. Mar 2012 B2
8137318 Schweitzer et al. Mar 2012 B2
8147453 Albrecht et al. Apr 2012 B2
8152828 Taylor et al. Apr 2012 B2
8157786 Miller et al. Apr 2012 B2
8157817 Bonadio et al. Apr 2012 B2
8187177 Kahle et al. May 2012 B2
8187178 Bonadio et al. May 2012 B2
8206411 Thompson et al. Jun 2012 B2
8241209 Shelton, IV et al. Aug 2012 B2
8262568 Albrecht et al. Sep 2012 B2
8267952 Kahle et al. Sep 2012 B2
8323184 Spiegal et al. Dec 2012 B2
8335783 Milby Dec 2012 B2
8343047 Albrecht et al. Jan 2013 B2
8353824 Shelton, IV et al. Jan 2013 B2
8398666 McFarlane Mar 2013 B2
8403889 Richard Mar 2013 B2
8480683 Fowler et al. Jul 2013 B2
8574153 Richard Nov 2013 B2
8585632 Okoniewski Nov 2013 B2
8597180 Copeland et al. Dec 2013 B2
8961406 Ortiz et al. Feb 2015 B2
10022149 Holsten et al. Jul 2018 B2
10568660 Zhou Feb 2020 B2
10653449 Main et al. May 2020 B2
20010037053 Bonadio et al. Nov 2001 A1
20020055714 Rothschild May 2002 A1
20020091410 Ben-David et al. Jul 2002 A1
20020173748 McConnell et al. Nov 2002 A1
20030014076 Mollenauer et al. Jan 2003 A1
20030093104 Bonner et al. May 2003 A1
20030109853 Harding et al. Jun 2003 A1
20030187376 Rambo Oct 2003 A1
20030187397 Vitali Oct 2003 A1
20030233115 Eversull et al. Dec 2003 A1
20030236549 Bonadio et al. Dec 2003 A1
20040006356 Smith Jan 2004 A1
20040054353 Taylor Mar 2004 A1
20040059297 Racenet et al. Mar 2004 A1
20040073090 Butler et al. Apr 2004 A1
20040092795 Bonadio et al. May 2004 A1
20040102804 Chin May 2004 A1
20040111061 Curran Jun 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040186434 Harding et al. Sep 2004 A1
20040204682 Smith Oct 2004 A1
20040204734 Wagner et al. Oct 2004 A1
20040215209 Almond et al. Oct 2004 A1
20040267096 Caldwell et al. Dec 2004 A1
20040267204 Brustowicz Dec 2004 A1
20050010238 Potter et al. Jan 2005 A1
20050020884 Hart et al. Jan 2005 A1
20050033342 Hart et al. Feb 2005 A1
20050070850 Albrecht Mar 2005 A1
20050070851 Thompson et al. Mar 2005 A1
20050070935 Ortiz Mar 2005 A1
20050070946 Franer et al. Mar 2005 A1
20050070947 Franer et al. Mar 2005 A1
20050096695 Olich May 2005 A1
20050119525 Takemoto Jun 2005 A1
20050137459 Chin et al. Jun 2005 A1
20050148823 Vaugh et al. Jul 2005 A1
20050192483 Bonadio et al. Sep 2005 A1
20050192594 Skakoon et al. Sep 2005 A1
20050203346 Bonadio et al. Sep 2005 A1
20050209608 O'Heeron Sep 2005 A1
20050212221 Smith et al. Sep 2005 A1
20050222582 Wenchell Oct 2005 A1
20050245876 Khosravi et al. Nov 2005 A1
20050251092 Howell et al. Nov 2005 A1
20050251190 McFarlane Nov 2005 A1
20050277946 Greenhalgh Dec 2005 A1
20060020281 Smith Jan 2006 A1
20060071432 Staudner Apr 2006 A1
20060129165 Edoga et al. Jun 2006 A1
20060149137 Pingleton et al. Jul 2006 A1
20060149306 Hart et al. Jul 2006 A1
20060161049 Beane et al. Jul 2006 A1
20060161050 Butler et al. Jul 2006 A1
20060211992 Prosek Sep 2006 A1
20060212063 Wilk Sep 2006 A1
20060217665 Prosek Sep 2006 A1
20060224161 Bhattacharyya Oct 2006 A1
20060241651 Wilk Oct 2006 A1
20060247498 Bonadio et al. Nov 2006 A1
20060247499 Butler et al. Nov 2006 A1
20060247500 Voegele et al. Nov 2006 A1
20060247516 Hess et al. Nov 2006 A1
20060247586 Voegele et al. Nov 2006 A1
20060247673 Voegele et al. Nov 2006 A1
20060247678 Weisenburgh et al. Nov 2006 A1
20060270911 Voegele et al. Nov 2006 A1
20060276751 Haberland et al. Dec 2006 A1
20070088277 McGinley et al. Apr 2007 A1
20070093695 Bonadio et al. Apr 2007 A1
20070118175 Butler et al. May 2007 A1
20070151566 Kahle et al. Jul 2007 A1
20070185453 Michael et al. Aug 2007 A1
20070203398 Bonadio et al. Aug 2007 A1
20070208312 Norton et al. Sep 2007 A1
20070225650 Hart et al. Sep 2007 A1
20070239108 Albrecht et al. Oct 2007 A1
20070255218 Franer Nov 2007 A1
20070270654 Pignato et al. Nov 2007 A1
20070270882 Hjelle et al. Nov 2007 A1
20080009826 Miller et al. Jan 2008 A1
20080021360 Fihe et al. Jan 2008 A1
20080027476 Piskun Jan 2008 A1
20080048011 Weller Feb 2008 A1
20080051739 McFarlane Feb 2008 A1
20080058723 Lipchitz et al. Mar 2008 A1
20080091143 Taylor et al. Apr 2008 A1
20080097162 Bonadio et al. Apr 2008 A1
20080097332 Greenhalgh et al. Apr 2008 A1
20080119868 Sharp et al. May 2008 A1
20080146884 Beckman et al. Jun 2008 A1
20080161758 Insignares Jul 2008 A1
20080161826 Guiraudon Jul 2008 A1
20080177265 Lechot Jul 2008 A1
20080188868 Weitzner et al. Aug 2008 A1
20080194973 Imam Aug 2008 A1
20080200767 Ewers et al. Aug 2008 A1
20080208222 Beckman et al. Aug 2008 A1
20080249475 Albrecht et al. Oct 2008 A1
20080255519 Piskun et al. Oct 2008 A1
20080319261 Lucini et al. Dec 2008 A1
20090012477 Norton et al. Jan 2009 A1
20090036738 Cuschieri et al. Feb 2009 A1
20090036745 Bonadio et al. Feb 2009 A1
20090093752 Richard et al. Apr 2009 A1
20090093835 Heinrich et al. Apr 2009 A1
20090093850 Richard Apr 2009 A1
20090105635 Bettuchi et al. Apr 2009 A1
20090131751 Spivey et al. May 2009 A1
20090137879 Ewers et al. May 2009 A1
20090182279 Wenchell et al. Jul 2009 A1
20090182288 Spenciner Jul 2009 A1
20090187079 Albrecht et al. Jul 2009 A1
20090204067 Abu-Halawa Aug 2009 A1
20090221968 Morrison et al. Sep 2009 A1
20090227843 Smith et al. Sep 2009 A1
20090234293 Albrecht et al. Sep 2009 A1
20090275880 Pasqualucci Nov 2009 A1
20090326330 Bonadio et al. Dec 2009 A1
20090326332 Carter Dec 2009 A1
20100016800 Rockrohr Jan 2010 A1
20100030155 Gyrn et al. Feb 2010 A1
20100049138 Smith et al. Feb 2010 A1
20100063450 Smith et al. Mar 2010 A1
20100063452 Edelman et al. Mar 2010 A1
20100100043 Racenet Apr 2010 A1
20100113886 Piskun et al. May 2010 A1
20100222801 Pingleton et al. Sep 2010 A1
20100228090 Weisenburgh, II Sep 2010 A1
20100228094 Ortiz et al. Sep 2010 A1
20100228096 Weisenburgh, II et al. Sep 2010 A1
20100240960 Richard Sep 2010 A1
20100249516 Shelton, IV et al. Sep 2010 A1
20100249523 Spiegal et al. Sep 2010 A1
20100249524 Ransden et al. Sep 2010 A1
20100261975 Huey et al. Oct 2010 A1
20100262080 Shelton, IV et al. Oct 2010 A1
20100280326 Hess et al. Nov 2010 A1
20100286484 Stellon et al. Nov 2010 A1
20100286506 Ransden et al. Nov 2010 A1
20100286706 Judson Nov 2010 A1
20100298646 Stellon et al. Nov 2010 A1
20100312063 Hess et al. Dec 2010 A1
20110009704 Marczyk et al. Jan 2011 A1
20110021877 Fortier et al. Jan 2011 A1
20110028891 Okoniewski Feb 2011 A1
20110034778 Kleyman Feb 2011 A1
20110054257 Stopek Mar 2011 A1
20110054258 O'Keefe et al. Mar 2011 A1
20110054260 Albrecht et al. Mar 2011 A1
20110082341 Kleyman et al. Apr 2011 A1
20110082343 Okoniewski Apr 2011 A1
20110082346 Stopek Apr 2011 A1
20110087159 Parihar et al. Apr 2011 A1
20110087168 Parihar et al. Apr 2011 A1
20110087169 Parihar et al. Apr 2011 A1
20110118553 Stopek May 2011 A1
20110118833 Reichenbach et al. May 2011 A1
20110124968 Kleyman May 2011 A1
20110124969 Stopek May 2011 A1
20110124970 Kleyman May 2011 A1
20110125186 Fowler et al. May 2011 A1
20110166423 Farascioni et al. Jul 2011 A1
20110190592 Kahle et al. Aug 2011 A1
20110201891 Smith et al. Aug 2011 A1
20110237901 Duke Sep 2011 A1
20110251463 Kleyman Oct 2011 A1
20110251464 Kleyman Oct 2011 A1
20110251465 Kleyman Oct 2011 A1
20110251466 Kleyman et al. Oct 2011 A1
20110251559 Tal et al. Oct 2011 A1
20110251560 Albrecht et al. Oct 2011 A1
20110251633 Smith Oct 2011 A1
20110276002 Bierman Nov 2011 A1
20110313250 Kleyman Dec 2011 A1
20120010569 Parihar Jan 2012 A1
20120041371 Tal et al. Feb 2012 A1
20120059640 Roy et al. Mar 2012 A1
20120065590 Bierman et al. Mar 2012 A1
20120109064 Fischvogt et al. May 2012 A1
20120130177 Davis May 2012 A1
20120130181 Davis May 2012 A1
20120130182 Rodrigues, Jr. et al. May 2012 A1
20120130183 Barnes May 2012 A1
20120130184 Richard May 2012 A1
20120130185 Pribanic May 2012 A1
20120130186 Stopek et al. May 2012 A1
20120130187 Okoniewski May 2012 A1
20120130188 Okoniewski May 2012 A1
20120130190 Kasvikis May 2012 A1
20120130191 Pribanic May 2012 A1
20120149987 Richard et al. Jun 2012 A1
20120157777 Okoniewski Jun 2012 A1
20120157779 Fischvogt Jun 2012 A1
20120157780 Okoniewski et al. Jun 2012 A1
20120157781 Kleyman Jun 2012 A1
20120157782 Alfieri Jun 2012 A1
20120157783 Okoniewski et al. Jun 2012 A1
20120157784 Kleyman et al. Jun 2012 A1
20120157785 Kleyman Jun 2012 A1
20120157786 Pribanic Jun 2012 A1
20120190931 Stopek Jul 2012 A1
20120190932 Okoniewski Jul 2012 A1
20120190933 Kleyman Jul 2012 A1
20120209077 Racenet Aug 2012 A1
20120209078 Pribanic et al. Aug 2012 A1
20120245427 Kleyman Sep 2012 A1
20120245429 Smith Sep 2012 A1
20120245430 Kleyman et al. Sep 2012 A1
20120283520 Kleyman Nov 2012 A1
20120316596 Taylor et al. Dec 2012 A1
20130225930 Smith Aug 2013 A1
20130225931 Cruz et al. Aug 2013 A1
20130245373 Okoniewski Sep 2013 A1
20130274559 Fowler et al. Oct 2013 A1
20130310651 Alfieri Nov 2013 A1
20140018632 Kleyman Jan 2014 A1
20150025477 Evans Jan 2015 A1
20150065808 Van Wyk et al. Mar 2015 A1
20150223833 Coffeen et al. Aug 2015 A1
20180021063 Main Jan 2018 A1
20180085145 Okoniewski Mar 2018 A1
20190059938 Holsten Feb 2019 A1
20190059944 Holsten Feb 2019 A1
20200246043 Holsten et al. Aug 2020 A1
Foreign Referenced Citations (3)
Number Date Country
3219268 Sep 2017 EP
2012131746 Oct 2012 WO
2016110720 Jul 2016 WO
Non-Patent Literature Citations (2)
Entry
Partial European Search Report dated Jul. 21, 2021 issued in corresponding EP Appln. No. 21163414.2.
Extended European Search Report dated Nov. 25, 2021 issued in corresponding EP Appln. No. 21163414.2.
Related Publications (1)
Number Date Country
20210290266 A1 Sep 2021 US