The present invention relates to the field of treatment of injured human knee joints, and in particular, to replacement and repair of a damaged human knee joint meniscus using a substantially immunologically compatible allograft meniscus.
The present invention is generally directed toward a method and instrumentation to replace a damaged human knee joint meniscus with an allograft meniscus.
The human knee is a complex joint containing spatially interrelated bones, ligaments, and cartilaginous structures which interact to create a variety of motions. Specifically, the femoral condyles articulate with the surface plateaus of the tibia, through the cartilaginous medial and lateral menisci, and all of these structures are held in place by various ligaments. Undamaged menisci provide shock absorption for the knee by ensuring proper force distribution, stabilization, and lubrication for the interacting bone surfaces within the knee joint, which are routinely exposed to repeated compression loading during normal activity. Much of the shock absorbing function of the medial and lateral menisci is derived from the elastic properties inherent to cartilage.
The meniscus of the knee joint is a half moon shaped piece of cartilage that lies between the weight bearing joint surfaces of the femur and the tibia. It is triangular in cross section and is attached to the lining of the knee joint along its periphery. There are two menisci in a normal knee; the outer one is called the lateral meniscus, the inner one the medial meniscus. The menisci play an important role in absorbing impact loads.
The menisci provide stability to the knee joint. Either of the menisci may tear or split when subjected to certain forces. This injury, which is commonly referred to as torn cartilage in the knee, is painful and may limit mobility.
Undamaged menisci provide shock absorption for the knee by ensuring proper force distribution, stabilization, and lubrication for the interacting bone surfaces within the knee joint, which are routinely exposed to repeated compression loading during normal activity. Much of the shock absorbing function of the medial and lateral menisci is derived from the elastic properties inherent to cartilage. When menisci are damaged through injury, disease, or inflammation, arthritic changes occur in the knee joint, with consequent loss of function.
The meniscus, a cartilaginous tissue, performs several functions in the knee including load transmission from the femur to the tibia, stabilization in the anterior-posterior position during flexion, and joint lubrication. Damage to the meniscus results in reduced knee stability and knee locking. Over 20 years ago, meniscectomies were performed which permitted pain relief, but were subsequently found to induce the early onset of osteoarthritis.
Injury to the knee involving a tear in the meniscus is a common occurrence, often occurring in the context of athletic events, and is prevalent in the younger population. The meniscus is recognized as being vital to the biomechanical stability and protection of the knee joint. Damage to the meniscus can greatly increase the likelihood of the articular surfaces of the knee joint developing conditions such as osteoarthritis. A common remedy which has been previously used for tears in the meniscus involved removal of the meniscus. However, it has been shown that degenerative changes in the knee are directly proportional to the amount of meniscus removed. Thus, in many instances it is desirable to repair the torn meniscus with the objective being to prevent instability of the knee joint and to prevent onset of conditions such as osteoarthritis.
Of the approximately 600,000 meniscal injuries that occur annually in the United States, an estimated 80% of tears are located in the avascular, irreparable zone. Thus instrumentation and a method that repairs “non-repairable” tears by replacement of the damaged meniscus with an allograft implant would be valuable for painless musculoskeletal movement and prevention of the early onset of osteoarthritis in a large segment of the population.
Various repairs and replacements have been used to relieve pain and restore function to the joint where the cartilage has been damaged. For example hyaline cartilage may be damaged by impact injuries or worn down in the course of arthritis. Typically, the ends of the bones forming a joint are cut away and replaced with prosthetic bearings made of metal and plastic to restore pain free articulation of the joint. In cases where the damage occurs as a small localized defect, some investigators have attempted to replace only the small defect by placing a patch of replacement material, natural or synthetic, at the defect.
Current methods for repairing tears in the meniscus are technically very challenging for the surgeon. One widely used technique requires that a long needle with a suture be passed through the torn meniscus and the knee joint. The needle carrying the suture is passed through the meniscus and the knee in its entirety several times until the meniscal tear is closed. As this procedure is typically performed arthroscopically, the amount of space available within the knee for manipulating the long needle through the meniscus is extremely limited. The procedure often requires more than one pair of hands, with one pair inserting the needle into the knee while another pair uses graspers, operating in the limited inflated space in the interior of the knee, to shuttle the needle through the meniscus and out the other side of the knee.
One area of meniscal repair is the use of allograft meniscal tissue used as an implant replacement for the damaged meniscus. U.S. Pat. No. 7,124,762 issued Oct. 24, 2006 discloses a meniscus allograft with an integral bone bridge. The bone bridge is held in a clamp and trimmed with a surgical saw so that it fits into a trapezoidal shaped or dovetail shaped blind end groove cut into the upper surface of the tibia. A rasp is used to create the orthogonal angle of the dovetail transplant.
This type of meniscal allograft transplant is currently being used by Arthrex, Inc. A similar allograft implant having a rectangular bone bridge is trimmed on a cutting board so that the bridge fits into a rectangular groove cut into the tibial surface is used by the Stryker corporation. The rectangular slot on the tibular surface is lined and a hole is drilled parallel to the marker line with the groove being formed by a rasp. The allograft implant and instruments and method of transplantation are shown in U.S. Pat. No. 6,699,252 issued Mar. 2, 2004. A double bone plug meniscus surgical technique is utilized by Cryolife, Inc. with cylindrical bone plugs cut on each end of the horns of the allograft meniscus which are placed in cylindrical blind bores cut into the tibial surface, and held in place by sutures.
Another reference is U.S. Pat. No. 5,092,894 issued Mar. 3, 1992 which discloses a biocompatible meniscus implant constructed of deformable and resilient material with the horns of the meniscus being mounted in tubing which is inserted into cylindrical bores cut into the tibia.
A number of meniscus prostheses have been devised which employ resilient materials such as silicone rubber or natural rubber, as in U.S. Pat. No. 4,344,193 (issued Aug. 17, 1982) and U.S. Pat. No. 4,502,161 (issued Mar. 5, 1985). Meniscal cutting devices have been disclosed in U.S. Pat. No. 4,711,238 (issued Dec. 8, 1987).
The present invention provides a substantially non-immunogenic meniscal cartilage allograft implant for implantation into a human in need of knee meniscus repair and an instrument kit for the surgeon to accomplish the implant.
The present invention is directed to a method and a kit including an allograft implant and instrumentation to surgically replace a damaged human knee joint meniscus with an allograft meniscus.
It is also an object of the invention to provide a pre-machined allograft meniscus structure having a bone base connecting the horns of the meniscus which can be mounted and fastened to a tibial surface.
These and other objects, advantages, and novel features of the present invention will become apparent when considered with the teachings contained in the detailed disclosure which along with the accompanying drawings constitute a part of this specification and illustrate embodiments of the invention which together with the description serve to explain the principles of the invention.
The preferred embodiment and best mode of the present invention is shown in
As shown in the drawings, an allograft meniscus implant 20 utilizing a bone base 22 is shown mounted in groove 202 of tibia 200 as is shown in
The surface of bone base can be modified by acid treatment to remove a layer of the inorganic, mineral material in such a way as to leave the mechanical properties substantially unchanged or to provide a construct having suitable compression and bending strength. This allows the addition of BMP's and other desirable additives which are more fully set forth herein to be introduced to the surface and thereby enhance the healing rate of the cortical bone in surgical procedures. The process also exposes the naturally occurring BMP's near the surface and renders the surface with biological properties similar to fully demineralized bone (DMB). The inner mass of the bone construct would be left intact to contain the naturally occurring BMP's.
The feature of the bone base that make it desirable as a surgical material are, its ability to slowly resorb and be integrated into the space it occupies while allowing the bodies own healing mechanism to restore the repairing bone to its natural shape and function by a mechanism known in the art as creeping substitution.
The allograft meniscus implant 20 is prepared with the use of an instrument kit comprising a sizing block 30 which allows the base to be sized, a hand gauge device 40, a tissue chisel 50, a clamping drill 60 and a cutting miter block 100. The sizing block 30 which is best shown in
A gauge 40 as shown in
A tissue chisel 50 as shown in
A drill mechanism 60 as shown in
A cutting workstation 100 as shown in
In operation the implant 20 has its bone base cut to a desired width in workstation 100. The finished base is measured in the sizing groove of the sizing block 30 for width and length. The tibia is then drilled with drill 60 to the appropriate depth and length and groove 202 is formed in the tibia with the tissue chisel 50 so that the width is the same as the width of the bone base. The bone base is press fit into the groove 202 and may be secured with a bone screw.
Another embodiment is shown in
The shank 124 of the saw has a central axial through going bore 125 which receives a centering pin 130 which has previously been inserted into the implant as is shown in
It is well known that bone contains osteoinductive elements known as bone morphogenetic proteins (BMP). These BMP's are present within the compound structure of cortical bone and are present at a very low concentrations, e.g. 0.003%. The BMP's are present in higher concentrations in cancellous bone. BMP's direct the differentiation of pluripotential mesenchymal cells into osteoprogenitor cells which form osteoblasts. The ability of freeze dried demineralized bone to facilitate this bone induction principle using BMP present in the bone is well known in the art. However, the amount of BMP varies in the bone depending on the age of the bone donor and the bone processing.
It is also possible to add one or more rhBMP's to the bone by soaking and being able to use a significantly lower concentration of the rare and expensive recombinant human BMP to achieve the same acceleration of biointegration. The addition of other useful treatment agents such as vitamins, hormones, antibiotics, antiviral and other therapeutic agents could also be added to the bone.
Any number of medically useful substances can be incorporated in the bone block and meniscus assembly by adding the substances to the assembly. Such substances include collagen and insoluble collagen derivatives, hydroxyapatite and soluble solids and/or liquids dissolved therein. Also included are antiviricides such as those effective against HIV and hepatitis; antimicrobial and/or antibiotics such as erythromycin, bacitracin, neomycin, penicillin, polymyxin B, tetracycline, viomycin, chloromycetin and streptomycin, cefazolin, ampicillin, azactam, tobramycin, clindamycin, gentamycin and silver salts. It is also envisioned that amino acids, peptides, vitamins, co-factors for protein synthesis; hormones; endocrine tissue or tissue fragments; synthesizers; enzymes such as collagenase, peptidases, oxidases; polymer cellpl scaffolds with parenchymal cells; angiogenic drugs and polymeric carriers containing such drugs; collagen lattices; biocompatible surface active agents, antigenic agents; cytoskeletal agents; cartilage fragments, living cells, cell elements such as chondrocytes, red blood cells, white blood cells, platelets, blood plasma, bone marrow cells, mesenchymal stem cells, pluripotential cells, osteoblasts, osteoclasts, fibroblasts, epithelial cells and entothial cells, natural extracts, tissue transplants, bioadhesives, transforming growth factor (TGF-beta), insulin growth factor (IGF-1), platelet derived growth factor (PDGF), fibroblast growth factor (FGF)(Numbers 1-23), platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), osteopontin; growth hormones such as somatotropin; cellular attractants and attachment agents; fibronectin; immuno-suppressants; permeation enhancers, e.g. fatty acid esters such as laureate, myristate and stearate monoesters of polyethylene glycol, enamine derivatives, alpha-keto aldehydes can be added to the composition.
The principles, preferred embodiments and modes of operation of the present invention have been described in the foregoing specification. However, the invention should not be construed as limited to the particular embodiments which have been described above. Instead, the embodiments described here should be regarded as illustrative rather than restrictive. Variations and changes may be made by others without departing from the scope of the present invention as defined by the following claims:
This application claims the benefit of Provisional Application No. 61/064,461, filed Mar. 6, 2008.
Number | Name | Date | Kind |
---|---|---|---|
1384330 | Winfield | Jul 1921 | A |
4052753 | Dedo | Oct 1977 | A |
4150675 | Comparetto | Apr 1979 | A |
4195368 | Patrichi | Apr 1980 | A |
4325373 | Slivenko et al. | Apr 1982 | A |
4344193 | Kenny | Aug 1982 | A |
4421112 | Mains et al. | Dec 1983 | A |
4481947 | Chester | Nov 1984 | A |
4502161 | Wall | Mar 1985 | A |
4627425 | Reese | Dec 1986 | A |
4649916 | Frimberger | Mar 1987 | A |
4703751 | Pohl | Nov 1987 | A |
4711238 | Cunningham | Dec 1987 | A |
4807863 | Yang | Feb 1989 | A |
4813413 | Gray | Mar 1989 | A |
4880429 | Stone | Nov 1989 | A |
4919667 | Richmond | Apr 1990 | A |
4985031 | Buss et al. | Jan 1991 | A |
5035699 | Coates | Jul 1991 | A |
5067964 | Richmond et al. | Nov 1991 | A |
5092572 | Litwak et al. | Mar 1992 | A |
5092894 | Kenny | Mar 1992 | A |
5100409 | Coates et al. | Mar 1992 | A |
5139520 | Rosenberg | Aug 1992 | A |
5163665 | Klearman | Nov 1992 | A |
5171322 | Kenny | Dec 1992 | A |
5246444 | Schreiber | Sep 1993 | A |
5254119 | Schreiber | Oct 1993 | A |
5263498 | Caspari et al. | Nov 1993 | A |
5298012 | Handlos | Mar 1994 | A |
5306311 | Stone et al. | Apr 1994 | A |
5344459 | Swartz | Sep 1994 | A |
5358525 | Fox et al. | Oct 1994 | A |
5366457 | McGuire et al. | Nov 1994 | A |
5397357 | Schmieding et al. | Mar 1995 | A |
5413579 | Tom Du Toit | May 1995 | A |
5415663 | Luckman et al. | May 1995 | A |
5423827 | Mumme et al. | Jun 1995 | A |
5449360 | Schreiber | Sep 1995 | A |
5466243 | Schmieding et al. | Nov 1995 | A |
5486180 | Dietz et al. | Jan 1996 | A |
5540695 | Levy | Jul 1996 | A |
5569260 | Petersen | Oct 1996 | A |
5571109 | Bertagnoli | Nov 1996 | A |
5601562 | Wolf et al. | Feb 1997 | A |
5613969 | Jenkins, Jr. | Mar 1997 | A |
5613970 | Houston et al. | Mar 1997 | A |
5620448 | Puddu | Apr 1997 | A |
5662656 | White | Sep 1997 | A |
5667512 | Johnson | Sep 1997 | A |
5681320 | McGuire | Oct 1997 | A |
5681333 | Burkhart et al. | Oct 1997 | A |
5683400 | McGuire | Nov 1997 | A |
5690637 | Wen et al. | Nov 1997 | A |
5693056 | Carls et al. | Dec 1997 | A |
5702462 | Oberlander | Dec 1997 | A |
5709689 | Ferrante et al. | Jan 1998 | A |
5713897 | Goble et al. | Feb 1998 | A |
5735903 | Li et al. | Apr 1998 | A |
5766251 | Koshino | Jun 1998 | A |
5785714 | Morgan et al. | Jul 1998 | A |
5913900 | Stone | Jun 1999 | A |
5919196 | Bobic et al. | Jul 1999 | A |
5957926 | Masini | Sep 1999 | A |
5968050 | Torrie | Oct 1999 | A |
5980526 | Johnson et al. | Nov 1999 | A |
6063088 | Winslow | May 2000 | A |
6102954 | Albrektsson et al. | Aug 2000 | A |
6152928 | Wenstrom, Jr. | Nov 2000 | A |
6176880 | Plouhar et al. | Jan 2001 | B1 |
6206927 | Fell et al. | Mar 2001 | B1 |
6264657 | Urbahns et al. | Jul 2001 | B1 |
6278079 | McIntyre et al. | Aug 2001 | B1 |
6468314 | Schwartz et al. | Oct 2002 | B2 |
6488033 | Cerundolo | Dec 2002 | B1 |
6558421 | Fell et al. | May 2003 | B1 |
6565575 | Lewis | May 2003 | B2 |
6629997 | Mansmann | Oct 2003 | B2 |
6632246 | Simon et al. | Oct 2003 | B1 |
6640666 | Pliley | Nov 2003 | B2 |
6666866 | Martz et al. | Dec 2003 | B2 |
6679914 | Gabbay | Jan 2004 | B1 |
6699252 | Farr et al. | Mar 2004 | B2 |
6702821 | Bonutti | Mar 2004 | B2 |
6796977 | Yap et al. | Sep 2004 | B2 |
6852114 | Cerundolo | Feb 2005 | B2 |
6852125 | Simon et al. | Feb 2005 | B2 |
6855165 | Fell et al. | Feb 2005 | B2 |
6893463 | Fell et al. | May 2005 | B2 |
6923831 | Fell et al. | Aug 2005 | B2 |
6964685 | Murray et al. | Nov 2005 | B2 |
6966928 | Fell et al. | Nov 2005 | B2 |
7004971 | Serhan et al. | Feb 2006 | B2 |
7124762 | Carter et al. | Oct 2006 | B2 |
7163563 | Schwartz et al. | Jan 2007 | B2 |
7244273 | Pedersen et al. | Jul 2007 | B2 |
7264634 | Schmieding | Sep 2007 | B2 |
7291169 | Hodorek | Nov 2007 | B2 |
7297161 | Fell | Nov 2007 | B2 |
7338524 | Fell et al. | Mar 2008 | B2 |
7371260 | Malinin | May 2008 | B2 |
7462199 | Justin et al. | Dec 2008 | B2 |
7476250 | Mansmann | Jan 2009 | B1 |
7534263 | Burdulis et al. | May 2009 | B2 |
7575578 | Wetzler et al. | Aug 2009 | B2 |
7591820 | Schmieding et al. | Sep 2009 | B2 |
7594922 | Goble et al. | Sep 2009 | B1 |
7611653 | Elsner et al. | Nov 2009 | B1 |
7632311 | Seedhom et al. | Dec 2009 | B2 |
7641689 | Fell et al. | Jan 2010 | B2 |
7766964 | Stone et al. | Aug 2010 | B2 |
7780668 | Steiner et al. | Aug 2010 | B2 |
7901457 | Truncale et al. | Mar 2011 | B2 |
20010002446 | Plouhar et al. | May 2001 | A1 |
20020082703 | Repicci | Jun 2002 | A1 |
20020082704 | Cerundolo | Jun 2002 | A1 |
20030036801 | Schwartz et al. | Feb 2003 | A1 |
20030229400 | Masuda et al. | Dec 2003 | A1 |
20030236573 | Evans et al. | Dec 2003 | A1 |
20040028717 | Sittinger et al. | Feb 2004 | A1 |
20040033212 | Thomson et al. | Feb 2004 | A1 |
20040039447 | Simon et al. | Feb 2004 | A1 |
20040044408 | Hungerford et al. | Mar 2004 | A1 |
20040062753 | Rezania et al. | Apr 2004 | A1 |
20040230303 | Gomes et al. | Nov 2004 | A1 |
20050043814 | Kusanagi et al. | Feb 2005 | A1 |
20050125077 | Harmon et al. | Jun 2005 | A1 |
20050159820 | Yoshikawa et al. | Jul 2005 | A1 |
20050196460 | Malinin | Sep 2005 | A1 |
20050222687 | Vunjak-Novakovic et al. | Oct 2005 | A1 |
20050251268 | Truncale | Nov 2005 | A1 |
20060030948 | Manrique et al. | Feb 2006 | A1 |
20060060209 | Shepard | Mar 2006 | A1 |
20060167483 | Asculai et al. | Jul 2006 | A1 |
20060178748 | Dinger et al. | Aug 2006 | A1 |
20060247790 | McKay | Nov 2006 | A1 |
20070014867 | Kusanagi et al. | Jan 2007 | A1 |
20070093896 | Malinin | Apr 2007 | A1 |
20070100450 | Hodorek | May 2007 | A1 |
20070113951 | Huang | May 2007 | A1 |
20070135917 | Malinin | Jun 2007 | A1 |
20070135918 | Malinin | Jun 2007 | A1 |
20070135928 | Malinin | Jun 2007 | A1 |
20070148242 | Vilei et al. | Jun 2007 | A1 |
20070179607 | Hodorek et al. | Aug 2007 | A1 |
20070185585 | Bracy et al. | Aug 2007 | A1 |
20070276506 | Troxel | Nov 2007 | A1 |
20080077251 | Chen et al. | Mar 2008 | A1 |
20080086210 | Fox | Apr 2008 | A1 |
20080125863 | McKay | May 2008 | A1 |
20080167716 | Schwartz et al. | Jul 2008 | A1 |
20080183291 | Scheller et al. | Jul 2008 | A1 |
20080183300 | Seedhom et al. | Jul 2008 | A1 |
20080195205 | Schwartz | Aug 2008 | A1 |
20080234820 | Felt et al. | Sep 2008 | A1 |
20080269756 | Tomko et al. | Oct 2008 | A1 |
20090069901 | Truncale et al. | Mar 2009 | A1 |
20090076605 | Linares | Mar 2009 | A1 |
20090076624 | Rahaman et al. | Mar 2009 | A1 |
20090088846 | Myung et al. | Apr 2009 | A1 |
20090093816 | Roose et al. | Apr 2009 | A1 |
20090099661 | Bhattacharya et al. | Apr 2009 | A1 |
20090131986 | Lee et al. | May 2009 | A1 |
20090306676 | Lang et al. | Dec 2009 | A1 |
20090312805 | Lang et al. | Dec 2009 | A1 |
20090312842 | Bursac et al. | Dec 2009 | A1 |
20090319051 | Nycz et al. | Dec 2009 | A9 |
20100023015 | Park | Jan 2010 | A1 |
20100023127 | Shohat | Jan 2010 | A1 |
20100069910 | Hasselman | Mar 2010 | A1 |
20100145343 | Johnson et al. | Jun 2010 | A1 |
20100160914 | Bastian et al. | Jun 2010 | A1 |
20100168752 | Edwards | Jul 2010 | A1 |
20100168754 | Fitz et al. | Jul 2010 | A1 |
20100168857 | Hatch | Jul 2010 | A1 |
20100191242 | Massoud | Jul 2010 | A1 |
20100191243 | Horan et al. | Jul 2010 | A1 |
20100191244 | White et al. | Jul 2010 | A1 |
20100198224 | Metzger et al. | Aug 2010 | A1 |
20100228257 | Bonutti | Sep 2010 | A1 |
20100298894 | Bojarski et al. | Nov 2010 | A1 |
20100303313 | Lang et al. | Dec 2010 | A1 |
20100305573 | Fitz et al. | Dec 2010 | A1 |
20100305574 | Fitz et al. | Dec 2010 | A1 |
20100305907 | Fitz et al. | Dec 2010 | A1 |
20100318088 | Warne et al. | Dec 2010 | A1 |
20110015636 | Katrana et al. | Jan 2011 | A1 |
20110046613 | Schmitz et al. | Feb 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20090234452 A1 | Sep 2009 | US |
Number | Date | Country | |
---|---|---|---|
61064461 | Mar 2008 | US |