The invention relates generally to electronic equipment, and more particularly to instrumented couplings that are configured to be installed downhole in wells.
It is often desirable to use electronic sensors to make measurements of conditions within a well. These sensors may be installed on in-line carriers that are connected to production tubing or other pieces of downhole equipment that are positioned within the well. Conventionally, the carriers are constructed by forming a mandrel that has couplings on each end and a bore therethrough so that it can be connected in line with the tubing and/or equipment. A pocket is milled into the exterior surface of the mandrel to accommodate an elongated sensor package. The sensor package is then mounted within this pocket. If it is desired to provide multiple sensors, the pocket on the exterior of the mandrel is made large enough to accommodate each of the sensor packages (which are typically mounted side-by-side within the pocket).
There are a number of disadvantages to the conventional construction of these gauge packages. For example, a typical gauge package may be several feet long, and may therefore require a substantial amount of material to form the mandrel, which incurs substantial cost. Additionally, each of the individual sensor packages that is installed on the exterior of the mandrel normally requires its own tubular housing which provides a sealed enclosure that contains the sensor and electronic components. This housing may also provide some protection for these components, as the sensor package is installed in a somewhat exposed location on the exterior of the mandrel and may therefore be subject to damage as the gauge package is installed or used in the well. Another disadvantage is that, if the sensor is intended to measure conditions within the bore of the mandrel, a port must be drilled from the exterior pocket to the bore at the interior of the mandrel, and a manifold at the end of the housing of the sensor package must be mounted over this port and sealed.
It would therefore be desirable to provide an improved gauge package that reduces or eliminates one or more of the disadvantages of conventional designs.
This disclosure is directed to systems and methods for providing instrumented couplings that carry corresponding downhole sensors. The improved instrumented coupling uses a carrier which serves not only as a coupling, but also as a housing for sensors and associated electronics that are installed in pockets or cavities within the carrier wall. The carrier may have an offset bore, so that the carrier wall is thicker on one side, allowing larger cavities to be provided for the sensors and electronics.
One embodiment comprises an instrumented downhole coupling that includes a carrier and a set of sensors and electronics that are installed within the carrier. The carrier is a tubular structure having a first coupling at a first end and a second coupling at the opposite end. A bore extends through the carrier from the first end to the second end, forming a carrier wall between the bore and the exterior surface of the carrier. The bore is offset from a central axis of the carrier (the axis of the cylindrical outer surface of the carrier), creating an increased-thickness portion of the carrier wall on a first side of the carrier. A set of cavities are formed within the increased-thickness portion of the carrier wall (e.g., by drilling holes into the carrier wall). One or more sensors are then positioned within corresponding ones of the cavities, so that the carrier wall forms a housing for each of the sensors. The sensors may include, for example, a tubing sensing gauge, an annulus sensing gauge, or a remote tap sensing gauge.
The instrumented coupling may also include one or more electronics packages that are positioned in corresponding ones of the cavities in the carrier wall. These cavities may be which are sealed to prevent fluids from the sensor cavities and from the bore and the exterior of the carrier from reaching the electronics packages. The instrumented coupling may include electrical interconnects which electrically connect the sensors and the electronics packages to corresponding electrical terminals in a sealed compartment within the carrier wall.
The cavities within the carrier wall may be positioned at circumferentially displaced locations around the carrier, so that the elongated sensors are side-by-side within the carrier wall. The carrier may therefore be shorter than a conventional carrier, in which the components of each sensor assembly (e.g., sensor, electronics, manifold) are positioned end-to-end in a tubular housing. Since the carrier itself serves as the sensor housing, the material of the conventional sensor housing can be eliminated, and the overall amount of material which is required for the coupling (carrier and sensor packages) is reduced.
In some embodiments, one of the sensor cavities includes a port through which the interior of the cavity is in fluid communication with the exterior of the carrier (hence the annulus between the carrier and the well bore). One of the cavities may have a port through which the interior of this cavity is in fluid communication with the bore that extends through the carrier. Another one of the cavities may be configured to enable a feed-through electrical cable to be installed to pass through the carrier, or to extend from the exterior of the carrier into one or more of the cavities within the carrier wall, where it can be connected to the sensor.
One alternative embodiment may include a method for manufacturing instrumented downhole couplings as described above. Another alternative embodiment may comprise a carrier as described above which is configured to serve as a coupling and to provide an enclosure for sensors and associated electronics within the carrier wall. Numerous other embodiments are also possible.
Embodiments disclosed herein may provide a number of advantages over prior art systems and methods. For example, proposed approaches for assembling rotors and subsequently magnetizing the assembled rotors allow for safer rotor assembly and higher productivity with respect to the manufacture of the rotors, which reduces manufacturing costs associated with permanent magnet motors. The disclosed embodiments also enable the magnetization of assembled rotors in the field, including magnetizing rotors that have become demagnetized in the course of operation in the field.
Other objects and advantages of the invention may become apparent upon reading the following detailed description and upon reference to the accompanying drawings.
While the invention is subject to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and the accompanying detailed description. It should be understood, however, that the drawings and detailed description are not intended to limit the invention to the particular embodiment which is described. This disclosure is instead intended to cover all modifications, equivalents and alternatives falling within the scope of the present invention as described herein. Further, the drawings may not be to scale, and may exaggerate one or more components in order to facilitate an understanding of the various features described herein.
One or more embodiments of the invention are described below. It should be noted that these and any other embodiments described below are exemplary and are intended to be illustrative of the invention rather than limiting.
This disclosure is directed to an improved instrumented coupling or gauge package that uses a carrier which serves as a housing for sensors and associated electronics that are installed in pockets or cavities within the carrier wall. The carrier may have an offset bore, so that the carrier wall is thicker on one side, allowing larger cavities to be provided for the sensors and electronics.
Referring to
Referring to
Referring to
Referring to
Bore 314 is not coaxial with exterior surface 312, but is instead offset so that the wall of the carrier which is formed between the bore and the exterior surface has a first portion 320 on one side of the bore which is thicker than a second portion 322 on the opposite side of the bore. As depicted in
Bore 314 is offset in order to provide sufficient thickness in first wall portion 320 to allow pockets to be milled into the thickened wall portion. These pockets accommodate one or more sensors and their associated electronics. In the example of
In this example, the pockets are drilled into the second wall portion 312 of the carrier. The sensors are conventionally installed in a tube that forms a housing for the gauge package, but in this embodiment, the sensors are instead inserted into the pockets that are drilled into the thickened wall of the carrier. Thus, the carrier serves as the housing for each of the sensors, eliminating the need to provide the tubular housing that would be secured to the exterior of the carrier in a conventional design. This eliminates the need for the material and cost associated with manufacturing the separate housing for the “housingless” sensors and reduces the cost of the gauge package with respect to conventional designs. The electronics associated with each of the sensors are likewise installed in pockets drilled into the wall of carrier 310, so that the carrier serves as the housing for the electronics.
In the example of
For example, a sensor for monitoring conditions within the bore of the carrier would be installed in one of the pockets that is in fluid communication with the bore, while a sensor for monitoring conditions in the annulus of the well would be installed in one of the pockets that is include communication with the exterior of the carrier. In the embodiment of
A pressure test adapter 396 is shown in
Referring to
Referring to
Each of the pockets that are drilled into carrier 310 opens to a compartment 390 at the end of the carrier. The sensors and associated electronics are inserted into the pockets from the openings at compartment 390. In this embodiment, the sensors are enclosed in their respective pockets by welding caps (410, 412, 414) onto the ends of the respective pockets. Electrical conductors from each of the sensors extend through the caps, and these conductors may be secured to terminals or “turrets” (e.g., 420) within compartment 390. Electronics (336, 338, 340) for the sensors are inserted into the respective ones of the pockets and are secured by screws (e.g., 422) conductors from the electronics extend into compartment 390, where they can be secured to the appropriate ones of terminals 420, thereby electrically connecting the electronics to the corresponding sensors. Conductors from a cable in feedthrough 382 may be electrically connected to appropriate ones of the sensors/electronics or, if the feedthrough is not used, a cover 440 may be welded onto the opening of the feedthrough into compartment 390.
Referring to
Referring to
In the embodiment of
Another feature of instrumented coupling 700 is a bypass cutout 710. Cables, TECs or the like which are connected to equipment above the instrumented coupling may extend through bypass cutout 710 to equipment below the instrumented coupling, bypassing any connection to the instrumented coupling itself. Instrumented coupling 700 also includes external features common to instrumented coupling 300, such as a feedthrough connector 712 and pressure test ports (e.g., 714)
Embodiments of the present invention may provide a number of advantages over existing designs. For example, as noted above, the present embodiments may be substantially shorter than conventional designs (e.g., an embodiment equivalent to a 40-inch long conventional carrier may be on the order of 12 inches long), reducing the amount of material that is required for the carrier and reducing the corresponding material cost.as also noted above, the use of the carrier wall itself as the housing for each of the sensor packages eliminates the need to provide separate sensor housings and consequently reduces the amount of material required for the apparatus, as well as the cost. Although the separate sensor housings are eliminated, the present embodiments can nevertheless use existing sensor and electronics components, and can achieve the same sensor configurations as the conventional designs. The present embodiments also reduce the amount of welding that is required to construct the instrumented coupling (the welding associated with the sensor package housings is eliminated), so there is less leak path than in conventional designs. By housing the sensors and associated electronics within the carrier wall, the present embodiments eliminate the need for manifold sealing kits that are necessary in conventional designs to seal the sensor package manifold against the carrier. The eliminated components and reduced materials may reduce the cost of the instrumented coupling by thousands of dollars.
The benefits and advantages which may be provided by the present invention have been described above with regard to specific embodiments. These benefits and advantages, and any elements or limitations that may cause them to occur or to become more pronounced are not to be construed as critical, required, or essential features of any or all of the embodiments. As used herein, the terms “comprises,” “comprising,” or any other variations thereof, are intended to be interpreted as non-exclusively including the elements or limitations which follow those terms. Accordingly, a system, method, or other embodiment that comprises a set of elements is not limited to only those elements, and may include other elements not expressly listed or inherent to the described embodiment.
While the present invention has been described with reference to particular embodiments, it should be understood that the embodiments are illustrative and that the scope of the invention is not limited to these embodiments. Many variations, modifications, additions and improvements to the embodiments described above are possible. It is contemplated that these variations, modifications, additions and improvements fall within the scope of the invention as detailed within the description herein.