There are a number of rotary cutting tools used to create, extend, enlarge or do other work within subterranean boreholes, which may be boreholes drilled in the course of oil and gas exploration and production. Drill bits are one instance of such tools. Others include reamers which are used to maintain or enlarge the diameter of a borehole and mills which are used to remove material which has been placed in a borehole. Such tools commonly have a support structure for cutting elements and separate cutters of hard material secured to the support structure. In some tools, the cutters are formed of hard material such as tungsten carbide or a mix of tungsten carbide and other material(s). In some tools, the cutters comprise a compact of polycrystalline diamond which may be supported on a body of other hard material such as tungsten carbide. Such cutters with polycrystalline diamond are commonly referred to as PDC cutters. When a tool has separate cutters of hard material (with or without polycrystalline diamond), the cutters are generally fabricated separately and subsequently attached to the support structure. This may be done by brazing.
During use of a cutting tool, its cutters undergo wear, which may be wear by abrasion, although chipping and breakage can also occur. Tripping a worn tool out of a borehole is time-consuming and therefore expensive. Tripping a tool out of a borehole before the amount of wear makes it necessary to do so is therefore a significant waste of resources. There are schemes for estimating wear of a drill bit from surface or downhole parameters such as rate of penetration, torque, rotary speed and weight on the tool. One such scheme for predicting wear comes from work of Detournay et al in “Drilling response of drag bits: theory and experiment” International Journal of Rock Mechanics and Mining Sciences vol 45 pp 1347-1360 (2008) and another from Rashidi et al in “Real-Time Drill Bit Wear Prediction by Combining Rock Energy and Drilling Strength Concepts” Society of Petroleum Engineers paper SPE 117109.
Cutting tools such as drill bits may incorporate sensors of various types. The information collected from such sensors whilst the drill bit is in use may be stored in electronic memory accommodated within the cutting tool itself and/or may be transmitted to the surface. U.S. Pat. No. 7,168,506 shows a drill bit which is provided with a number of sensors. Several kinds of sensors are mentioned in this document including wear sensors. U.S. Pat. No. 8,006,781 discloses a drill bit in which sensors intended to detect wear may be constructed to carry an electrical signal current whilst intact and to be destroyed by wear, so that the wear can be revealed by the circuit ceasing to carry the signal current. In U.S. Pat. No. 8,006,781, the wiring to detect wear extends within the body of the drill bit beneath the hard cutters.
This summary is provided to introduce a selection of concepts that are further described below. This summary is not intended to be used as an aid in limiting the scope of the subject matter claimed.
Disclosed herein is a rotary cutting tool which is to be used in a subterranean borehole and which comprises a support structure and a plurality of cutters secured to the support structure. The cutters project from the support structure towards the material to be cut by the tool. The tool has electrically operated sensing means at or coupled to a sensing point within an element protruding from the support structure, wherein the sensing point is located such that attrition of at least one cutter to a predetermined partially worn state exposes the sensing point to the material which is being cut by the tool and thereby brings about a change in condition at the sensing point. The sensing means is operative to detect the change at the sensing point, and the tool includes means to communicate data from the sensing means to the surface.
The element protruding from the support structure which contains the sensing point may be one of the cutters. As the cutter is worn down through abrasion or possibly through chipping or breakage by the material which is being cut, the attrition of material from the cutter eventually reaches the sensing point and exposes it to the material which is being cut.
Another possibility is that the protruding element is not itself a cutter but is a separate protrusion which projects (as the cutters do) from the support structure towards the material to be cut by the tool, but dimensioned to travel within hole cut by at least one of the cutters of the tool so as to be shielded from abrasive contact with the material to be cut by the tool until abrasive wear of the at least one cutter reduces its size and brings the protrusion into abrasive contact with the material to be cut by the tool. Attrition of the cutters will continue as the tool is used and will be accompanied by attrition of the protrusion until a predetermined point is reached when the cutters are worn, although only partially worn, and the sensing point is exposed to the material being cut. This brings about the detectable change at the sensing point. A protrusion which is separate from the cutters may be directly adjacent to a cutter or may be spaced from a cutter or cutters which initially shield the protrusion from contact with the material to be cut.
Although concepts disclosed here could be implemented with a single sensing point, some embodiments have a plurality of sensing points in a plurality of protrusions from the support structure. A plurality of protrusions may be distributed over the cutting surface of the rotary cutting tool so that it is possible to monitor wear at a number of points. It is also possible that more than one sensing point is provided in an individual protrusion, arranged so that one sensing point is exposed after a certain amount of attrition and another sensing point is exposed later, after a greater amount of attrition of a cutter or cutters.
Electrically operated sensing means may take a number of forms and may include a sensor at the sensing point which is operated by electrical circuitry located elsewhere. In some embodiments, sensing means may comprise a signal carrying line, which may be an electrical conductor or an optical fibre so as to carry electric current or a light signal along a defined path leading to the sensing point. A signal carrying line or lines may lead to a sensor at the sensing point or may themselves constitute at least part of a sensor for a condition at the sensing point. Such a signal carrying line may provide a sensor which is sacrificial in that when the sensing point becomes exposed by abrasive wear, the sensor is broken or damaged by contact with the material which is being cut and then ceases to function as it did previously.
It will be appreciated that such arrangements detect change at the sensing point by giving a negative result. The sensor will function and can give a positive indication or value (for example when interrogated by software) until the sensing point is exposed and the signal carrying line is broken or damaged so that it ceases to operate, which is a negative indication or value. A signal carrying line or lines may connect to a sensor for a physical property, such as temperature, within the protrusion so as to provide a measurement of this property while the sensor is intact before the sensing point is exposed.
The sensing means may comprise electronic circuitry to send signals along a line or lines which lead to and from the sensing point or which constitute at least part of a sensor at the sensing point. If a signal carrying line is an optical fibre, the electronic circuitry may comprise a light source and a light detector.
A yet further possibility is that the sensing means may comprise a cavity extending within the tool to the sensing point and the sensing means could operate to detect opaque drilling fluid flowing into this cavity when the sensing point is exposed. In such an arrangement, the cavity serves as a signal path between the sensing point and a sensor for detecting fluid entering the cavity.
The rotary cutting tool may come within any of several categories. One is drill bits which are mainly, if not exclusively, used for drilling through subterranean rock formations. This category includes standard drill bits, core bits, eccentric bits and bicenter bits, all of which may be constructed with separate cutters attached to a fixed support structure which is the main body of the drill bit. A drill bit may also have cutters on a support structure which moves relative to a main body of the bit, as is the case with roller cone bits.
The body of a drill bit, constituting a support structure for cutters, may be made of steel or may be made of a hard material such as a matrix of tungsten carbide particles infiltrated by a metallic binder.
Another category of cutting tool is reamers and under-reamers used to maintain or enlarge the diameter of a portion of a borehole. A reamer has a body, which may be steel, with cutters projecting radially outwardly from a tool axis towards the wall of a borehole and is used to ensure that the borehole continues to have the diameter through which the reamer has already descended. Such a reamer may be located in a bottom hole assembly above a drill bit and serve to enlarge the diameter already drilled by the drill bit, or ensure that the drill bit has achieved the intended diameter by removing material from any point where the intended diameter has not already been achieved. An under-reamer has parts which can be expanded outwardly from the body and which are the supporting structures for cutters which project radially outwardly towards a borehole wall. Because these parts are expandable, an under-reamer can be used to enlarge a portion of a borehole to a diameter which is greater than the diameter of the hole further above it. The body and expandable parts may be made of steel.
Milling tools are used for cutting through structures which are present in the borehole. Such structures may have been placed in the borehole as a deliberate but temporary blockage, such as a cemented packer, or may be an accidental obstruction in a borehole. Some milling tools have cutters at the downhole end of the tool so that they are akin to drill bits. Other milling tools have cutters on structures which project towards a borehole wall, somewhat akin to reamers and these support structures may be expandable.
The cutters which are attached to support structures in rotary cutting tools as discussed above may be PDC cutters. These may have a cylindrical body with a polycrystalline diamond section at one end. The body may be moulded from hard material which may be tungsten carbide particles infiltrated with metallic binder. The polycrystalline diamond section may then comprise particles of diamond and a binder. In many instances, the polycrystalline diamond section is a disc so that the hardest end of a cutter is a flat face before any wear takes place. However, this is not always the case: cutters may be made with a polycrystalline diamond section which tapers to a point or which has some other shape.
Cutters are not always PDC cutters and are not always cylindrical. Cutters may, for example, be manufactured entirely from a single composition comprising tungsten carbide particles and binder (possibly also including some other metal carbide particles). Cutters of this type may be favoured as the cutters used on milling tools or on portions of milling tools because they are better able to withstand temperatures reached when cutting steel.
Although it is mentioned above that cutters may be secured to a supporting structure by brazing, which may secure a cutter with no possibility of movement relative to the support structure, WO2013/085869 discloses a drill bit with cutters attached to it such that a cutter can rotate about its own axis, thereby distributing wear around the edge of the polycrystalline diamond disc which contacts the formation. The sensing means and protrusions disclosed herein may be used in conjunction with cutters secured in this way.
In a second aspect of the present disclosure, a rotary cutting tool has sensing means for a property or condition at a plurality of sensing points distributed on a cutting tool, for instance at radially inner and radially outer positions on a drill bit, and the pattern of observations at the sensing points provides evidence that the cutting tool is or is not operating in the manner intended. More specifically, an abnormal pattern of a measured physical property or an abnormal pattern of wear may indicate abnormal motion of the cutting tool, such as a whirling motion in which a drill bit moves bodily in a circle, as well as rotating about its own axis.
The present subject matter can also be stated as methods. Thus in a further aspect there is here disclosed a method of monitoring the condition of a rotary cutting tool operating in a subterranean borehole, the tool comprising a support structure and a plurality of separate cutters attached to the support structure and protruding from the support structure towards the material to be cut by the tool, wherein the method comprises
providing the tool with electrically operated sensing means at or coupled to a sensing point within a protrusion from the support structure, wherein the sensing point is located such that attrition of at least one cutter to a predetermined partially worn state exposes the sensing point to the material which is being cut by the tool and thereby brings about a change in condition at the sensing point,
operating the sensing means to sense the condition at the sensing point, and
communicating sensed information to the surface.
Drill bit bodies may be made from a number of materials, but it is common for them to be formed from a particulate hard material such as tungsten carbide which is packed into a mould and infiltrated with molten metal binder. An example of a disclosure relating to matrix materials for drill bits is U.S. Pat. No. 8,211,203. The drill bit shown here in
Each of the PDC cutters 40 may be of a conventional construction in which the cutter is a cylinder of hard material such as tungsten carbide matrix and has a disk 44 formed of polycrystalline diamond on one end face. The blades 11 of the body 10 are moulded with recesses to receive the PDC cutters 40. The cutters 40 are secured into these recesses by a brazing process and an example of a disclosure of such a process is provided by U.S. Pat. No. 8,360,176. The PDC cutters 40 are attached to the blades 11 in positions such that they face forward in the direction of rotation of the drill bit, indicated by arrow 45 in
The protrusion 18 is separate from the cutter 40 and is positioned so that it follows behind the PDC cutter 40 as the drill bit is rotated. The protrusion 18 has dimensions such that when the drill bit is new and unworn, the protrusion 18 does not contact the formation 26. As seen in
As shown by the enlarged view in
The dimensions of the protrusion 18 and the position of the sensor wire 24 within the protrusion 18 are chosen such that when the PDC cutter 40 and the protrusion 18 have both worn away by a predetermined amount, the tip of the U-shaped wire 24 becomes exposed and is worn through, so that the electrical continuity through the wire is lost. This event can be detected easily by electronic circuitry. An electronics package, diagrammatically indicated at 41 in
The sensor 22 is constructed similarly to the sensor 20, but is positioned further from the extremity of the protrusion 18 so that it remains intact until a greater amount of wear has taken place.
It will be appreciated that by locating the sensing point 100 in a protrusion from the support structure which is the blade 11 of the drill bit, it is possible to detect partial wear of a cutter 40 while part of the cutter remains intact. This is achieved without modification of the cutter and without modification of the process for attachment of the cutter to the body of the cutting tool.
There are a number of other possibilities for construction of the sensors. In place of plain wire 24,
Another possibility is to make a sensor using an optical fibre to convey an optical signal. Electronic circuitry would then operate a light source to transmit an optical signal along the fibre and a light receiver such as a photodiode would be used to detect the optical signal coming from the sensing point.
An optical fibre could extend in a loop like the wire 24, but as shown in
An insulated wire 24 bent into a U-shape is then inserted through the passageway 48 and hole 47 to the position shown so that the tip 49 of the wire 24 provides a sensor at a sensing point 100 behind the diamond disc 44. When abrasive wear of the cutter breaks into the hole 47, the wire 24 is broken at its tip 49 and ceases to conduct. Instead of the wire 24 as a sensor it would be possible to use an optical fibre, a thermocouple or a resistance thermometer as a sensor inserted within hole 47 analogously to their use in separate protrusions as described above with reference to
Sensors may be located behind a number of PDC cutters on a cutting tool so as to observe the pattern of wear over the drill bit. Moreover, observation of the pattern of wear may reveal abnormal motion of a drill bit or other cutting tool. This is illustrated with reference to
Detection of wear at the positions 50, which are located outwardly from the centre of the drill bit, is indicative that abrasive wear of the radially outer cutters has taken place, which is to be expected in normal operation of a drill bit. Wear at positions 50 would normally be accompanied by detection of wear at the radially inner positions 52.
However, if sensors at positions 52-cease to operate, apparently indicating wear at these positions, without wear at the positions 50, it is likely that the drill bit is in the condition referred to as whirling, in which the drill bit moves bodily in a circle as well as rotating around its own axis as intended. Such whirling would wear the radially inner protrusions more rapidly than in normal operation and might also damage them through impact rather than abrasion.
As shown by
The tool is provided with protrusions as illustrated by any of
Model Experiments
As shown by
A cutting tool as disclosed herein may also be provided with additional sensors which monitor characteristics other than wear, for instance accelerometers or magnetometers. Data from such additional sensors may be communicated to the surface together with data from sensors in one or more protrusions, as disclosed above.
It will be appreciated that the example embodiments described in detail above can be modified and varied within the scope of the concepts which they exemplify. Features referred to above or shown in individual embodiments above may be used together in any combination as well as those which have been shown and described specifically. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
1313046.3 | Jul 2013 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2014/063306 | 7/22/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/011643 | 1/29/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2457960 | Walker | Jan 1949 | A |
2575173 | Johnson | Nov 1951 | A |
4785894 | Davis, Jr. et al. | Nov 1988 | A |
6167833 | Caraway et al. | Jan 2001 | B1 |
7168506 | Boucher et al. | Jan 2007 | B2 |
8006781 | Teodorescu | Aug 2011 | B2 |
8211203 | Sheng et al. | Jul 2012 | B2 |
8360176 | Zhang et al. | Jan 2013 | B2 |
20060099885 | Lynde et al. | May 2006 | A1 |
20100139987 | Hunt et al. | Jun 2010 | A1 |
20110031017 | Lwata et al. | Feb 2011 | A1 |
20110266055 | DiGiovanni | Nov 2011 | A1 |
20110283839 | Teodorescu et al. | Nov 2011 | A1 |
20120152617 | Hunt et al. | Jun 2012 | A1 |
20120255784 | Hanford | Oct 2012 | A1 |
20120325564 | Vaughn et al. | Dec 2012 | A1 |
20130008717 | Deen | Jan 2013 | A1 |
20150322720 | Pelletier | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
1464171 | Dec 2003 | CN |
2157342 | Oct 1985 | GB |
0235048 | May 2002 | WO |
2013085869 | Jun 2013 | WO |
Entry |
---|
Chinese First Office Action for corresponding Chinese Application Serial No. 201480041718.3, dated Oct. 17, 2016, 12 pages, with English Translation. |
Chinese Second Office Action for corresponding Chinese Application Serial No. 201480041718.3, dated May 24, 2017, 12 pages, with English Translation. |
Chinese Third Office Action for corresponding Chinese Application Serial No. 201480041718.3, dated Nov. 16, 2017, 10 pages, with English Translation. |
European Search Report for corresponding European Application Serial No. 14828715.4, dated Jun. 29, 2016, 4 pages. |
European Examination for corresponding European Application Serial No. 14828715.4, dated Aug. 9, 2016, 6 pages. |
Combined Search and Examination Report for corresponding GB Application Serial No. GB1313046.3, dated Jan. 6, 2014, 6 pages. |
GB Examination Report for corresponding GB Application Serial No. GB1313046.3, dated Jan. 11, 2018, 4 pages. |
International Search Report and Written Opinion for corresponding PCT Application Serial No. PCT/IB2014/063306, dated Dec. 19, 2014, 14 pages. |
Detournay, E., et al., “Drilling Response of Drag Bits: Theory and Experiment”, International Journal of Rock Mechanics & Mining Sciences, vol. 45, (2008) pp. 1347-1360. |
Rashidi, B. et al., “Real-Time Drill Bit Wear Prediction by Combining Rock Energy and Drilling Strength Concepts”, Society of Petroleum Engineers, SPE 117109, (2008) 9 pages. |
Number | Date | Country | |
---|---|---|---|
20160153244 A1 | Jun 2016 | US |