Instruments for delivering transfascial sutures, transfascial suture assemblies, and methods of transfascial suturing

Information

  • Patent Grant
  • 10492777
  • Patent Number
    10,492,777
  • Date Filed
    Tuesday, August 2, 2016
    8 years ago
  • Date Issued
    Tuesday, December 3, 2019
    4 years ago
Abstract
An instrument for delivering a suture transfascially may include a handle, a shaft extending from the handle, and a pair of needles that are moveable to an extended position beyond the end of the shaft. One or more sutures are carried by the instrument and may be delivered transfascially. A transfascial suture assembly includes a suture having a first segment, a second segment, and an intermediate segment therebetween. A force distributing member is locatable at the intermediate segment. Suture retainers may be provided at the end of each suture segment, and may have a connection that is moveable relative to the portion of the suture segment connected therewith. A method of delivering transfascial sutures includes inserting a twin-needle instrument loaded with one or more sutures into an abdominal cavity and deploying, from within the abdominal cavity, the suture carrying needles through a soft tissue repair patch and then through at least part of the abdominal wall.
Description
FIELD

The invention relates to instruments for delivering transfascial sutures, to transfascial suture assemblies, and to methods of transfascial suturing.


BACKGROUND

Ventral hernia repair routinely involves placement of a soft tissue repair prosthetic, typically in the form of a patch, across an abdominal wall defect. In a laparoscopic procedure, or other minimally invasive approach, the patch is reduced in size and delivered through a narrow cannula or incision into the abdominal cavity where it then is returned to an expanded shape and deployed against the abdominal wall. Sutures may be applied through a partial, if not full, thickness of the abdominal wall (i.e., transfascial suturing). Additionally, or alternatively, tacks, screws, coils or other fasteners may be placed through the patch into just the innermost layers of the abdominal wall, such as the peritoneum and posterior fascia.


A conventional approach for transfascial suture delivery, as shown in FIG. 1, proceeds from outside of the patient. Sutures are pre-tied at spaced locations 100 about a patch 102 periphery, with pairs of suture tails 104 extending from each knot. It is these tails that will bridge the fascia and be secured together to form the transfascial suture fixation. The patch, pre-loaded with sutures, is collapsed and delivered into the abdominal cavity.


A suture passer instrument 106 is inserted, from outside of the patient, through the abdominal wall 108 and into the abdominal cavity in the approximate location of a particular suture tail pair. The suture passer includes a jaw or other grasper type arrangement which is operated within the cavity to capture one of the suture tails. The suture passer is retracted back through and out of the abdominal wall, drawing the suture tail exteriorly of the abdominal cavity. A hemostat or other clamp is applied to the exposed suture tail, preventing slippage of the suture tail back into the abdominal cavity. The suture passer is inserted again through the abdominal wall, creating a new puncture adjacent the first puncture, and operated to grab the remaining suture tail. The suture passer is pulled outwardly from the abdominal cavity, retrieving the second suture tail which also can be clamped against the anterior fascia. This standard transfascial suturing technique, approached from outside of the abdominal cavity, is repeated until all of the suture tail pairs have been transfascially deployed and tied together, typically at small skin incisions such that the tied knots are in the subcutaneous space.


SUMMARY

One aspect of the invention is a method of delivering a transfascial suture including providing a soft tissue repair prosthetic in an abdominal cavity of a patient and then passing, from within the abdominal cavity, a suture first through the soft tissue repair prosthetic and then through at least a part of the abdominal wall.


Another aspect of the invention is a method of delivering a transfascial suture with a suturing instrument that has been inserted into an abdominal cavity. The suturing instrument has a pair of needles and is loaded with at least one suture defined by a pair of suture segments, with each needle being associated with one of the pair of suture segments. Each of the needles is advanced from the suturing instrument through at least a part of the abdominal wall.


Another aspect of the invention is a method of delivering a transfascial suture including the acts of providing a suture that is defined by a pair of segments, each segment having a tail end and a section proximal the tail end, and passing each proximal section of a suture segment, before passing each tail end, through at least a portion of the abdominal wall.


Another aspect of the invention is a method of delivering a transfascial suture including providing a soft tissue repair prosthetic, and a suture defined by a pair of segments, each segment including a suture retainer, in an abdominal cavity. Passing, from within the abdominal cavity, each of the suture retainers through the soft tissue repair prosthetic and at least part of the abdominal wall, with each of the suture segments following a respective suture retainer through the soft tissue repair prosthetic and abdominal wall. The pair of suture segments that have passed through the abdominal wall are then secured together, such as by tying.


Another aspect of the invention is a method of delivering a transfascial suture including the acts of creating an opening in a soft tissue repair prosthetic located in an abdominal cavity by passing a suture through the soft tissue repair prosthetic, and then at least partially covering the opening with a force distributing member carried by the suture.


Another aspect of the invention is a method of inserting an instrument into an abdominal cavity. The instrument includes at least one tissue piercing member having a sharp end adapted to pierce abdominal wall tissue, and the instrument has a non-piercing mode with the sharp end of the tissue piercing member being shielded against contact with abdominal wall tissue and a piercing mode with the sharp end of the tissue piercing member being available for contact with abdominal wall tissue. The method includes inserting the instrument in the non-piercing mode into the abdominal cavity with the sharp end of the at least one tissue piercing member being shielded from contact with the abdominal wall tissue, and positioning the instrument in the non-piercing mode adjacent the abdominal wall. After positioning the instrument, the instrument is actuated to the piercing mode, and the at least one tissue piercing member is advanced through at least a part of the abdominal wall with the instrument in the piercing mode.


Another aspect of the invention is an instrument for delivering a transfascial suture including a handle and an elongated shaft extending from the handle, the shaft including a distal end. The instrument also includes a first needle and a second needle, the first and second needles being moveable to an extended position beyond the distal end of the shaft. Each needle has a sharp end adapted to pierce a soft tissue repair prosthetic and abdominal wall tissue. A suture is carried by the instrument, the suture defined by a first segment and a second segment, and including a suture force distributing member between the first and second segments. The suture is arranged in the instrument so that the suture segments are carried by the needles as the needles move to the extended position.


Another aspect of the invention is an instrument for delivering a transfascial suture including a handle and an elongated shaft extending from the handle, the shaft including a distal end. The instrument also includes a first needle and a second needle, the first and second needles being moveable to an extended position beyond the distal end of the shaft. Each needle has a sharp end adapted to pierce a soft tissue repair prosthetic and abdominal wall tissue. Each needle also includes a suture receiving channel. A suture is carried by the instrument. The suture is defined by a first segment and a second segment, the first segment is located in the first suture receiving channel and the second segment is located in the second suture receiving channel.


Another aspect of the invention is an instrument for delivering a transfascial suture including a handle and an elongated shaft extending from the handle, the shaft including a distal end. The instrument includes a first needle and a second needle, the first and second needles being moveable to an extended position beyond the distal end of the shaft. Each needle has a sharp end adapted to pierce a soft tissue repair prosthetic and abdominal wall tissue. The instrument includes a plurality of sutures indexed according to a delivery sequence, and is configured to register a next indexed suture in the delivery sequence with the first and second needles.


Another aspect of the invention is an instrument for delivering a transfascial suture including a handle and an elongated shaft extending from the handle, the shaft including a distal end. The instrument includes a first drive member and a second drive member, the first and second drive members being moveable along respective drive paths to an extended position beyond the distal end of the shaft. The instrument carries a suture, the suture defined by a first segment and a second segment. A first suture retainer is connected to the first segment and is located in a first drive path, and a second suture retainer is connected to the second segment and is located in a second drive path, the first and second suture retainers being carried by the instrument.


Another aspect of the invention is a tip for a transfascial suture delivery instrument including a tip body having a first needle pathway and a second needle pathway. Each of the first and second needle pathways being registrable with a respective first needle channel and a second needle channel in a transfascial suture delivery instrument. The instrument includes at least one suture defined by a first segment and a second segment, the first and second suture segments, or a retainer associated with each of the first and second suture segments, being located along the first needle pathway and the second needle pathway, respectively. The tip body is adapted to removably fit to the transfascial suture delivery instrument with the first and second needle pathways registered with the first and second needle channels.


Another aspect of the invention is a tip for an instrument for delivering a transfascial suture including a tip body having a first needle pathway and a second needle pathway. Each of the first and second needle pathways have a portion adapted to register with a respective first needle channel and a second needle channel in a transfascial suture delivery instrument. The tip body includes at least one suture defined by a first segment and a second segment. An elongated suture enclosure extends proximally of the first and second pathways, the first and second segments being located within the elongated suture enclosure. The tip body is adapted to fit to the transfascial suture delivery instrument with the first and second needle pathways registered with the first and second needle channels.


Another aspect of the invention is a suture assembly including a suture having a first segment, a second segment, and an intermediate section between the first segment and the second segment. A first suture retainer is connected to the first segment, and a second suture retainer is connected to the second segment. A suture force distributing member is positioned about the intermediate section.


Another aspect of the invention is a suture assembly including a suture and a suture retainer. The suture retainer includes a connector to connect with the suture. The position of the connector being selectively adjustable along the length of the suture. The suture retainer includes an axial bore therethrough for receiving a needle.


Another aspect of the invention is an instrument for delivering a transfascial suture including a handle and an elongated shaft extending from the handle, the elongated shaft including a distal end. A needle extends through the elongated shaft and is advanceable beyond the distal end, the needle including a sharp tip and a drive feature. A plurality of suture retainers are stacked in an end-to-end orientation on the needle, each pair of suture retainers connected to a single suture. A stop is provided at the distal end, the stop adapted to be overcome by needle induced movement of the distal-most suture retainer. The drive feature has a firing profile to drive the distal-most suture retainer through the stop and out of the distal end when the needle is moved in the distal direction, and a reloading profile allowing the drive feature to move past the next distal-most suture retainer as the needle is moved in the proximal direction.


A still further aspect of the invention is an instrument for delivering a transfascial suture including a handle, an elongated shaft extending from the handle, the shaft including a distal end. A pair of needles extend through the shaft and are advanceable beyond the distal end. The instrument includes a pick-up area and a loading zone in the distal end. A suture including a force distribution member is located in the pick-up area, and one or more sutures each including a force distribution member are located in the loading zone. A translating feature moves a suture and force distribution member from the loading zone to the pick-up area.





BRIEF DESCRIPTION OF DRAWINGS

The foregoing and other objects and advantages of the invention will be appreciated more fully from the following drawings, wherein like reference characters designate like features, in which:



FIG. 1 is an illustration of a conventional transfascial suture delivery;



FIGS. 2-5D are illustrations of an instrument for transfascial delivery of a suture;



FIGS. 6-8 are illustrations an instrument for transfascial delivery of a plurality of sutures;



FIGS. 9-13 are illustrations of an instrument for transfascial delivery of a suture including a reusable unit and a disposable tip;



FIGS. 14-15 are illustrations of a suture retainer with a tissue piercing tip;



FIGS. 16A-21B are illustrations of various suture retainers;



FIGS. 22-25C are illustrations of an instrument for transfascial delivery of a plurality of sutures;



FIGS. 26A-27 are illustrations of an instrument for transfascial delivery of a plurality of sutures;



FIGS. 28A-28B are partial sectional illustrations of a drive mechanism for an instrument for transfascial delivery of a suture;



FIGS. 29-32C are illustrations of an instrument for transfascial delivery of a plurality of sutures;



FIGS. 33-33C are illustrations of an instrument for transfascial delivery of a suture assembly including implantable retainers;



FIGS. 34-34D are illustrations of an instrument for transfascial delivery of a suture assembly including a subcutaneous anchor; and



FIG. 35 is an illustration of a ventral repair patch and an inflatable deployment assist device.





DETAILED DESCRIPTION

Various aspects of the invention are described below and/or shown in the drawings. These aspects of the invention may be used alone and/or in any suitable combination with each other. Aspects of the invention are not limited in any way by the illustrative embodiments shown and described herein.


Embodiments of the invention are described in connection with instruments for transfascial delivery of one or more sutures, arrangements of transfascial suture assemblies, and methods of delivering a transfascial suture. These instruments, suture assemblies, and methodologies are particularly configured for transfascial delivery of sutures from within the abdominal cavity to the outside of the patient, rather than in the traditional manner of pulling sutures across the fascia in an approach from outside of the patient. Such instruments, suture assemblies, and techniques may be applied independently or in conjunction with other approaches, such as those involving mechanical fastener-type fixation. Although disclosed in connection with a repair of a ventral hernia, the invention is not so limited and has other applications as should be apparent to one of skill in the art.


An instrument for transfascial delivery of a suture may include an actuating handle, an elongated shaft extending from the handle, one or more sutures loaded in the instrument and a drive system for advancing the suture out of the instrument. The shaft may be flexible, may be configured with a selectively articulating tip, may be selectively rotatable, and may be sized to fit through a narrow cannula, such as a 5 mm cannula or even smaller—although the outer diameter of the shaft is not necessarily a limitation of the invention.


The drive system may include one or a pair of needles or other drive elements, each with an end configured for piercing tissue and/or a soft tissue repair prosthetic, such as a ventral hernia patch. A pair of drive needles may be arranged to move simultaneously or, instead, in sequence, and may be driven by a single or a dual actuating arrangement (e.g., one trigger or two triggers).


The instrument may have a non-piercing mode with a sharp end of each needle or other tissue piercing member being shielded against contact with abdominal wall tissue and a piercing mode with the sharp end of the needle being available for contact with abdominal wall tissue. The instrument may be inserted in the non-piercing mode into the abdominal cavity. After positioning adjacent the abdominal wall, the instrument may be actuated to the piercing mode, and the needle may be advanced through at least a part of the abdominal wall.


The one or more sutures may be in carrying engagement with the needles as-loaded, or may be positioned in a path of movement of the needles so that the suture is picked up and advanced out of the instrument by the moving needles. The suture may be arranged so that a first suture segment is associated with a first needle and a second suture segment is associated with a second needle, with an intermediate suture segment extending between the two. So arranged, deployment of the pair of needles will deliver both suture segments through a ventral hernia patch and then through fascial tissue, with the intermediate segment remaining in the abdominal cavity internal of the ventral repair patch. The portions of the first and second suture segments delivered through and beyond the patch and fascial tissue, referred to as suture tails or suture segment tails, may then be joined, such as by tying, and prior to joining may be pulled to draw the intermediate segment against the ventral repair patch.


A suture force distributing member may be provided along the intermediate segment of the suture, so that the force distributing member contacts the ventral repair patch when the suture tails are drawn away from the abdominal cavity and/or secured together. The suture force distributing member may be fixed in position on the intermediate segment or may ‘float’ along the intermediate segment.


Where a plurality of sutures are loaded in an instrument, an indexing system may be provided to deliver the sutures according to a predetermined sequence, and such indexing system may be axially based, rotationally based, or otherwise. The instrument may be arranged to provide for tangle-free storage of a plurality of sutures. Further, the instrument may be configured as a reusable device, a disposable device, or a hybrid including a reusable aspect and a disposable aspect. Such a hybrid device might include, for example, a reusable handle and shaft and a disposable tip and suture assembly that is mountable to the shaft. A safety mechanism may be provided to prevent firing of the needle when no sutures are present, or are not properly loaded, in the instrument. The instrument and suture assemblies preferably will be sterilized prior to transfascial suturing.


One embodiment of a transfascial suture delivery instrument 200 is illustrated in FIGS. 2-5D (handle is not shown) and is arranged to deliver a suture 202 defined by a first segment 204, a second segment 206 and an intermediate segment 208. The first segment may be positioned within the channel 210 of a needle 212 or otherwise contained within the needle. The second segment may be similarly positioned with respect to the second needle 214. Locating the first and second suture segments within the first and second needles may allow for a reduced instrument profile. However, the suture segments could be positioned externally of the needles (anywhere about the circumference of the needle including between the needles), or partially internal of the needles and partially external of the needles. For example, and without limitation, the suture segments could extend across each, respective, needle tip and then run along opposite sides of the needle bodies. Further, the suture segments may be extended partially or fully lengthwise, that is essentially or partially linearly, or may be partially or fully reduced in length such as being in the form of loops or coils. In any of such arrangements, it is preferable to load and deliver the suture segments in a fashion that minimizes tangling. The internal or external surface of the needles may be coated or otherwise finished to facilitate delivery of the suture segments without damaging the suture.


The tips of each of the needles may be pointed to facilitate piercing of a ventral repair patch P and/or abdominal wall tissue W. The needles may include a notch 216, 218 or other feature to assist in picking up and/or paying out the suture segments as the needles are deployed. The as-loaded suture may be in an inverted U-shaped configuration as shown, with the tail ends of the suture segments being closer to the proximal end of the shaft 219. Consequently, when the needles are deployed from a non-piercing mode, as shown in FIG. 5A, to a piercing mode, as shown in FIG. 5B, the portions of the suture segments closer to the intermediate segment are first delivered from the instrument with the portions of the suture segments closer to the tail ends, or the tail ends themselves where the entire suture segments are released from the instrument, being delivered later. After deployment, respective suture tail pairs may be knotted, excess suture length trimmed, and the skin over the suture knot closed by stitching, adhesive strip or otherwise, as shown in FIGS. 5C-5D.


A force distributing member 220 may be provided along the intermediate segment of the suture, and may be located between the needles in the as-loaded arrangement as shown or may be moved into position between the needles at a point during needle deployment. The force distributing member may be fixed in position to the suture or may be freely moveable along a length of the suture (i.e., floating). In a fixed embodiment, the force distributing member may be joined to the intermediate segment through mechanical arrangements, such as by crimping the force distributing member to the segment or by one or more clamps or wedges provided in the force distributing member that may be engaged to the segment. Alternatively, and again without limitation, the suture may be tied to the force distributing member to fix the position at the intermediate segment. Additionally, the force distributing member may be joined by thermal or chemical bonding with the suture, by heat shrinking the force distributing member to the suture, or by an adhesive applied between the two components. Further, the force distributing member may be integrally formed with the suture, such as by hardening or reshaping a portion of the suture. The force distributing member is not limited to the tubular shape shown, as should be apparent to one of skill in the art, and may have other configurations such as a substantially plate-like or planar arrangement (including, without limitation, flat, slightly convex, slightly concave, and hybrids of the foregoing) with such substantially planar embodiments including any design suitable for spreading forces applied along the suture. An alternative arrangement is an hourglass or bow-tie configuration (shown as 220a in FIG. 4) with openings therethrough, or along contoured edges, for passage of the suture segments. Other three-dimensional and substantially planar shapes, as well as compound shapes including three-dimensional and planar aspects, are contemplated as one of skill in the art will appreciate. Further, one or more surfaces of the force distributing member may be adapted for contact or engagement with the soft tissue repair prosthetic. For example, a tubular shaped force distributing member may include one or more specially shaped surfaces, or facets, about its circumference, which may be planar, convex, concave, or other arrangement suitable to promote contact or engagement between the force distributing member and the soft tissue repair prosthetic. The force distributing member may be formed of a permanent material (e.g., polypropylene, polycarbonate, nylon, polyester, stainless steel, titanium), an absorbable material (e.g., polyglycolic acid (PGA), polylactic acid (PLA), polydioxanone (PDO), and blends of any of the foregoing), or a hybrid of a permanent material and an absorbable material.


A transfascial suture delivery instrument 300 arranged to deliver a multiple of pre-loaded sutures 302a-d is illustrated in FIGS. 6-8. The sutures may be in a form similar to the suture described in connection with FIGS. 2-4, characterized by a first segment, a second segment, and an intermediate segment to which a force distributing member may be provided. The sutures may be indexed in an intended delivery sequence. In the axial index shown, the distal-most suture 302a will be delivered first, the next distal-most suture 302b will be delivered second, with the indexing continuing in this fashion along the length of the stack.


An inner cannula 304 may be provided with pairs of slots 306a-d of varying length corresponding to respective positions in the index order. For example, the distal-most suture may be located in a pair of slots which is located closest to the distal tip of the instrument and, consequently, the pair of slots associated with the distal-most suture have a length shorter than the pair of slots for the next distal-most suture.


The axial indexing arrangement may be reversed so that the distal-most suture is the last suture delivered by the instrument and, further, other delivery sequences for an axial stacking arrangement may be employed as should be apparent to one of skill in the art. The indexing sequence also, or alternatively, may be characterized by rotational positioning about the circumference of the inner cannula. For example, the first suture may be located at a reference location, and then the second suture in the sequence located at a predetermined angular adjustment from the reference location (i.e., first suture), and then the third suture at a further angular adjustment from the second suture. The angular adjustments may be the same or varying as between different suture positions in the indexing sequence. For example, and without limitation, the angular adjustment between different suture index positions (e.g., pairs of slots) may be 30 degrees, allowing 6 different sutures to be indexed for a single circumferential indexing arrangement. As a further example, also non-limiting, a rotational offset of 45 degrees would permit circumferential indexing of 4 sutures, as shown in FIGS. 6-8.


As shown, the sutures are indexed axially and rotationally, with the first and second segments of each suture hanging over and draped along the outer surface of the indexing cannula, with the intermediate segment, with or without a force distributing member, extending across and internally of the indexing cannula. The indexing cannula may include outer partitions, ribs, or other features to maintain the separateness of the suture segments and avoid tangling therebetween. As described above and shown, the suture segments may be fully extended in a lengthwise direction or may be partially or substantially completely reduced in length, for example by being looped into coils. If desired, the indexing cannula may include an outer wall that shrouds the suture segments, and such an arrangement may facilitate assembly and insertion of a suture loaded indexing cannula into the instrument. One or more of adjacent, axially stacked, intermediate segments may be spaced from each other or, alternatively, may be in contact.


A pair of needles 308 are advanceable to deliver each suture from the instrument in the desired indexing sequence. The needles may be located within the indexing cannula, or otherwise arranged to pick-up or carry a suture from within the indexing cannula, as shown. Alternatively, the needles may be located externally of the indexing cannula or otherwise arranged to pick-up or carry a suture externally of the indexing cannula.


The needles may be adapted for piercing the soft tissue repair prosthetic and fascial tissue, and may include one or more features adapted to pick-up and pay out the suture segments as the needles are deployed, for example, the notched 310 arrangement shown. The needles may be solid or hollow, as the structure of the needles is not necessarily a limitation of the invention as should be apparent to one of skill in the art.


The stroke of the needles may be coordinated with the indexing location of the sutures. For example, in certain embodiments where the sutures are stacked axially, the needles must be retracted far enough to reach the proximal-most suture in the index. The stroke length in these particular embodiments, then, must be designed to reach the proximal-most suture for each retraction of the needle. Alternatively, in other axial indexing embodiments, the stroke length may be dynamic and vary depending upon the sequence order of the suture being delivered.


The needles may be rotated a predetermined angular adjustment corresponding to the next suture position in the index, and such rotational indexing may occur automatically in response to actuation of the instrument, such as at the end of the backstroke of the prior suture delivery or at some other interval, or may occur manually, as should be apparent to one of skill in the art. Once rotated, the needles are reset to pick up the next suture in the sequence. Alternatively, the indexing cannula may be arranged to rotate, while the needles remain in the same orientation, whether automatically in response to actuation of the instrument, for example at the end of the backstroke of the prior suture delivery, at some other interval, or manually.


An instrument 400 for delivering a transfascial suture is shown in FIGS. 9-13 and includes a reusable unit 402 having a handle 404, an elongated shaft 406 and a drive assembly included within and actuatable at the handle, and a disposable unit 408 including a tip 410 and suture assembly 412. The reusable unit includes a pair of drive elements 414, which may be in the form of needles, that extend along the elongated shaft and are deployable and retractable in response to actuation of a control mechanism at the handle.


As shown, the path of the drive elements or needles may diverge, increasing the spacing between the needles beyond the instrument and the amount of tissue purchase thereby. Alternatively, the drive element paths may be parallel or converging. The drive elements may run on a surface of the shaft but, preferably, are located in one or a pair of channels 416 running through the shaft as illustrated.


The distal face of the shaft may include an exit opening of the respective channels through which the drive elements may extend when deployed. The surface of the shaft may be contoured 420, as shown, to cooperate with an interface feature 422 in the disposable tip and also may be adapted to receive a suture support 424, both described further below. Although shown with a truncated elliptical cross-section, the shape of the shaft is not so limited as should be apparent to one of skill in the art.


The disposable tip includes a body portion 426 with a distal extension 428 and a proximal extension 430. The proximal extension is shaped to mount about the distal portion of the shaft and includes an interface 422 for snap fitting into the complementary recess 420 in the shaft. The location of these complementary interface features could be reversed and other arrangements for releasably engaging the disposable tip to the shaft are contemplated as should be apparent to one of skill in the art.


In one embodiment, a releaseable interface between the distal shaft face and proximal face of the tip body may be provided, such as a male/female arrangement 432, 434 shown, which assist in the releasable connection between the two components and may be in lieu of the proximal extension and shaft interface. The tip body includes a pair of drive channels 436 with openings that are registrable, respectively, with the first and second exit openings in the distal face of the shaft. The distal extension includes a pair of drive paths 438 that continue from the drive channels extending through the tip body. Wall structure may be built up around, and/or between, the drive paths to guide and/or support the drive elements.


Extending proximally of the tip body is a support 424 for a pair of suture segments. The support may be tubular shaped and may be integral with the proximal extension or a separate component that extends from the tip body along the extension, whether internal of the extension as shown, or external of the extension if desired. The suture support may form a single channel or may be divided, fully or partially, or otherwise configured to maintain first and second suture segments separate from each other. The support is arranged to mount to the shaft, such as by seating in a complementary recess 440 formed in the shaft surface. As shown, the complementary recess may be in the form of an elongated concave depression, bounded by convex walls. Other arrangements of a mount for the suture support are contemplated and this particular configuration is not necessarily a limitation of the invention. The suture support communicates with an opening through the tip body which may include a mount 442 or support for a force distribution member 444, such as the washer-type device shown. The opening may include a divider presenting a first segment opening and a second segment opening.


A suture retainer 450 may be located in each of the drive paths, with each retainer connected to one of the suture segments 452 extending through the opening or openings in the tip body. The suture retainers are adapted to receive and be carried by the drive elements as they are advanced from the shaft of the reusable unit, through the tip body and along and beyond the distal extension of the tip. In one embodiment, the suture retainers each include an axial through-bore for receiving a portion of a needle tip. The bore and/or needle may be configured so only part of the needle will project through the retainer. For example, and without limitation, the needle may include a necked down narrow tip portion that is extendable through and beyond the retainer bore, and a stepped up larger proximal portion that is engageable with the retainer, for example with an internal or external shoulder of the retainer.


As shown, the force distribution member may be arranged in floating relationship with the suture segments; that is, the force distribution member need not be fixedly located at a singular position on the suture. After both suture segments are fully deployed out of the instrument, whether by advancement of the needles or by pulling of the suture tails or tail segments that have been transfascially delivered, the force distributing member and intermediate segment will position against the soft tissue repair patch. Prior to full deployment, the force distribution member may stay with the disposable tip or may be suspended by the moving suture segments even though displaced from the instrument.


The suture retainers are carried by the needles from the instrument through the soft tissue repair prosthetic and/or fascial tissue, presenting on the other side of the abdominal wall. Upon completion of the instrument stroke, the needles retract back through the fascia and abdominal wall patch, leaving a first suture segment running from a first suture retainer located exterior of the abdominal cavity, to an intermediate segment and force distribution member internal of the abdominal cavity and positionable against the abdominal wall patch, and back to a second segment running from the force distribution member through the abdominal wall patch and fascia to a second retainer located exterior of the fascia. The deployed retainers may be reoriented, automatically or manually, so that the retainers are unlikely to slip back through the needle puncture openings. The retainers hold the suture segments in place pending tying, or other securing, of the suture tails together. The retainers may be left as deployed, pending delivery of other sutures about the abdominal wall patch, or the surgeon may choose to tie or otherwise connect the ends of each pair of suture tails prior to delivering the next suture. Prior to tying together or other connection of the suture tails, the suture segments may be pulled to take up any excess suture slack still remaining in the instrument or in the abdominal cavity, preferably while holding the suture retainers against the patient. Where the soft tissue repair patch is not already positioned flush against the abdominal wall, such retraction of the suture segments may help hoist a portion of the patch into position.


Although just described with an axial-through bore for receiving a needle, the suture retainer may have a different arrangement, as shown in FIGS. 14-15, where the suture retainer 500, itself, is formed with a tip 502 that is sharp and otherwise adapted to pierce the abdominal wall prosthesis and/or abdominal wall. In this embodiment, then, the suture retainer does not have to be configured to extend a needle therethrough, and may be solid or include only a partially extending axial-bore 504. The tip of the drive elements will be configured to appropriately engage with and advance such alternatively designed suture retainers. For example, and without limitation, the suture retainer may include a partial axially extending bore, and the drive element may include a cylindrical portion that is compatible and just slightly narrower than the bore so as to fit within and be removable from the bore without catching. For a solid suture retainer, the proximal face may include features such as notches or projections, or other arrangements, that provisionally engage with complementary features in the distal end of the drive element.


Various suture retainer arrangements are shown in FIGS. 16A-21B. A suture retainer 600 may include a tapered distal end 602 to assist in advancement through the soft tissue repair prosthetic P and the fascial tissue W. A proximal portion 604 may be wider than the distal end, making it more difficult for the suture retainer to pass back through the puncture formed through the fascia and abdominal wall prosthesis, and such enlargement may be symmetrical or asymmetrical. In certain embodiments, the proximal portion includes a side body 606 that extends radially from the main retainer body. The side body may be tubular shaped, or at least present a curved outer wall, and have a distal portion 608 that tapers towards the retainer body. The side body may serve as a connector between the retainer and the suture segment.


In the embodiment of FIGS. 16A-16B, the suture segment is fixed at the connector such as by insert molding, adhesive or ultrasonic bonding sections of the connector about an end of the suture segment, mechanically clamping or otherwise mechanically securing the end of the suture segment to the connector, or other approach as should be apparent to one of skill in the art. Alternatively, the connector may be configured to allow the suture segment to move therethrough, so that the location of the suture segment within the connector is selectively variable. In such cases, an end of the suture segment may be knotted, formed in a bulbous shape, or otherwise configured so as not to pass through the connector, preventing the suture segment from slipping out. Although described as a substantially tubular side body, other configurations of a connector for a suture segment are contemplated as should be apparent to one of skill in the art.


As illustrated in FIGS. 17A-21B, the connector may include an axial bore 610 extending at least partially through the connector.


The axial bore may open 612 transversely through the connector sidewall, as shown in FIGS. 17A-17B, and include a wedge or other suture lock arrangement that is actuated by pulling the suture segment axially through the connector and then over the connector and back in the direction of the proximal end. Where there is tension on the suture segment, the already delivered suture retainer may stand upright against the fascia.


A portion of the connector at a proximal end may include a side-cut 614, as shown in FIGS. 18A-18B, or other arrangement that allows the suture retainer to tip over and lay transversely to the direction of the suture segment (e.g., flat against the fascia) that has escaped through the side-cut. Here, again, a wedge or other suture locking feature may be incorporated in a transverse opening in the connector sidewall.


In a further embodiment illustrated in FIGS. 19A-19B, a tipping arm 616 may extend from the connector or other aspect of the retainer, about which the suture segment may be wrapped to encourage tipping of the retainer.


In an arrangement shown in FIGS. 20A-20B, a connector includes an axial bore 620, a first opening 624 through the connector sidewall and a second opening 622 in the connector sidewall, in the form of a slot, spaced from the first opening and extending in the same direction through the connector sidewall. A suture can be arranged to run through the connector so that the enlarged tail end can be pulled in a direction away from the proximal end of the retainer and then cinched against the suture lock in the slot.


In a variation shown in FIGS. 21A-21B, a slot 630 may open in a direction transversely to a first opening 632 in the connector sidewall so that the tail may be pulled through the slot and away from the retainer in a first direction and the remaining suture segment can extend from the first opening in a generally opposite direction.


Other arrangements of connectors for suture retainers, particularly the arrangements of openings and/or slots to facilitate orientation of a suture retainer relative to the fascia, are contemplated as should be apparent to one of skill in the art. For example, and without limitation, the sidecut, slot and/or opening may including varying directional components to allow relative positioning of the suture retainer and suture tail, so that the suture retainer may be rotated as well as tipped over. Further, although each end of a suture has been described as being associated with a respective suture retainer, the invention is not so limited and only one end of a suture need be employed with a suture retainer. In this latter embodiment, the other end of the suture may be attached to a different component, such as a T-bar fastener, or may be free of any additional component.


An instrument for delivery of transfascial sutures 700, shown in FIGS. 22-25C, is pre-loaded with a plurality of sutures. Each suture includes a first suture segment attached to a first suture retainer 750, a second suture segment attached to a second suture retainer 750, and an intermediate segment extending therebetween which may further incorporate a force distribution member.


The instrument includes a handle 702, an outer shaft 704, and a single drive needle 706 located within the outer shaft about which the suture retainer pairs are mounted in end-to-end fashion. Adjacent suture retainers may be slightly spaced from each other, or in contact. A proximal end of the drive needle may extend outside of the handle and may be pushed forward to drive the tip of the needle to a deployed position beyond the end of the shaft. The proximal end of the drive needle may then be retracted to reposition the needle tip at a starting position. Other arrangements for deploying and retracting the drive needle are contemplated as should be apparent to one of skill in the art.


A biased loading member, such as a spring ending in a washer or other structure is adapted to act against a proximal end of the retainer stack, urging the retainer stack towards the distal tip. A resilient stop 708 extends inwardly from the shaft preventing further displacement of the stack in response to the biased loading member. Slightly more than a retainer's length proximal of the distal tip, sufficient to account for projection of the piercing tip of the needle through the retainer, the drive needle includes an active drive and reload feature 710. The drive and reload feature is biased into a drive profile to engage a distal-most retainer as the needle is deployed, imparting a drive force to the distal-most retainer that overcomes the resilient stop and forces the retainer through the puncture path in the abdominal wall patch and fascia that has been formed by the deploying needle.


As the needle retracts through the shaft on its return stroke, the active drive and reload feature contacts the tip of the next suture retainer, which has been advanced to the stop by the biased loading member. The rearward force on the active drive and reload feature as it contacts the tip of the next suture retainer overcomes the bias for the drive profile, causing the drive and reload feature to move into a reloading profile that is adapted to pass through the retainer. Upon completion of the stroke, the drive and reload feature emerges proximal of the new distal-most retainer and biases again into the drive profile.


In one embodiment, the active drive and reload feature includes a cam member that is pivoted to the drive needle so that forces directed against the front of the cam member cause upward pivoting into a drive profile, while forces directed to the back of the cam member cause downward pivoting into a reloading profile. As shown, and but one example of a drive and reload feature, is a wedge shaped member pivotally mounted to the drive needle with an upright front face 712 and a downwardly inclining back face 714.


An instrument 800 for delivering transfascial sutures is shown in FIGS. 26A-27 and includes a plurality of pre-loaded suture and suture force distribution members 802a-f. The delivery instrument includes an elongated shaft 804 and a pair of needles 806 or other drive elements which may be configured similar to the needles and drive elements previously described so as to be controllably moved through the instrument to pick up a pair of suture segments and transfascially deliver the suture and suture force distribution member. A distal end of the shaft includes a loading zone 810 and a pick-up position 812 for the suture and suture force distribution members. The loading zone may be arranged at a first side of the shaft with the pick-up position on another, preferably opposite, side of the shaft, with the needles or other delivery elements moveable through the pick-up position side of the shaft. The loading zone may include stacking walls, ribs or other features, projecting inwardly from the shaft, and that may be configured to correspond with the contour of the suture force distribution members to assist in aligning and guiding the position of the stack within the shaft.


The loading zone and pick-up position may overlap to some extent as shown in FIG. 27, such that a portion of the suture force distribution member in the pick-up zone may eclipse a portion of the next distal-most suture force distribution member. A design factor for relative location of the pick-up position and the stacking zone includes providing a clear path for the needle pairs to travel through the pick-up position so as to grab the suture segments.


In the loading zone, the suture and suture force distribution members may be stacked, such as in a face-to-face orientation as shown and be biased by a spring drive towards the distal tip of the instrument. Advance of the stack towards the distal tip is shown in FIG. 26D. The distal-most suture and suture force distribution member is moved, manually or automatically, to a pick-up position that is offset from the rest of the stack as shown in FIG. 26D. For example, and without limitation, a leaf spring, a cam element 814 formed or provided within the shaft and that cooperates with the spring drive, or other mechanical arrangement may be located at the distal end of the loading zone to bias over the distal most suture force distribution member into the pick-up position after the needle pair have been retracted proximal of the pick-up position. Other arrangements for translating, or otherwise moving, the suture force distribution member and associated suture segments to the pick-up position may be employed as should be apparent to one of skill in the art.


The pair of needles or other delivery elements are advanced to and through the pick-up position, picking up the suture segments and dragging the suture segments through the tissue as the needle is advanced well beyond the end of the instrument. The suture force distribution member, similar to previous embodiments, may be fixed to the suture segments or free-floating therealong. This delivery instrument is not limited to the shape or arrangement of the suture force distribution members shown nor to the position of the suture segments relative to the suture force distribution members. Other arrangements and configurations of sutures and suture force distribution members for use with a delivery instrument with attributes as just described are contemplated as should be apparent to one of skill in the art.


In an alternative embodiment, a cartridge separate and apart from the delivery instrument may similarly be loaded with one or more sutures and suture force distribution members and configured to receive the tip of the separate delivery instrument to load a suture and suture force distribution member. The delivery instrument, now loaded with a suture and suture force distribution member, may be removed from the cartridge and inserted through a cannula or narrow incision into the abdominal cavity and applied to fire the suture transfascially. The depleted delivery instrument may be withdrawn from the cavity and reloaded by again inserting the tip of the delivery instrument into the cartridge and picking-up the new distal-most suture and suture force distribution member. As with the integrated delivery instrument and cartridge arrangement described previously, the separate cartridge may be configured to translate, or otherwise move, the suture force distribution member from the stacked loading position to the pick-up position, with a leaf spring, cam, or other arrangement moving the suture force distribution member to the pick-up position once the needle pairs have vacated the pick-up position.


A system 900 for actuating the needles or other drive elements of a delivery instrument is shown in FIGS. 28A-28B and includes a handle body 902 which may be formed of a pair of handle sections as illustrated and which supports a rack and pinion drive system. A trigger 904 is mounted for linear movement along a bar and is translatable against the force of a spring 906 mounted about the bar towards the rear of the handle. A rack 908 governed by the trigger cooperates with a drive aspect 910 of a pinion gear to rotate the pinion gear in response to movement of the trigger. A separate rack 912, linked to a pair of needles 914 or other drive elements, moves in response to the rotation of the pinion gear, either towards the distal direction of the instrument so as to advance the needles or other drive elements out of the device, or in the proximal direction to retract the needles or other drive elements back into the shaft.


The handle body may include various mounts and support for the active components including, without limitation, a support for the needle rack, stabilizer rods for the needles, a pinion/drive gear mount, and a limit for distal movement of the trigger block. A pawl or other approach for providing incremental movement of the trigger may be incorporated into the handle arrangement. Incremental movements of the drive system may be coordinated to particular aspects of the suture delivery process. For example, and without limitation, the trigger stroke may have predetermined stopping points, such as at suture pickup or at various stages of needle deployment, allowing the physician to ensure it is appropriate to proceed to the next aspect of the stroke. Although an axial translatable trigger is shown, other arrangements including a pivoting trigger, and other actuators for a drive system, may be employed as should be apparent to one of skill in the art. Further, the rack and pinion drive system illustrated and described is but one of many drive systems that may be used to advance and retract the needle pairs or other drive elements of the delivery instrument.


An instrument for delivery of transfascial sutures 1000, shown in FIGS. 29-32C, may be pre-loaded with a plurality of sutures. Each suture includes a first suture segment attached to a first suture retainer, a second suture segment attached to a second suture retainer, and an intermediate segment extending therebetween which may further incorporate a force distribution member, if desired.


The instrument includes a hollow drive needle 1002 that may be located within an outer shaft (not shown) similar to those described above. An actuation handle, also similar to those described above, may be provided at a proximal end of the shaft to actuate the instrument for deploying sutures.


Suture retainer pairs 1004 are supported within the needle in end-to-end fashion. Adjacent suture retainers may be slightly spaced from each other, or in contact. The instrument may be configured to advance the stack of suture retainers along the length of the needle and deploy a distal-most suture retainer from the distal end of the needle in response to actuation of a control mechanism at the handle.


Each suture retainer 1004 may include one or more features that cooperate with the needle 1002 to maintain the suture retainers in the stacked configuration within the needle while also permitting the retainers to be moved along the length of the needle for controlled deployment. In one embodiment shown in FIGS. 29-31, each suture retainer 1004 may include a pair of protrusions 1006, such as fingers, that extend in an outward direction from opposing sides at a proximal end of the retainer and ride along elongated slots 1008 extending along opposite sides of the needle. The fingers are configured to protrude into the slots and eventually engage with a distal end 1010 of each slot when a suture retainer is advanced to a distal-most stack position within the needle. In this manner, as shown in FIG. 32, the distal-most suture retainer in the stack is restricted from advancing beyond the distal-most stack position along the needle when its fingers 1006 engage the distal ends 1010 of the slots 1008 to thereby retain the stack of suture retainers within the needle.


The suture retainers 1004 may be adapted to release from the needle upon application of a longitudinal force that is sufficient to overcome the engagement between the fingers 1006 of the distal-most retainer and the distal end 1010 of the slot. In one embodiment, each finger may include a cam surface 1012 that coacts with the end of the slot to deflect and collapse the finger inwardly as the longitudinal force is applied to drive the suture retainer in the distal direction. As shown, the cam surface 1012 may be angled outwardly from the retainer in a proximal direction. As shown in FIGS. 30-31, the distal portion of each retainer may be configured with a relief 1013, such as a slot, to receive the fingers of the adjacent retainer as the fingers become collapsed during a deployment sequence. Such an arrangement may allow for a more compact device. However, it is to be appreciated that the retainer may employ any suitable arrangement to facilitate stacking and release of the retainers as should be apparent to one of skill in the art.


When the fingers 1012 are fully collapsed into a low profile, as shown in FIG. 32A, the distal-most suture retainer may be advanced distally beyond the distal-most stack position for deployment from the needle. The fingers may be resilient so that they return toward their original expanded position after deployment, making it more difficult for the suture retainer to pass back through the puncture formed through the fascia and abdominal wall prosthesis. However, use of a resilient finger is not a required feature and other engagement features may be employed as should be apparent to one of skill in the art. For example, and without limitation, the retainer may include shear pins or other deformable features that maintain the stack of suture retainers within the needle until deployment is desired.


A first pusher 1014 may be located within the shaft and be adapted to act against a proximal end of the retainer stack, urging the retainer stack towards the distal tip of the needle in response to actuation of the instrument. In one embodiment shown in FIGS. 30 and 32-32C, the first pusher 1014 may include a tube that is advanced along the length of the needle in response to actuation of the instrument. The first pusher may include a distal end 1016 that is configured to engage with a proximal portion of the most proximal suture retainer. Advancement of the first pusher in the distal direction applies a longitudinal force along the stack of retainers to advance the distal-most suture retainer into position for deployment from the needle. The first pusher 1014 may be configured to index the stack of retainers a distance corresponding to the length of a suture retainer so that only the distal-most retainer is released upon each stroke of the pusher.


A second pusher 1018 may be located within the shaft and be adapted to drive the distal-most suture retainer from the needle in response to actuation of the instrument. In one embodiment, the second pusher 1018 may include a drive wire that is adapted to extend and retract in a reciprocating manner through the first pusher 1014 and the stack of suture retainers. As shown in FIG. 32A, the distal end 1020 of the second pusher is configured to engage with the collapsed proximal end of the distal-most suture retainer. Once engaged, distal extension of the second pusher 1018 drives the distal-most suture retainer from the needle, as shown in FIG. 32B.


After deployment of the distal-most suture retainer, as shown in FIG. 32C, the second pusher 1018 is retracted proximally to its initial position for the next deployment sequence. The first pusher 1014 remains in its indexed position and engaged with the most proximal retainer in the stack to maintain the next distal-most suture retainer in position at the distal end of the slot for the next deployment sequence.


Although the instrument 1000 has been described above using one needle, it is to be appreciated that the instrument may include first and second needles with each needle supporting a stack of retainers 1004 arranged in end-to-end fashion. The instrument may be pre-loaded with a plurality of sutures with each suture including a first suture segment attached to a suture retainer in the first needle and a second suture segment attached to a correspondingly positioned suture retainer in the second needle. For example, and without limitation, the suture segments of a suture may be attached to the distal-most retainer in each needle. If desired, a force distribution member may be provided with the suture in a manner described above.


For some transfascial suturing procedures, it may be desirable to employ one or more suture retainers that may be deployed and/or implanted below the skin surface, for example, between the fascia and the dermal layer. An implantable suture retainer may be configured to anchor a suture or suture segment using a knotless procedure.


An instrument 1100 for delivering a transfascial suture is shown in FIGS. 33-33B and may include a reusable unit and a disposable unit similar to those described above in connection with the instrument of FIGS. 9-13. The reusable unit 1102 may include a handle (not shown), an elongated shaft 1104 and a drive assembly included within and actuatable at the handle. The disposable unit 1106 may include a tip 1108 and suture assembly 1110. The reusable unit includes a pair of drive elements 1112, which may be in the form of needles, that extend along the elongated shaft and are deployable and retractable in response to actuation of a control mechanism at the handle.


As shown, the path 1114 of the drive elements or needles may diverge, increasing the spacing between the needles beyond the instrument and the amount of tissue purchase thereby. Alternatively, the drive element paths may be parallel or converging.


An implantable suture retainer 1120 may be located in each of the drive paths, with each retainer connected to one of the suture segments 1122, 1124 extending through the opening or openings in the tip body. The suture retainers are adapted to receive and be carried by the drive elements 1112 as they are advanced from the shaft of the reusable unit, through the tip body and along and beyond the distal extension of the tip. In one embodiment, the suture retainers each include an axial through-bore for receiving a portion of a needle tip. The bore and/or needle may be configured so only part of the needle will project through the retainer. For example, and without limitation, the needle may include a necked down narrow tip portion that is extendable through and beyond the retainer bore, and a stepped up larger proximal portion that is engageable with the retainer, for example with an internal or external shoulder of the retainer.


As shown, a force distribution member 1126 may be arranged in floating relationship with the suture segments. As shown in FIG. 33C, after both suture segments are fully deployed out of the instrument, the force distribution member and intermediate segment 1128 will position against the soft tissue repair patch.


The suture retainers 1120 are carried by the needles from the instrument through the soft tissue repair prosthetic and/or fascia, presenting below the skin surface, for example, between the fascia and the skin layer. Upon completion of the instrument stroke, the needles retract back through the fascia and through the abdominal wall patch, leaving a first suture segment 1122 running from a first suture retainer located between the fascia and skin layer, to an intermediate segment 1128 and force distribution member 1126 internal of the abdominal cavity and positionable against the abdominal wall patch, and back to a second segment 1124 running from the force distribution member through the abdominal wall patch and fascia to a second retainer located between the fascia and skin layer.


The retainers may be configured so that they are unlikely to slip back through the needle puncture openings. In one embodiment, the proximal end portion 1130 of a retainer may expand from a collapsed configuration suitable for delivery through the fascia to an expanded configuration after deployment between the fascia and dermal layer. When expanded, the retainers anchor the suture segments in place without tying, or other securing, of the suture tails together. The retainers may be formed of an absorbable material, such as PLA, having sufficient stiffness to anchor the suture and abdominal wall patch in position. However, the retainers may be formed of any suitable material, including non-absorbable material, as should be apparent to one of skill in the art.


The suture may be configured to draw the intermediate segment and/or force distribution member toward the implanted retainers and against the abdominal wall patch. In one embodiment, the suture may be formed of a stretchable material, such as polybutester, that becomes stretched and loaded during deployment of the retainers to thereby tension the suture segments and automatically tighten the suture without having to manually pull the suture or retainers to hoist and/or secure the patch in position. For example, and without limitation, the suture segments may be sized for a deployment of approximately 1.0-1.5 cm through the fascia. During deployment, the suture segments may be over-deployed to approximately 2.0 cm to place sufficient tension on the suture segments for anchoring the patch in position.


An instrument 1200 for delivering a transfascial suture is shown in FIGS. 34-34D and may include a drive element 1202, which may be in the form of a needle, and a suture assembly 1204 supported on the needle. The needle and suture assembly may be housed within an elongated shaft 1206 and may be operated with a drive assembly included within and actuatable at a handle provided at a proximal end of the shaft.


The suture assembly 1204 may include a suture retainer 1208 connected to a first suture segment 1210 and a suture anchor 1212 connected to a second suture segment 1214. As shown, the first suture segment may be slidably received through a locking member 1216, such as a locking knot, provided at the end of the second suture segment and adjacent the suture anchor. A force distribution member 1218 may be arranged in floating relationship with the suture segments.


The suture retainer is adapted to receive and be carried by the needle 1202, or other drive element, as it is advanced from the shaft of the instrument. In one embodiment, the suture retainer includes an axial through-bore for receiving a portion of a needle tip. The bore and/or needle may be configured in a manner similar to arrangements describe above so only part of the needle will project through the retainer. As shown, the suture assembly may extend along the exterior of the needle. However, it is to be appreciated that one or more features of the suture assembly may be carried within the needle. For example, and without limitation, the suture anchor may be received and carried in a corresponding cavity provided on the exterior surface of the needle to position the suture anchor below the skin upon deployment of the suture assembly.


As shown in FIG. 34A, the suture retainer 1208 is carried by the needle from the instrument through the soft tissue repair prosthetic P and/or fascia W, presenting on the other side of the abdominal wall and above the skin surface. Upon completion of the instrument stroke, as shown in FIG. 34B, the needle retracts back through the fascia and the abdominal wall patch, leaving the first suture segment 1210 running from the suture retainer 1208 located exterior of the abdominal cavity, to the force distribution member 1218 internal of the abdominal cavity and positionable against the abdominal wall patch, and back to the second segment 1214 running from the force distribution member through the abdominal wall patch and fascia to the suture anchor 1212 which is located below the skin. The first suture segment 1210 extends through the locking member 1216 adjacent the suture anchor 1212.


As shown in FIG. 34C, the suture assembly may be tightened to draw the force distribution member against the wall patch by holding and pulling the suture retainer to draw a length of the suture segment through the locking member. If desired, a knot pusher 1220 may be slid along the first suture segment external to the abdominal cavity and pushed against the locking member to assist with tightening of the suture assembly. As shown, the suture anchor may be adapted to toggle into an anchoring position as the suture is tightened. When the suture assembly is sufficiently tightened to secure the wall patch, excess length of the first suture segment may be cut below the skin and removed along with the suture retainer.


A method of transfascial suturing, for example in the repair of an abdominal wall defect such as a ventral hernia, will now be described. The patient is prepared in the typical fashion for hernia surgery which may include administration of general anesthesia, identification of the hernia size and location, and shaving, washing and sterilization of the surgical site. The abdominal cavity may be insufflated or otherwise expanded to separate the abdominal wall from organs located in the abdominal cavity. A trocar cannula may be inserted to provide camera access to the cavity allowing the physician to visualize the surgical site. A separate laparoscopic cannula may be inserted into the abdominal wall cavity, or an incision (such as formed by a trocar) may be made leading into the abdominal wall cavity, and an abdominal wall repair prosthetic then may be inserted, as described below, through such cannula, incision, or other passageway into the abdominal cavity.


The prosthetic, which may be in the form of a patch, preferably is reduced in size to facilitate delivery through the slender cannula or incision. For example, and without limitation, the prosthetic may be rolled, folded, or otherwise collapsed into a shape suitable for passage through the narrow approach to the abdominal cavity. Once located within the cavity, the prosthetic is unfurled or otherwise enlarged, manually or inherently under its own power, and then is positioned relative to the defect, preferably with a margin of at least several centimeters projecting beyond the edges of the defect. Delivery and enlargement of the patch may be facilitated by a mesh introducer such as a PRECISIONPASS instrument available from Davol Inc., assignee of the instant application. Alternatively, a patch deployment assist device, such as an inflatable deployment assist balloon B as illustrated in FIG. 35, may be employed to deliver, expand, and/or position the prosthetic against the abdominal wall relative to the defect.


In a representative method, the patch is reduced along with a deflated deployment assist device, to a slender size such as by rolling the patch and deployment assist device into a cylindrical shape. One or more attachment components on the deployment assist device may help mount the patch to the deployment assist device. An inflation tube for the deployment assist device may be routed through the patch and then grasped, once the deployment assist device and patch are in the abdominal cavity, by a suture passer or other instrument that has been inserted into the abdominal cavity from outside of the patient. The suture passer is withdrawn, externalizing the inflation tube. The end of the inflation tube outside of the patient may be fluidly connected to an inflation source. Introduction of an inflation medium through the inflation tube will expand the balloon, unfurling the patch into a substantially planar configuration or such other end-use configuration as may be desired. The patch is positioned relative to the defect and when appropriately located, the inflation tube may be pulled from outside of the patient to hoist the deployment assist device and, consequently, the patch carried thereby against the abdominal wall. A hemostat, clamp or other instrument, may be applied to the inflation tube to retain the deployment assist device in position. If desired, the patch still may be rotated to optimize angular orientation of the patch.


The prosthetic patch may be maintained in position against the abdominal wall by the deployment assist device or, alternatively, by use of laparoscopic instruments such as graspers. At this time, in the discretion of the physician, a plurality of coils, tacks, staples, or other mechanical fixation elements may be applied through the patch into the abdominal wall.


A single or twin-needle, or other single or twin-drive element, suture delivery instrument is then inserted through the cannula or narrow incision into the abdominal cavity. The instrument includes one or more suture and suture force distribution member assemblies, such as any of the arrangements previously described. From within the abdominal cavity and under camera visualization, the tip of the suture delivery instrument is placed against a margin of the patch, or other location as desired by the physician. At least one trigger or other control is actuated, from outside of the patient, driving one needle or a pair of needles simultaneously or in a sequence, through the distal end of the instrument where the needles associate, if they were not pre-associated, with respective suture segments. The needle or needles advance out of the instrument and pierce through the patch margin, the abdominal wall (fascia) and, if desired, also through subcutaneous tissue, fat and skin, with the needles paying out the suture segments as they travel through the patch and anatomy.


The tail ends or sections of the suture segments may be retained on the exterior side of the abdominal cavity by application of hemostats, clamps, or other devices, or by grasping by medical staff, to prevent the suture segments from slipping back into the abdominal cavity, as well as to maintain tension on the sutures thereby keeping the patch positioned against the internal abdominal wall. The tail ends or sections external of the abdominal cavity may be pulled to hoist the patch against the abdominal wall and then the hemostats or other instruments applied, or reapplied, to manage the suture ends and patch location. In certain embodiments, suture retainers, such as those previously described, may be employed to manage the suture tails post deployment.


As the suture is delivered through the fascia, and/or in response to the pulling, external of the abdominal cavity, of the suture tails or segments that have been delivered through the fascia, a suture force distribution member becomes lodged against the prosthetic inside of the abdominal wall cavity. Advantageously, the puncture openings through the patch formed by the needles are covered, at least in part, by the force distribution member. By covering the puncture openings, the suture force distribution member helps prevent adhesions between the viscera and the tissue infiltratable side of the patch. The delivery of sutures may be repeated, for example at spaced locations about the periphery of the patch, and either after deployment of each suture or after all of the sutures have been delivered, respective suture tail pairs may be knotted, excess suture length trimmed, and the skin over the suture knot closed by stitching, adhesive strip or otherwise. The deployment assist device may be separated from the patch and removed at any time after proper positioning of the patch, and preferably after the patch has at least been provisionally secured such as by initial suturing or mechanical fixation, and may remain in the abdominal cavity until transfascial suturing has been completed. As mentioned, mechanical fixation elements may, at the discretion of the physician, be applied to the patch prior to transfascial suturing. Alternatively, such mechanical fixation may occur after transfascial suturing, or the transfascial suturing procedure may be concluded without deploying any mechanical fixation elements.


The soft tissue repair prosthetic may be formed of a porous material, such as a knit, woven or non-woven fabric, or may be composed of a solid, substantially non-porous, or microporous material. The prosthesis may be formed of one or more layers of the same or dissimilar material, and the layers may be stacked one on top of the other, side-to-side, or include a combination of both stacking arrangements. The prosthesis may be formed with portions that are tissue infiltratable and other portions that are less tissue infiltratable or are non-tissue infiltratable, providing selected areas of the repair device with different tissue ingrowth and adhesion resistant properties. The prosthesis may be formed of permanent material, resorbable material, or a combination of permanent and resorbable materials. It should be appreciated that the prosthesis may be formed of any biologically compatible material, synthetic or natural, suitable for repairing a tissue or muscle wall defect as would be apparent to one of skill in the art. Depending upon the surgical application, the prosthesis may be in the form of a patch, plug or combination patch and plug.


In a representative embodiment, the soft tissue repair prosthetic is in the form of a ventral hernia repair patch, and may include a tissue infiltratable layer and a barrier layer. The tissue infiltratable layer may include one or more sheets of surgical mesh fabric, such as a polypropylene knit. The barrier layer may be a sheet of synthetic or natural barrier material; for example, and without limitation, a sheet of ePTFE may be stitched, heat fused or otherwise connected to a polypropylene sheet. In the described method of ventral hernia repair, the polypropylene side would face the abdominal wall and the ePTFE side would face the viscera.


Surgical materials which are suitable for tissue or muscle reinforcement and defect correction may be utilized include, but are not limited to, BARD MESH (available from C.R. Bard, Inc.), SOFT TISSUE PATCH (microporous ePTFE—available from W.L. Gore & Associates, Inc.); SURGIPRO (available from US Surgical, Inc.); TRELEX (available from Meadox Medical); PROLENE and MERSILENE (available from Ethicon, Inc.); and other mesh materials (e.g., available from Atrium Medical Corporation). Biologic materials, including XENMATRIX, COLLAMEND, and ALLOMAX (all available from C.R. Bard, Inc.) or COOK SURGISIS (available from Cook Biomedical, Inc.) may also be used. Resorbable materials, including polyglactin (VICRYL—available from Ethicon, Inc.) and polyglycolic acid (DEXON—available from US Surgical, Inc.). These materials may be used alone in a soft tissue repair prosthetic, in combination with one another, or in combination with other materials. The fabric may be formed from multifilament yarns and any suitable method, such as knitting, weaving, braiding, molding and the like, may be employed to form the mesh material. It should be appreciated that when the soft tissue repair prosthesis is in the form of a patch, it may be configured in many shapes, including, but not limited to substantially flat, concave, convex, and concave-convex, and may, for example, be in the shape of a square, rectangle, circle, or ellipse. Further, the patch may be loaded with one or more drugs including, without limitation, an analgesic or antibiotic.


The suture may be formed of a synthetic or natural material, and may be absorbable or non-absorbable. For some applications, the suture may be formed of a stretchable material. Representative suture materials include, but are not limited to, polypropylene, PTFE, nylon, polyester, polybutester, silk, PGA, PLA/PGA, caprolactone, catgut, polyhydroxyalkanoate and PDO.


The above and other aspects of the invention will be appreciated from the detailed description and claims. It should be understood that although aspects of the invention have been described with reference to illustrative embodiments, aspects of the invention are not limited to the embodiments described. Also, aspects of the invention may be used alone, or in any suitable combination with other aspects of the invention.

Claims
  • 1. A method of delivering a transfascial suture, the method comprising acts of: (a) providing first and second needles and a continuous length of suture having first and second free ends within an abdominal cavity, the first needle including a first suture receiving channel and the second needle including a second suture receiving channel, the suture defined by a pair of suture segments, each suture segment having a tail end located at one of the free ends and a proximal section proximal the tail end, a length of each suture segment which includes the tail end and the proximal section being contained within the first and second suture receiving channels;(b) passing each proximal section of the suture segments in a direction from inside the abdominal cavity to outside the abdominal cavity through at least a portion of the abdominal wall by advancing the first and second needles; and(c) after act (b), passing each tail end of the suture segments in a direction from inside the abdominal cavity to outside the abdominal cavity through at least the portion of the abdominal wall by further advancing the first and second needles.
  • 2. The method of claim 1, wherein act (b) includes simultaneously passing each proximal section of the suture segments through at least the portion of the abdominal wall.
  • 3. The method of claim 1, further comprising, after act (c), securing the tail ends together.
  • 4. The method of claim 1, wherein the suture further includes an intermediate segment between the pair of segments, and a force distributing member is located at the intermediate segment.
  • 5. The method of claim 1, wherein act (b) includes advancing the first and second needles in substantially parallel paths through the at least part the portion of the abdominal wall.
  • 6. The method of claim 1, wherein act (b) includes advancing the first and second needles in diverging paths through the at least part the portion of the abdominal wall.
  • 7. The method of claim 1, wherein act (b) includes passing the pair of suture segments through fascia and muscle and further through skin.
  • 8. The method of claim 1, wherein the length of each suture segment pays out of the first and second needles as the needles are passing through at least the portion of the abdominal wall.
  • 9. The method of claim 1, wherein the suture includes an intermediate segment located between the pair of segments, each proximal section of the segments including a proximal end opposite the tail end with the proximal end located at the intermediate segment, wherein act (b) includes passing each proximal section of the segments through at least the portion of the abdominal wall starting at the proximal end thereof and along the proximal section toward the tail end with the intermediate segment remaining in the abdominal cavity.
  • 10. A method of delivering a transfascial suture, the method comprising acts of: (a) providing a soft tissue repair prosthetic within an abdominal cavity and against the abdominal wall;(b) providing a suture delivery instrument in the abdominal cavity, the suture delivery instrument including a continuous length of suture having first and second free ends, the soft tissue repair prosthetic being located between the suture delivery instrument and the abdominal wall with no portion of the suture delivery instrument passing through the soft tissue repair prosthetic, the suture defined by a pair of suture segments, each suture segment having a tail end located at one of the free ends and a proximal section proximal the tail end;(c) after act (b), passing the proximal section of each suture segment first through the soft tissue repair prosthetic and then through the abdominal wall from within the abdominal cavity using the suture delivery instrument; and(d) after act (c), passing the tail end of each suture segment first through the soft tissue repair prosthetic and then through the abdominal wall from within the abdominal cavity using the suture delivery instrument.
  • 11. The method of claim 10, wherein the suture further includes an intermediate segment between the pair of segments, and a force distributing member is locatable at the intermediate segment, and further comprising an act of positioning the force distributing member against the soft tissue repair prosthetic.
  • 12. The method of claim 11, wherein the force distributing member is not fixedly secured to a position on the suture.
  • 13. The method of claim 10, further comprising, before act (c), non-suture fixating the soft tissue repair prosthetic to the abdominal wall.
  • 14. The method of claim 13, wherein the non-suture fixating includes one or more acts of tacking, screw fastening, or helicoil fastening the soft tissue repair prosthetic to the abdominal wall.
  • 15. The method of claim 10, further comprising, after act (d), non-suture fixating the soft tissue repair prosthetic to the abdominal wall.
  • 16. The method of claim 15, wherein the non-suture fixating includes one or more acts of tacking, screw fastening, or helicoil fastening the soft tissue repair prosthetic to the abdominal wall.
  • 17. The method of claim 10, further comprising, before act (b), the act of inserting a deployment assist device into the abdominal cavity and positioning, with the deployment assist device, the soft tissue repair prosthetic against the abdominal wall.
  • 18. The method of claim 17, wherein the deployment assist device is inflatable.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 13/157,155, filed Jun. 9, 2011, which claims the benefit under 35 U.S.C. § 119 (e) to U.S. Provisional Application No. 61/352,928 filed Jun. 9, 2010, the contents of both of which are herein incorporated by reference in their entirety.

US Referenced Citations (268)
Number Name Date Kind
4235238 Ogiu et al. Nov 1980 A
4669473 Richards et al. Jun 1987 A
4696300 Anderson Sep 1987 A
4935027 Yoon Jun 1990 A
5041129 Hayhurst et al. Aug 1991 A
5085661 Moss Feb 1992 A
RE34021 Mueller et al. Aug 1992 E
5222508 Contarini Jun 1993 A
5226426 Yoon Jul 1993 A
5281237 Gimpelson Jan 1994 A
5290217 Campos Mar 1994 A
5290297 Phillips Mar 1994 A
5364408 Gordon Nov 1994 A
5366480 Corriveau et al. Nov 1994 A
5391182 Chin Feb 1995 A
5403329 Hinchcliffe Apr 1995 A
5417699 Klein et al. May 1995 A
5458609 Gordon et al. Oct 1995 A
5462560 Stevens Oct 1995 A
5470337 Moss Nov 1995 A
5500000 Feagin et al. Mar 1996 A
5501692 Riza Mar 1996 A
5507754 Green et al. Apr 1996 A
5507755 Gresl Apr 1996 A
5522846 Bonutti Jun 1996 A
5527343 Bonutti Jun 1996 A
5540704 Gordon et al. Jul 1996 A
5549631 Bonutti Aug 1996 A
5569305 Bonutti Oct 1996 A
5575800 Gordon Nov 1996 A
5578044 Gordon et al. Nov 1996 A
5593422 Muijs Van de Moer et al. Jan 1997 A
5611515 Benderev et al. Mar 1997 A
5613974 Andreas et al. Mar 1997 A
5618290 Toy et al. Apr 1997 A
5620012 Benderev et al. Apr 1997 A
5620461 Muijs Van De Moer et al. Apr 1997 A
5626588 Sauer May 1997 A
5626614 Hart May 1997 A
5643319 Green et al. Jul 1997 A
5662664 Gordon et al. Sep 1997 A
5700272 Gordon et al. Dec 1997 A
5713910 Gordon et al. Feb 1998 A
5722981 Stevens Mar 1998 A
5733306 Bonutti Mar 1998 A
5741277 Gordon et al. Apr 1998 A
5741279 Gordon et al. Apr 1998 A
5772672 Toy et al. Jun 1998 A
5779719 Klein et al. Jul 1998 A
5810848 Hayhurst Sep 1998 A
5814072 Bonutti Sep 1998 A
5817111 Riza Oct 1998 A
5836315 Benderev et al. Nov 1998 A
5845645 Bonutti Dec 1998 A
5857999 Quick et al. Jan 1999 A
5868762 Cragg et al. Feb 1999 A
5904692 Steckel et al. May 1999 A
5938686 Benderev et al. Aug 1999 A
5941439 Kammerer et al. Aug 1999 A
5944739 Zlock et al. Aug 1999 A
5948002 Bonutti Sep 1999 A
5954747 Clark Sep 1999 A
5964773 Greenstein Oct 1999 A
6022360 Reimels et al. Feb 2000 A
6036699 Andreas et al. Mar 2000 A
6048351 Gordon et al. Apr 2000 A
6056688 Benderev et al. May 2000 A
6056773 Bonutti May 2000 A
6117160 Bonutti Sep 2000 A
6159234 Bonutti et al. Dec 2000 A
6206895 Levinson Mar 2001 B1
6210416 Chu et al. Apr 2001 B1
6245080 Levinson Jun 2001 B1
6280460 Bolduc et al. Aug 2001 B1
6287317 Makower et al. Sep 2001 B1
6293952 Brosens et al. Sep 2001 B1
6306159 Schwartz et al. Oct 2001 B1
6319263 Levinson Nov 2001 B1
6346111 Gordon et al. Feb 2002 B1
6355050 Andreas et al. Mar 2002 B1
6398796 Levinson Jun 2002 B2
6428562 Bonutti Aug 2002 B2
6500184 Chan Dec 2002 B1
6500195 Bonutti Dec 2002 B2
6506197 Rollero et al. Jan 2003 B1
6551333 Kuhns et al. Apr 2003 B2
6554845 Fleenor et al. Apr 2003 B1
6554852 Oberlander Apr 2003 B1
6565590 Kieturakis et al. May 2003 B2
6592609 Bonutti Jul 2003 B1
6595911 LoVuolo Jul 2003 B2
6596014 Levinson et al. Jul 2003 B2
6626930 Allen et al. Sep 2003 B1
6635073 Bonutti Oct 2003 B2
6638286 Burbank et al. Oct 2003 B1
6692506 Ory et al. Feb 2004 B1
6699263 Cope Mar 2004 B2
6730112 Levinson May 2004 B2
6779701 Bailly et al. Aug 2004 B2
6821285 Laufer et al. Nov 2004 B2
6896685 Davenport May 2005 B1
6911034 Nobles et al. Jun 2005 B2
6939357 Navarro et al. Sep 2005 B2
6966916 Kumar Nov 2005 B2
6997932 Dreyfuss et al. Feb 2006 B2
7021316 Leiboff Apr 2006 B2
7033370 Gordon et al. Apr 2006 B2
7060077 Gordon et al. Jun 2006 B2
7087073 Bonutti Aug 2006 B2
7150750 Damarati Dec 2006 B2
7153312 Torrie et al. Dec 2006 B1
7320701 Haut et al. Jan 2008 B2
7326221 Sakamoto et al. Feb 2008 B2
7381210 Zarbatany et al. Jun 2008 B2
7442198 Gellman et al. Oct 2008 B2
7445626 Songer et al. Nov 2008 B2
7569063 Bailly et al. Aug 2009 B2
7572267 Manzo Aug 2009 B2
7608092 Schaffhausen Oct 2009 B1
7618449 Tremulis et al. Nov 2009 B2
7645286 Catanese, III et al. Jan 2010 B2
7704264 Ewers et al. Apr 2010 B2
7722629 Chambers May 2010 B2
7722633 Laufer et al. May 2010 B2
7740638 Hyde Jun 2010 B2
7771438 Dreyfuss et al. Aug 2010 B2
7780682 Catanese, III et al. Aug 2010 B2
7815659 Conlon et al. Oct 2010 B2
7815662 Spivey et al. Oct 2010 B2
7846179 Belef et al. Dec 2010 B2
7850712 Conlon et al. Dec 2010 B2
7879048 Bain et al. Feb 2011 B2
7918868 Marshall et al. Apr 2011 B2
7942886 Alvarado May 2011 B2
7959640 Kantsevoy et al. Jun 2011 B2
8105342 Onuki et al. Jan 2012 B2
8512375 Torrie et al. Aug 2013 B2
8702753 Mikkaichi et al. Apr 2014 B2
8790356 Darois et al. Jul 2014 B2
9039721 Ziniti et al. May 2015 B2
9078648 Ziniti et al. Jul 2015 B2
9393007 Darois et al. Jul 2016 B2
9439643 Darois et al. Sep 2016 B2
9826972 Ranucci et al. Nov 2017 B2
9924938 Ziniti et al. Mar 2018 B2
20010021856 Bolduc et al. Sep 2001 A1
20020019649 Sikora et al. Feb 2002 A1
20020103494 Pacey Aug 2002 A1
20030045891 Yamamoto et al. Mar 2003 A1
20030105489 Eichhorn et al. Jun 2003 A1
20030236535 Onuki et al. Dec 2003 A1
20040044364 DeVries et al. Mar 2004 A1
20040092969 Kumar May 2004 A1
20040133238 Cerier Jul 2004 A1
20040138676 Crabtree Jul 2004 A1
20040138683 Shelton et al. Jul 2004 A1
20040260343 Leclair Dec 2004 A1
20050033363 Bojarski et al. Feb 2005 A1
20050043746 Pollak et al. Feb 2005 A1
20050049635 Leiboff Mar 2005 A1
20050075654 Kelleher Apr 2005 A1
20050228407 Nobles et al. Oct 2005 A1
20050288689 Kammerer et al. Dec 2005 A1
20060020247 Kagan et al. Jan 2006 A1
20060025819 Nobis et al. Feb 2006 A1
20060030868 Bennett Feb 2006 A1
20060069399 Weisel et al. Mar 2006 A1
20060116718 Leiboff Jun 2006 A1
20060142784 Kontos Jun 2006 A1
20060178680 Nelson et al. Aug 2006 A1
20060235446 Godin Oct 2006 A1
20060265009 Bonutti Nov 2006 A1
20060265011 Bonutti Nov 2006 A1
20060265042 Catanese et al. Nov 2006 A1
20060271101 Saadat et al. Nov 2006 A1
20060276871 Lamson et al. Dec 2006 A1
20060293709 Bojarski et al. Dec 2006 A1
20070027476 Harris et al. Feb 2007 A1
20070049970 Belef et al. Mar 2007 A1
20070073319 Mikkaichi et al. Mar 2007 A1
20070118153 Funamura et al. May 2007 A1
20070149987 Wellman et al. Jun 2007 A1
20070185532 Stone et al. Aug 2007 A1
20070191886 Dejima et al. Aug 2007 A1
20070203507 McLaughlin et al. Aug 2007 A1
20070213757 Boraiah Sep 2007 A1
20070255306 Conlon et al. Nov 2007 A1
20070276408 Filipi et al. Nov 2007 A1
20070276414 Nobles Nov 2007 A1
20070293876 Abe et al. Dec 2007 A1
20080021484 Catanese et al. Jan 2008 A1
20080039889 Lamson et al. Feb 2008 A1
20080065120 Zannis et al. Mar 2008 A1
20080086154 Taylor et al. Apr 2008 A1
20080114378 Matsushita May 2008 A1
20080114399 Bonutti May 2008 A1
20080140092 Stone et al. Jun 2008 A1
20080154286 Abbott et al. Jun 2008 A1
20080161850 Weisenburgh et al. Jul 2008 A1
20080177288 Carlson Jul 2008 A1
20080208220 Shiono et al. Aug 2008 A1
20080228265 Spence et al. Sep 2008 A1
20080228266 McNamara et al. Sep 2008 A1
20080243148 Mikkaichi et al. Oct 2008 A1
20080255591 Harada et al. Oct 2008 A1
20080294001 Surti Nov 2008 A1
20090023997 Stokes et al. Jan 2009 A1
20090062743 Rotella et al. Mar 2009 A1
20090062817 Suzuki et al. Mar 2009 A1
20090069823 Foerster et al. Mar 2009 A1
20090082786 Surti Mar 2009 A1
20090082806 West, Jr. et al. Mar 2009 A1
20090088780 Shiono et al. Apr 2009 A1
20090112232 Crainich et al. Apr 2009 A1
20090112234 Crainich et al. Apr 2009 A1
20090118734 Bhatnagar et al. May 2009 A1
20090118762 Crainch et al. May 2009 A1
20090125039 Mikkaichi et al. May 2009 A1
20090156997 Trenhaile Jun 2009 A1
20090163939 Mabuchi et al. Jun 2009 A1
20090171140 Chu Jul 2009 A1
20090192439 Lamson et al. Jul 2009 A1
20090204147 Rahmani Aug 2009 A1
20090216253 Bell et al. Aug 2009 A1
20090216265 DeVries et al. Aug 2009 A1
20090228041 Domingo Sep 2009 A1
20090275961 Harris et al. Nov 2009 A1
20090281568 Cendan Nov 2009 A1
20090292302 Manzo Nov 2009 A1
20090312603 Lam et al. Dec 2009 A1
20090326566 Alvarado Dec 2009 A1
20100010448 Deckard Jan 2010 A1
20100016870 Campbell Jan 2010 A1
20100023025 Zeiner et al. Jan 2010 A1
20100023026 Zeiner et al. Jan 2010 A1
20100030236 Hayashi et al. Feb 2010 A1
20100036395 Miller Feb 2010 A1
20100042114 Schaffhausen Feb 2010 A1
20100069930 Roslin Mar 2010 A1
20100076462 Bakos et al. Mar 2010 A1
20100076488 Spivey et al. Mar 2010 A1
20100106166 Cropper et al. Apr 2010 A1
20100121353 Marshall et al. May 2010 A1
20100145364 Keren et al. Jun 2010 A1
20100174299 Viola et al. Jul 2010 A1
20100234854 Abbott et al. Sep 2010 A1
20100249809 Singhatat et al. Sep 2010 A1
20100262166 Boraiah et al. Oct 2010 A1
20100292712 Nering et al. Nov 2010 A1
20100292719 Ducharme Nov 2010 A1
20100324573 Toubia et al. Dec 2010 A1
20110082472 Harris et al. Apr 2011 A1
20110112434 Ghabrial et al. May 2011 A1
20110125189 Stoll, Jr. et al. May 2011 A1
20110166598 Gonazles et al. Jul 2011 A1
20110306989 Darois et al. Dec 2011 A1
20110306990 Darois et al. Dec 2011 A1
20110306992 Darois et al. Dec 2011 A1
20120035626 Chu Feb 2012 A1
20120143220 Morgan et al. Jun 2012 A1
20120143221 Weisel et al. Jun 2012 A1
20120203276 Darois et al. Aug 2012 A1
20130116708 Ziniti et al. May 2013 A1
20130116709 Ziniti et al. May 2013 A1
20130116710 Ziniti et al. May 2013 A1
20140296881 Ranucci et al. Oct 2014 A1
20160317145 Darois et al. Nov 2016 A1
20180177502 Ziniti et al. Jun 2018 A1
Foreign Referenced Citations (16)
Number Date Country
197 07 851 Sep 1998 DE
1 762 185 Mar 2007 EP
1 769 749 Apr 2007 EP
1 808 134 Jul 2007 EP
2004-000601 Jan 2004 JP
2008-093431 Apr 2008 JP
5-161655 Mar 2013 JP
WO 9846142 Oct 1998 WO
WO 9945848 Sep 1999 WO
WO 02053011 Jul 2002 WO
WO 2004008973 Jan 2004 WO
WO 2004098415 Nov 2004 WO
WO 2009126781 Oct 2009 WO
WO 2011039732 Apr 2011 WO
WO 2011041571 Apr 2011 WO
WO 2011123714 Oct 2011 WO
Non-Patent Literature Citations (32)
Entry
EP17193082.9, dated Feb. 13, 2018, Extended European Search Report.
U.S. Appl. No. 13/290,236, filed Nov. 7, 2011, Ziniti et al.
U.S. Appl. No. 14/353,938, filed Apr. 24, 2014, Ranucci et al.
PCT/US2011/039793, dated Sep. 12, 2011, Invitation to Pay Additional Fees.
PCT/US2011/039793, dated Dec. 20, 2011, International Search Report and Written Opinion.
JP2013-514368, dated Jan. 28, 2015, Notice of Reasons for Rejection.
Extended European Search Report for European Application No. 17193082.9, dated Feb. 13, 2018.
Invitation to Pay Additional Fees for International Application No. PCT/US2011/039793, dated Sep. 12, 2011, 5 pages.
International Search Report and Written Opinion for International Application No. PCT/US2011/039793, dated Dec. 20, 2011, 22 pages.
English translation of Notice of Reasons for Rejection for Japanese Patent Application No. 2013-514368, dated Jan. 28, 2015, 4 pages.
Office Action for U.S. Appl. No. 13/157,172 dated Oct. 18, 2013, 9 pages.
Final Office Action for U.S. Appl. No. 13/157,172 dated Apr. 3, 2014, 11 pages.
Office Action for U.S. Appl. No. 13/157,172 dated Feb. 12, 2015, 8 pages.
Final Office Action for U.S. Appl. No. 13/157,172, dated Aug. 31, 2015, 12 pages.
Office Action for U.S. Appl. No. 13/157,172, dated Jan. 6, 2016, 12 pages.
Office Action for U.S. Appl. No. 13/157,182, dated Oct. 10, 2012, 12 pages.
Final Office Action for U.S. Appl. No. 13/157,182, dated Jul. 5, 2013, 13 pages.
Office Action for U.S. Appl. No. 13/157,182, dated Aug. 5, 2014, 12 pages.
Final Office Action for U.S. Appl. No. 13/157,182, dated Feb. 25, 2015, 14 pages.
Office Action for U.S. Appl. No. 13/157,182, dated Aug. 19, 2015, 12 pages.
Office Action for U.S. Appl. No. 13/416,740, dated Oct. 25, 2013, 13 pages.
Office Action for U.S. Appl. No. 13/290,222, dated Apr. 2, 2013, 12 pages.
Final Office Action for U.S. Appl. No. 13/290,222 dated Dec. 4, 2013, 16 pages.
Office Action for U.S. Appl. No. 13/290,222, dated Oct. 31, 2014, 19 pages.
Office Action for U.S. Appl. No. 13/290,236, dated Dec. 14, 2015, 11 pages.
Office Action for U.S. Appl. No. 13/290,236, dated Aug. 10, 2016. 12 pages.
Office Action for U.S. Appl. No. 13/290,236, dated Mar. 2, 2017. 14 pages.
Office Action for U.S. Appl. No. 13/290,247, dated Oct. 3, 2014, 13 pages.
Office Action for U.S. Appl. No. 14/353,938, dated Apr. 22, 2016, 14 pages.
Final Office Action for U.S. Appl. No. 14/353,938, dated Dec. 12, 2016. 10 pages.
U.S. Appl. No. 15/204,340, filed Jul. 7, 2016, Darois et al.
U.S. Appl. No. 15/902,461, filed Feb. 22, 2018, Ziniti et al.
Related Publications (1)
Number Date Country
20160338692 A1 Nov 2016 US
Provisional Applications (1)
Number Date Country
61352928 Jun 2010 US
Divisions (1)
Number Date Country
Parent 13157155 Jun 2011 US
Child 15226498 US