The present invention relates to methods and instruments for performing total knee arthroplasty.
Various embodiments of the present invention will be discussed with reference to the appended drawings. These drawings depict only illustrative embodiments of the invention and are not to be considered limiting of its scope.
The present invention relates to methods and corresponding instruments for performing minimally invasive total knee arthroplasty. By way of example and not by limitation, depicted in
An incision, marked by a dashed line 20, is made beginning at the mid-portion of the patella and just lateral to the patellar border and extending along the lateral parapatellar region distally to the tibial tuberosity. The incision passes between the tibial tuberosity and Gerdy's tubercle. The lateral retinaculum is divided in line with the skin incision.
The lateral edge of the distal incision is now elevated from the bone at the tibia until Gerdy's tubercle is encountered. At this point Gerdy's tubercle is elevated, such as with a curved ½-inch osteotome, leaving approximately 2 mm of bone thickness to the illiotibial band insertion at Gerdy's tubercle. Subperiosteal dissection is then continued laterally along the proximal tibia to the posterior lateral corner. A retractor is put in place which extends around the posterolateral corner to a point midway between the posterior cruciate ligament and the posterolateral corner.
The anterior half of the lateral meniscus is excised, and a portion of the fat pad is also excised to give full visualization of the lateral compartment. The tissue just proximal to the tibial tuberosity is subperiosteally dissected from the tibial tuberosity to the joint line. Subperiosteal dissection is then carried out medially, elevating the capsule and soft tissue from the joint line to a point approximately 8 mm distal to the joint. This is elevated around the anteromedial corner, and a retractor is put in place containing the patella tendon and the anteromedial capsule. As depicted in
Optionally, the lateral epicondyle can now be osteotomized. A curved ⅜-inch osteotome is utilized to elevate the base of the lateral epicondyle beginning anteriorly and extending distally to the edge of the articular surface and then elevating it as a Greenstick fracture by leaving the final attachment at the posterior border of the epicondyle. This is elevated sharply, and the attached tendons are retracted posterolaterally to expose the lateral joint and allow for opening with varus stress to expose the posterior horn of the lateral meniscus and the posterior cruciate ligament.
This optional osteotomy is utilized to give exposure and access to the posterior cruciate to protect this structure when the tibial cut is made from lateral to medial.
Once the lateral compartment 22 is formed, the tibial plateau of the tibia 6 is resected along a cut plane 5 that is substantially parallel to the joint line 8. In one embodiment, as depicted in
The tibial template 24 comprises a base 26 having a front face 28 and an opposing back face 30. At least two spaced apart passageways 32 extend between the front 28 and back 30 faces. A placement arm 34 having a flat end 35 projecting outwardly from the front face 28 is spaced a predetermined distance from the passageways 32. A support arm 37 also projects from the front face 28 at the same distance from the placement arm and the passageways 32. The support arm and passageways are selectively adjustable along the height of the front face 28 to vary their spacing from the support arm 37. The support arm 37 thus indicates the location on the bone that fasteners will penetrate when inserted through the passageways 32.
Finally, an alignment assembly 38 is mounted on the back face 30 of the base 26. The alignment assembly 38 includes a bracket 36 that is rotatable relative to the base 26 about an axis that is substantially parallel with the longitudinal axis of the placement arm 34. An elongated rod 39 projects from the bracket 36 at an orientation substantially normal to the long axis of the placement arm 34.
The flat end 35 of the placement arm 34 is rested on the lower posterior side of the lateral facet of the superior articular surface of the tibia 6. The medial-lateral tilt (or varus-valgus angle) of the cut plane for resection of the tibial plateau is set by positioning the rod 39 in parallel alignment with the mechanical axis of the tibia 6. In one embodiment, this is accomplished by using line-of-sight to position the rod 39 in parallel alignment with the tibial ridge of the tibia 6, as shown in
The anterior-posterior tilt (or posterior slope) for the cut plane is set by orienting the flat end 35 of the placement arm 34, which is rigidly mounted to the base 26, in alignment with the plane of the joint line 8. In one embodiment this is accomplished through feel and line-of-sight, as shown in
Once the tibial template 24 is properly oriented, fasteners 40 (see
As depicted in
A stylus 57 can be inserted through the guide slot 54 to visualize where the cut will be made to permit further adjustment if desired. If adjustment is necessary, the tibial guide 44 can be pulled off of the fasteners 40 and repositioned on a different set of passageways 52. An oscillating saw blade is then passed through the guide slot 54 and used to cut through the proximal end of the tibia 6 along the cut plane from lateral to medial. This cut is completed anteriorly and medially sacrificing the anterior cruciate ligament, but not posteriorly. Prior to removal of the tibial plateau, the bone is resected around the posterior cruciate ligament. In one embodiment, a ½-inch curved osteotome is inserted from the lateral side of the joint with the knee in varus to protect the bone block containing the tibial insertion of the posterior cruciate ligament. A large osteotome is then inserted into the cut and used to elevate the cut proximal tibial bone. The cut bone is put in traction by gripping it with a pair of forceps. The soft tissues are then removed from the periphery allowing extraction of the cut bone.
In an alternative embodiment, conventional arthroscopic procedures can be used to drill or otherwise resect the bone bounding the posterior cruciate ligament prior to initial cutting of the incision 20. Arthroscopic procedures can also be used to remove the meniscus and any soft tissue attachments to the proximal tibia that restrict the removal of the cut proximal tibia from the lateral side.
It is appreciated that there are a number of alternative methods and instruments that can be used in association with resection of the tibial plateau. For example, the tibial template 24 and tibial guide 44 can be combined into a single guide system that does not require changing parts over fasteners 40.
During initial attachment, the flange 60 is inserted into the guide slot 47 so that the base 58 can be properly oriented using substantially the same procedure as discussed above with regard to the tibial template 24. Once the base 58 is oriented, fasteners 53 are passed through the passageways 45 to secure the base 58 to the tibia 6. As depicted in
With the tibial plateau removed, the femur 4 and tibia can be moved together to allow more movement in the joint and give more room to access the femur. In this position, a cutting guide is mounted on the lateral side of the distal end of the femur 4 to facilitate selective resection thereof. The cutting guide, however, must be appropriately positioned so that each of the cuts, as discussed below, has a desired orientation.
As depicted in
By way of example, in one embodiment an incision is made through the skin of the patient in the parapatella region such that the incision is in alignment with the anatomic axis 64. As depicted in
As depicted in
As an alternative to making an incision in the parapatella region, the knee joint and soft tissue can initially be manipulated so that the guide wire 74 is drilled directly into the distal end of the femur 4 through the lateral compartment 22. In this embodiment, it is not necessary that the guide wire 74 be comprised of two portions.
As depicted in
A guide border 114, is positioned on the top side 94 of the body 92. The guide border 114 comprises an arched plate 116 having a first post 118 projecting upwardly from a first end 120 of the plate 116 and a second post 122 projecting upwardly from a second end 124 of the plate 116. A plurality of radially spaced apart grooves 128 are recessed along the side of each post 118, 122. Knobs 126 extend through the slots 102 at the first end 98 and central portion 104 of the body 92 and engage the posts 118, 122 so as to selectively secure the guide border 114 to the body 92. The knobs 126 can be loosened to allow the guide border 114 to slide in an arc along the body 92 to change the angle of the guide wire 74 relative to the guide stakes 106, 108. The knobs 126 can be tightened to fix the guide border in place. Depending on the operating parameters, the knobs 126 can be removed and the guide border 114 shifted to the second end 100 of the body 92.
A retainer 130 is mounted to the second post 122. The retainer 130 comprises a collar 132 that encircles the second post 122 and a sleeve 134 that encircles the guide wire 74. A set screw 136 is threaded through the collar 132 so as to bear against the second post 122 within a select groove 128. By loosening set screw 136, the retainer 130 can be selectively raised or lowered along the second post 122. When the set screw 136 is tightened, the engagement between the set screw 136 and corresponding groove 128 prevents rotation of the retainer 130 about the second post 122 and raising or lowering of the retainer 130 along the second post 122.
A pilot 140 is selectively mounted to the first post 118. The pilot 140 comprises a collar 142 that encircles the first post 118 and a pin guide 144 that projects outwardly from a side of the pilot 140. A pair of spaced apart channels 150 extend through the pin guide 144 in parallel alignment. A slot 152 is recessed into one end of the pin guide 144 between the channels 150. An elongated stylus 154 is selectively mounted within slot 152 and projects from it.
A plurality of ports 146 extend through the collar 142 so as to communicate with the first post 118. A set screw 148 is threaded into a select port 146 so as to bear against the first post 118 within a corresponding groove 128. Each port 146 is positioned at a unique predetermined radial position on the collar 142 such that by positioning the set screw 148 in a specific port 146, the pin guide 144, and thus the channels 150 therein, rotates to a predefined angle. In the embodiment depicted, nine ports 146 are provided each having a one degree variance. For example, if the set screw 148 is fixed in the number one port, the channels 150 are oriented at a one degree offset from perpendicular to the guide wire 74. When the set screw 148 is in the number nine port, the channels 150 are oriented at a nine degree offset from perpendicular to the guide wire 74.
During operation, the proximal end of the guide wire 74 is slid within the sleeve 134 of the retainer 130 so that the opposing ends 98, 100 of the positioning guide 90 are positioned laterally and medially of the knee 10, respectively. A small stab wound is made over the medial epicondyle and the guide stakes 106, 108 are advanced so as to bear against the lateral epicondyle and medial epicondyle, respectively. To enable placement of the stakes 106, 108 over the respective epicondyles, it may be necessary to loosen the set screw 136 and slide the retainer 130 along the second post 122. It may also be necessary to loosen the knobs 126 and slide the plate 116 along the arc defined by the U-shaped body 92 thereby changing the angle of the guide wire 74 relative to the guide stakes 106, 108. Once the stakes 106, 108 are appropriately positioned, the knobs 112, 126 and set screw 136 are tightened so that the stakes 106, 108 and retainer 130 are locked in place. In this position, the guide wire 74 is still disposed in alignment with the anatomic axis of the femur 4 and the guide stakes 106, 108 lie along the epicondylar axis. The epicondylar axis will be used to establish the external rotation for subsequent femoral cuts and implant placement.
The pilot 140 is set at an angle corresponding to the angle between the mechanical axis and the anatomic axis of the femur either before or after attachment of the positioning guide 90 to the guide wire 74. In one embodiment, this angle is determined in a preoperative procedure by use of standing x-ray. Alternatively, the angle can be set to approximately 6°. which is a statistical norm. Again, the desired angle is set by inserting the set screw 148 into a corresponding port 146 on the first post 118 so that the set screw 148 is received within a corresponding groove 128. This effectively sets the varus-valgus angle for subsequent bone cuts and implant placement.
Finally, the pilot 140 is also set at a desired anterior-posterior position along the length of the first post 118. This is set by raising or lowering the pilot 140 along the first post 118 until the free end 155 of the stylus 154 contacts the surface of the lateral anterior femoral ridge. This determination is made by sight and feel. Once the pilot 140 is at the proper orientation, it is secured in place by tightening the set screw 148. This effectively sets the anterior-posterior position for subsequent bone cuts and implant placement.
Once the positioning guide 90 is locked in place, alignment pins 160 are passed through the channels 150 of the pilot 140 and drilled, hammered or otherwise advanced into the lateral side of the femur 4. As depicted in
Once the alignment pins 160 are placed, the positioning guide 90 is loosened and removed from the knee 10. The positioning guide 90 is separated from the implanted pins 160 by fracturing each pin 160 at the breakaway segment 168. The guide wire 74 is also removed from the femur 4. The two alignment pins 160 now act as datums and record by their placement the desired varus-valgus angle, external rotation angle, and anterior-posterior position as determined during the placement of positioning guide 90.
As depicted in
Body 182 further includes a front face 184, a back face 186, and a plurality of spaced passageways 188 extending between them. In one embodiment at least two passageways 188 are disposed adjacent to each surface of the perimeter edge 190, although a single passageway 188 can be associated with more than one surface. An elongated slot 191 and one or more anchoring ports 202 also extend between the front 184 and back 186 faces.
As depicted in
A modular cut guide 210 is selectively mounted on the front face 184 of the template 180. The cut guide 210 has a bounded guide slot 212 and a pair of spaced apart passageways 214 extending through it. The cut guide 210 is configured such that its passageways 214 can be selectively aligned with each pair of passageways 188 associated with each perimeter edge surface of the template 180. Screws can be passed through the cut guide passageways 214 and threaded into the template passageways 188 to secure the cut guide 210 to the template 180. Alternatively, any form of fastener such as screws, nails, pins and the like can be passed through both the cut guide 210 and the template 180 and secured within the femur 4, thereby also securing the cut guide 210 to the template 180. By securing the cut guide 210, a bottom surface 211 of the guide slot 212 is disposed in the same plane as the corresponding surface of the perimeter edge 190 of the template 180. A saw, drill, chisel or the like is then passed through the guide slot 212 so as to resect the distal end of the femur 4 along the cut plane defined by the guide slot 212 and the corresponding surface of the perimeter edge 190 of the template 180. Once a cut is completed, the cut guide 210 is moved into alignment with the next perimeter edge surface of the template 180 and another cut is made. As such, each cut is made individually beginning anteriorly and extending distally and posteriorly.
It is appreciated that the cuts can be formed on the femur 4 using a number of different techniques and apparatus. For example, instead of the cut guide 210 having the bounded slot 212, a cut guide can be provided which simply provides an enlarged exposed support surface that is disposed in the same plane as the perimeter edge surfaces of the template 180. The cutting instrument, which can comprise any form of drill, blade, chisel or the like is then supported on the support surface while facilitating the cuts. In like manner, a separate cut guide can be eliminated and simply replaced with a thicker template which also functions as the cut guide. Likewise, the template need not have a cut guiding surface on its perimeter. The cut guide slot alone can guide the cut.
A slide 330 comprises a cylindrical body 332 having an axial through bore 334 extending from a first end 336 to a second end 338. An annular flange 340 extends radially from the second end 338 and has a diameter larger than the axial through bore of the cut guide body 302. An elongated slot 342 extends through one side of the slide body 332 in communication with the through bore 334. The slide 330 is slidably received in the through bore 316 of the cut guide body 302. Slide lock knob 318 can be threaded further into the cut guide body 302 to bear against the slide 330 and lock it in a desired axial position along the through bore 316 axis. The flange 340 will bottom on the second end wall 310 to prevent the slide 330 from sliding completely through the cut guide body 302. The shaft of the implement lock knob 320 aligns with the slot 342 when the slide is inserted into the cut guide body 302.
An implement 350 includes a working end 352, a support arm 354, and a mounting shaft 356. The base of the arm 354 is larger than the mounting shaft 356 diameter such that a shoulder 358 is formed at the junction of the shaft 356 and arm 354. The shaft 356 is generally cylindrical with a flat 360 formed along one side. The mounting shaft 356 is slidably received in the axial through bore 334 of the slide 330. The shoulder 358 will bottom on the second end 338 of the slide such that the working end 352 is located at a predetermined distance from the second end 338. The implement lock knob 320 can be threaded further into the cut guide body 302 and through the slot 342 in the slide 330 to bear against the slide flat 360 and lock the shaft in a desired axial position along the slide through bore 334 axis. A selection of implements 350 is provided offering different working ends 352. Each implement in the selection has a mounting shaft for engaging the slide 330 through bore 334 and shoulder for bottoming on the second end 338 to position its working end at a predetermined distance from the second end 338 of the slide.
A distal femoral cut guide 380 has a cut guide working end 382 for guiding a cutter to cut the distal femur. In the illustrative embodiment, the working end 382 comprises a saw slot 384 for maintaining a saw blade in a desired cutting plane. The working end 382 connects via a support arm 386 to a shaft (not shown) forming a shoulder as previously described. The saw slot 384 lies at a known distance and orientation relative to the shaft and shoulder. In the illustrative embodiment, the saw slot lies in a plane generally perpendicular to the shaft at a predetermined distance from the shoulder. The working end 382 projects away from the shaft axis toward the femur to position the saw slot in the incision adjacent to the bone.
An anterior femoral cut guide 390 has a cut guide working end 392 for guiding a cutter to make the anterior and anterior chamfer cuts on the distal femur. In the illustrative embodiment, the working end 392 comprises an anterior cut saw slot 394 and an anterior chamfer cut saw slot 396. The working end 392 connects via a support arm 398 to a shaft (not shown) forming a shoulder as previously described. The saw slots 394, 396 lie at known distances and orientations relative to the shaft and shoulder. The working end 392 projects away from the shaft axis toward the femur to position the saw slots in the incision adjacent to the bone.
A posterior femoral cut guide 400 has a cut guide working end 402 for guiding a cutter to make the posterior and posterior chamfer cuts on the distal femur. In the illustrative embodiment, the working end 402 comprises a posterior cut saw slot 404 and a posterior chamfer cut saw slot 406. The working end 402 connects via a support arm 408 to a shaft (not shown) forming a shoulder as previously described. The saw slots 404, 406 lie at known distances and orientations relative to the shaft and shoulder. The working end 402 projects away from the shaft axis toward the femur to position the saw slots in the incision adjacent to the bone.
In use, alignment pins 160 are placed in the femur as described above to establish desired varus-valgus angle, external rotation angle, and anterior-posterior position. The pin receiving bores 322 of the cut guide body 302 are slid over the alignment pins 160 until one or both of the pin sleeves 324 bottoms on the femoral bone. A nut can be threaded onto each of the alignment pins 160 to secure the cut guide body in place. The distal cut stylus 370 is then inserted into the slide 330 until its shoulder bottoms on the second end 338 of the slide 330. The slide 330 is translated axially within the cut guide body 302 through bore 316 until the reference surface 374 contacts the lateral distal condyle. With the distal cut stylus 370 bottomed in the slide 330 the slide lock knob 318 is rotated to lock the slide 330. This fixes the proximal-distal position of all of the femoral cuts since each cut guide is referenced to the end 338 of the slide 330. Now the varus-valgus angle, external rotation angle, anterior-posterior position, and proximal-distal position of each cut are now fixed since the cut guides are keyed to the slide 330, which is locked to the cut guide body, which is in turned fixed in position by the alignment pins through the pin receiving bores 322. The distal cut stylus 370 is removed from the slide 330. The distal cut guide 380 is slid into the slide 330 until it bottoms and is locked in place by tightening the implement lock knob 320. A saw blade is directed through the saw slot 384 to resect the distal femur. The anterior 390 and posterior 400 femoral cut guides are used similarly to make the anterior, anterior chamfer, posterior and posterior chamfer cuts. The anterior 390 and posterior 400 femoral cut guides can be provided in a range of sizes to prepare different sizes of femurs to receive appropriately sized implants.
In an alternative embodiment, templates can be mounted on the lateral side of the femur 4 without the use of the positioning guide 90.
As depicted in
Once the cuts are made and the bone fragments are removed through the lateral compartment 22, the template, the cut guide 210 and all related pins and fasteners are removed from the femur 4. The distal end of the femur 4 is moved laterally to expose the femur through the lateral incision 20. Conventional cuts are then made on the posterior side of the patella to accommodate a prosthetic patellar articular surface. All of the prosthetic components can then be fixed in place through the lateral incision.
Closure is obtained by leaving the retinaculum open on the lateral side adjacent to the patella and closing only the retinaculum beginning at the proximal and lateral patella and extending distally to the tibial tuberosity. Gerdy's tubercle does not have to be reattached, because this has been partially excised in the excision of the proximal tibia, and the iliotibial band is continuous with the aponeurosis over the perineal musculature. It will reattach itself and secure anterolateral stability.
The above described minimally invasive process for total knee arthroplasty is described with reference to forming incision 20 and thus compartment 22 on lateral side 12 of knee 10. It is appreciated that the same methods and instruments can be used to perform the minimally invasive procedure on the medial side of knee 10. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The present invention may be embodied in other specific forms without departing from the spirit and scope of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 60/383,346, filed May 24, 2002.
Number | Date | Country | |
---|---|---|---|
60383347 | May 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10356404 | Feb 2003 | US |
Child | 12195210 | US |