1. Field of Invention
The present disclosure relates to downhole pumping systems submersible in well bore fluids. More specifically, the present disclosure involves insulated bearings for a submersible pump.
2. Description of Prior Art
Submersible pumping systems are often used in hydrocarbon producing wells for pumping fluids from within the well bore to the surface. These fluids are generally liquids and include produced liquid hydrocarbon as well as water. One type of system used in this application employs an electrical submersible pump (ESP). ESPs are typically disposed at the end of a length of production tubing and have an electrically powered motor. Often, electrical power may be supplied to the pump motor via wireline. The pumping unit is usually disposed within the well bore just above where perforations are made into a hydrocarbon producing zone. This placement thereby allows the produced fluids to flow past the outer surface of the pumping motor and provide a cooling effect.
With reference now to
The source of the fluid drawn into the pump comprises perforations 20 formed through the casing of the wellbore 10; the fluid is represented by arrows extending from the perforations 20 to the pump inlet. The perforations 20 extend into a surrounding hydrocarbon producing formation 22. Thus the fluid flows from the formation 22, past the motor 12 on its way to the inlets.
Because of the long length of the motor, the rotor is made up of a number of rotor sections. Each rotor section comprises a large number of flat disks called laminations secured by copper rods. The rotor sections are spaced apart from each other. A bearing assembly is located between each section for maintaining the shaft in axial alignment. The rotor sections are keyed to the shaft for rotation therewith, but are axially movable with respect to the shaft.
Traditionally, the bearing assemblies used in motors, seal sections and pumps of electrical submersible pumps (ESPs) are plain sleeve bearings, which provide radial support. These plain sleeve bearings are not heavily loaded since a large number of bearings are typically used and the ESP units are run in a near vertical orientation. The absence of a substantial load results in an unstable or marginally stable bearing operation that can result in metal-to-metal contact in the bearings, which accelerates bearing failure.
One example of a bearing assembly is provided in a cross sectional view in
Pump failure can be initiated by an electrical discharge from an electrical supply source into the bearing assembly. The discharge may produce sparks that in turn create pitting in the bearing components, such as between the sleeve and the insert. Although the pitting exceeds lubricant thickness enabling metal to metal contact, this condition often evades detection since the motor will continue to operate after the pitting episode and smear the evidence. Confirmation of this failure mode requires microscopic detection.
The present disclosure includes a downhole submersible pumping system disposable in a cased wellbore comprising, a housing, a pump disposed within the housing, a seal section, a pump motor disposed within the housing, a shaft coupling the pump to the pump motor, a bearing assembly circumscribing a portion of the shaft, and an electrical insulator disposed between the shaft and the housing. In one embodiment, the bearing assembly comprises an annular insert formed for coaxial displacement around the shaft and an outer race coaxially circumscribing said insert, and wherein the insulator is disposed between the insert and the outer race. The electrical insulator may be made from polyetheretherketone, polyimide, polyketone, and mixtures thereof. Optionally, a tubular sleeve may be included coaxially disposed around the shaft, wherein the sleeve comprises the electrical insulator. The electrical insulator may be disposed within the sleeve, on its outer diameter, or on its inner diameter.
A method is included for electrically insulating a bearing assembly on an electrical submersible pump, wherein the electrical submersible pump comprises a pump motor, a pump, and a drive shaft mechanically coupling the pump motor to the pump. The method comprises coaxially disposing a bearing assembly on the shaft and electrically insulating a portion of the bearing assembly from the shaft. The insulating step may include inserting an electrical insulating barrier between the shaft and a portion of the bearing.
Some of the features and benefits of the present invention having been stated, others will become apparent as the description proceeds when taken in conjunction with the accompanying drawings, in which:
a-5c are cross sectional views of a sleeve for use in an electrical submersible pumping system.
While the invention will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be through and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
The present disclosure provides embodiments of a downhole submersible pumping system for producing fluids from within a wellbore up to the surface. The downhole submersible pumping system described herein includes a pump motor, a pump, and a shaft that mechanically couples of the pump motor with the pump. An electrical submersible pump is an example of a downhole submersible pumping system. Thus activation of the pump motor thereby produces corresponding rotation of the pump for pumping connate fluids from within a wellbore to the surface.
The embodiments herein described also include a bearing assembly disposed around a portion of the shaft, wherein the bearing assembly provides some radial support for the drive shaft of the pump motor. The bearing assembly described herein is insulated to prevent electrical transmission therethrough. Accordingly, any electrical leakage making its way to the drive shaft cannot be conducted through the bearing assembly to any surrounding hardware.
The outer race 44, which also has a generally annular configuration, is disposed within an opening formed on the outer circumference of the insert 42. The outer race 44 has a generally rectangular cross-section with square like recesses 45 created on its outer radial surface. These optional recesses 45 are installed to receive a T-ring, wherein the T-ring may prevent radial rotation of the outer race 44, thereby preventing bearing assembly 40 rotation. The T-ring outer circumference of mates with either a stator of an electrical submersible pump, or the inner diameter of the housing of the pumping system. The T-ring however, does not prevent axial movement of the bearing assembly 40 with respect to the drive shaft.
In the embodiment of
Examples of material making up the insulating barrier 46 include any non-conducting material. Polyetheretherketone (PEEK), polyketones, as well as polyimides each provide a suitable material for this insulator. Optionally, mixtures of these different compounds could be used to form an insulating barrier 46.
a through 5c illustrate cross sectional views of embodiments of an optional sleeve 52 for use with a drive shaft 43. With respect to
b illustrates a cross sectional view of a sleeve 52a embodiment comprising an outer portion 54a with an insulating barrier 46b disposed on the lower portion of the sleeve 52a. Here, the sleeve would be disposed on the corresponding drive shaft such that the insulating barrier 46b is between the drive shaft and the outer portion 54a. Thus a corresponding bearing assembly insert would be disposed proximate to the upper surface of the outer portion 54a.
Similarly, as seen in
It is to be understood that the invention is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation. Accordingly, the invention is therefore to be limited only by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1998888 | Wallgren | Apr 1935 | A |
2740059 | Conery | Mar 1956 | A |
4320931 | Shaffer | Mar 1982 | A |
4435661 | Witten | Mar 1984 | A |
4513215 | Del Serra | Apr 1985 | A |
4521708 | Vandevier | Jun 1985 | A |
4620601 | Nagel | Nov 1986 | A |
4717761 | Staniland | Jan 1988 | A |
5189328 | Knox | Feb 1993 | A |
5445457 | Schliephack | Aug 1995 | A |
5795075 | Watson | Aug 1998 | A |
5951240 | Hall | Sep 1999 | A |
6030128 | Pontzer | Feb 2000 | A |
6099271 | Brookbank | Aug 2000 | A |
6315497 | Wittman et al. | Nov 2001 | B1 |
6557642 | Head | May 2003 | B2 |
6566774 | Parmeter et al. | May 2003 | B2 |
6780037 | Parmeter et al. | Aug 2004 | B1 |
6863124 | Araux et al. | Mar 2005 | B2 |
6956310 | Knox | Oct 2005 | B1 |
6966701 | Schelbert | Nov 2005 | B2 |
20050217859 | Hartman et al. | Oct 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20090047156 A1 | Feb 2009 | US |